CN105096719A - Anisotropic two-dimensional visual sand filling model in simulation layer and two-dimensional visual seepage experimental device - Google Patents
Anisotropic two-dimensional visual sand filling model in simulation layer and two-dimensional visual seepage experimental device Download PDFInfo
- Publication number
- CN105096719A CN105096719A CN201410194051.2A CN201410194051A CN105096719A CN 105096719 A CN105096719 A CN 105096719A CN 201410194051 A CN201410194051 A CN 201410194051A CN 105096719 A CN105096719 A CN 105096719A
- Authority
- CN
- China
- Prior art keywords
- sand
- sand filling
- dimensional visual
- filling
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004576 sand Substances 0.000 title claims abstract description 88
- 230000000007 visual effect Effects 0.000 title claims abstract description 53
- 238000004088 simulation Methods 0.000 title 1
- 239000007788 liquid Substances 0.000 claims abstract description 42
- 238000002347 injection Methods 0.000 claims abstract description 22
- 239000007924 injection Substances 0.000 claims abstract description 22
- 238000007789 sealing Methods 0.000 claims abstract description 20
- 239000012780 transparent material Substances 0.000 claims abstract description 4
- 239000012530 fluid Substances 0.000 claims description 27
- 238000012856 packing Methods 0.000 claims description 13
- 238000012360 testing method Methods 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 80
- 239000003921 oil Substances 0.000 abstract description 48
- 230000035699 permeability Effects 0.000 abstract description 19
- 238000002474 experimental method Methods 0.000 abstract description 14
- 239000002245 particle Substances 0.000 abstract description 9
- 239000006004 Quartz sand Substances 0.000 abstract description 7
- 239000000565 sealant Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 41
- 238000006073 displacement reaction Methods 0.000 description 38
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 18
- 230000008859 change Effects 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005325 percolation Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 101100540144 Escherichia phage 186 apl gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种模拟层内非均质性的二维可视填砂模型及二维可视渗流实验装置。二维可视填砂模型包括底板和盖板,底板与所述盖板均由透明材质制成,底板与盖板的表面密封配合,且底板与盖板之间设有密封胶垫,密封胶垫与盖板之间的腔体为围压腔,密封胶垫与述底板之间的腔体为填充腔;底板上平行设置3个填砂槽,填砂槽沿所述底板的宽度方向排列;填砂槽的一端设有进液口,另一端设有出液口。本发明二维可视渗流实验装置包括供压模块、压力数据采集模块、图像采集模块、注入模块、所述二维可视填砂模型和计量模块。使用本发明时,在各个填砂槽内填入不同粒径的岩心砂岩颗粒或石英砂形成各个层之间的渗透率差异,可以根据需要进行不同填砂组合以模拟多种非均质性油藏。
The invention discloses a two-dimensional visible sand filling model and a two-dimensional visible seepage experiment device for simulating heterogeneity in a layer. The two-dimensional visual sand filling model includes a base plate and a cover plate, both of which are made of transparent materials, and the surfaces of the base plate and the cover plate are sealed and matched, and a sealing rubber pad is provided between the base plate and the cover plate, and the sealant The cavity between the pad and the cover plate is a confining pressure cavity, and the cavity between the sealing rubber pad and the bottom plate is a filling cavity; three sand filling grooves are arranged in parallel on the bottom plate, and the sand filling grooves are arranged along the width direction of the bottom plate ; One end of the sand filling tank is provided with a liquid inlet, and the other end is provided with a liquid outlet. The two-dimensional visual seepage experiment device of the present invention includes a pressure supply module, a pressure data acquisition module, an image acquisition module, an injection module, the two-dimensional visual sand filling model and a metering module. When using the present invention, core sandstone particles or quartz sand with different particle sizes are filled in each sand filling tank to form the permeability difference between each layer, and different sand filling combinations can be carried out according to needs to simulate a variety of heterogeneous oils Tibetan.
Description
技术领域technical field
本发明涉及一种用于模拟流体在油藏中渗流的实验装置,具体涉及一种模拟层内非均质性的二维可视填砂模型及二维可视渗流实验装置。The invention relates to an experimental device for simulating fluid seepage in oil reservoirs, in particular to a two-dimensional visual sand filling model and a two-dimensional visual seepage experimental device for simulating intralayer heterogeneity.
背景技术Background technique
储层研究的核心即储层非均质性。储层非均质性研究是油气田勘探与开发地质研究中重要的基础工作,在目前国内许多油田都已进入中-高含水期和降产期的情况下,该项研究显得尤为重要。油层非均质性使水驱或化学驱波及系数降低,从而导致最终采收率较低,造成注水或注剂无效循环。因此,了解非均质储层中水驱或化学驱的驱油效率及渗流规律,对于化学驱油剂的研发、评价及筛选,进一步提高原油采收率提供理论依据。The core of reservoir research is reservoir heterogeneity. Reservoir heterogeneity research is an important basic work in the geological research of oil and gas field exploration and development. At present, many oil fields in China have entered the medium-high water cut period and production reduction period, and this research is particularly important. Reservoir heterogeneity reduces the sweep coefficient of water flooding or chemical flooding, resulting in lower ultimate recovery and resulting in ineffective circulation of water injection or injection agents. Therefore, understanding the oil displacement efficiency and seepage law of water flooding or chemical flooding in heterogeneous reservoirs provides a theoretical basis for the development, evaluation and screening of chemical oil displacement agents, and further enhances oil recovery.
储层的非均质性研究主要包括层间和层内非均质研究。层间非均质的研究较简单,多采用岩心或砂管并联,注采方式和计量均易实现。层内非均质的研究较少,主要问题在于缺乏适宜模拟层内非均质状况的模型。目前的方法有:①将不同渗透率的岩心压制并用环氧树脂胶结成一块非均质岩心,缺点是不能直观观察,无法模拟地层上覆压力,不能实现分层计量,只能测量多层岩心模型整体的驱油效率变化;②不同渗透率的岩心压制并在多层岩心夹持器中进行驱替实验,在一些特制的多层岩心夹持器中,可以实现模拟油田合注分层开采中层内非均质水驱油变化规律,但无法解决可视化问题,不能直接观察流体在层内非均质多孔介质中的渗流变化情况。另一种驱替实验模型的解决思路是采用可视平板夹砂模型或玻璃刻蚀模型,解决了可视化问题,但由于非均质性平板夹砂难度大,玻璃刻蚀工艺要求高,目前缺乏用于层内非均质性研究的可视化平板填砂模型和玻璃刻蚀模型。Reservoir heterogeneity research mainly includes interlayer and intralayer heterogeneity research. The study of interlayer heterogeneity is relatively simple, and the parallel connection of cores or sand pipes is often used, and the injection-production method and measurement are easy to realize. There are few studies on intralayer heterogeneity, and the main problem is the lack of suitable models for simulating intralayer heterogeneity. The current methods are as follows: ①Compress the rock cores with different permeability and cement them with epoxy resin to form a heterogeneous rock core. The disadvantage is that it cannot be observed directly, and the overlying pressure of the formation cannot be simulated. It cannot realize layered measurement and can only measure multiple layers. The overall oil displacement efficiency of the core model changes; ②Cores with different permeability are pressed and displacement experiments are carried out in multi-layer core holders. In some special multi-layer core holders, it is possible to simulate oilfield co-injection and delamination The change law of heterogeneous water flooding in the middle layer is exploited, but the visualization problem cannot be solved, and the seepage change of the fluid in the heterogeneous porous medium in the layer cannot be directly observed. Another solution to the displacement experimental model is to use a visual flat plate sand inclusion model or a glass etching model to solve the visualization problem. A visualized slab sand-fill model and glass etch model for the study of intralayer heterogeneity.
以上实验装置均用于模拟油田井网合注合采、合注分采的点对点注采关系,而经过长期的注水开发以后,近井地带含油较少,剩余油主要分布在油藏深部及非均质性比较突出的地带,所以需要开发一种用于模拟驱油体系在层内非均质性地层深部渗流的二维可视渗流实验装置。The above experimental devices are all used to simulate the point-to-point injection-production relationship of combined injection and combined production and combined injection and separate production in the oilfield well pattern. Therefore, it is necessary to develop a two-dimensional visual seepage experimental device for simulating the deep seepage of the oil displacement system in the heterogeneous formation within the layer.
发明内容Contents of the invention
本发明的目的是提供一种模拟层内非均质性的二维可视填砂模型及二维可视渗流实验装置,该实验装置可模拟层内非均质状况及真实地层上覆压力,并通过高清摄像头实时采集传输图像和数据到计算机,能够直观动态观察驱油体系在模型中的渗流变化情况,精确反映不同驱油体系的波及效率差异。The purpose of the present invention is to provide a two-dimensional visual sand filling model and a two-dimensional visual seepage experimental device for simulating intra-layer heterogeneity, which can simulate intra-layer heterogeneity and real stratum overlying pressure, And through the high-definition camera to collect and transmit images and data to the computer in real time, it can intuitively and dynamically observe the seepage changes of the oil displacement system in the model, and accurately reflect the difference in sweep efficiency of different oil displacement systems.
本发明首先提供一种模拟层内非均质性的二维可视填砂模型,它包括一底板和一盖板,所述底板与所述盖板均由透明材质制成,所述底板与所述盖板的表面密封配合,且所述底板与所述盖板之间设有一密封胶垫,所述密封胶垫与所述盖板之间的腔体为围压腔,所述密封胶垫与所述底板之间的腔体为填充腔;The present invention firstly provides a two-dimensional visible sand filling model for simulating intralayer heterogeneity, which includes a base plate and a cover plate, both of the base plate and the cover plate are made of transparent materials, and the base plate and the cover plate are made of transparent materials. The surface of the cover plate is tightly fitted, and a sealing rubber pad is provided between the bottom plate and the cover plate, and the cavity between the sealing rubber pad and the cover plate is a confining pressure cavity, and the sealing rubber the cavity between the pad and the base plate is a filled cavity;
所述底板上平行设置3个填砂槽,所述填砂槽沿所述底板的宽度方向排列;所述填砂槽的一端设有进液口,另一端设有出液口。Three sand-filling tanks are arranged in parallel on the bottom plate, and the sand-filling tanks are arranged along the width direction of the bottom plate; one end of the sand-filling tanks is provided with a liquid inlet, and the other end is provided with a liquid outlet.
上述的二维可视填砂模型中,可根据需要向所述填砂槽中填入不同粒径的岩心砂岩颗粒或石英砂以形成模拟不同渗透率组合的层内非均质性填砂模型。In the above-mentioned two-dimensional visual sand filling model, core sandstone particles or quartz sand with different particle sizes can be filled into the sand filling tank as required to form an intralayer heterogeneous sand filling model simulating different permeability combinations .
上述的二维可视填砂模型中,相邻所述填砂槽之间设有流体通道,所述流体通道可以保证所述填砂槽内形成的渗透层之间流体交换而不会导致砂子的运移,能够模拟实际储层的层内非均质状况。In the above-mentioned two-dimensional visual sand filling model, fluid channels are provided between adjacent sand filling tanks, and the fluid channels can ensure fluid exchange between the permeable layers formed in the sand filling tanks without causing sand The migration of the reservoir can simulate the intralayer heterogeneity of the actual reservoir.
上述的二维可视填砂模型中,所述底板上于所述填砂槽的进液口端设有一导流槽;所述导流槽与所述填砂槽之间均匀刻有流体通道;In the above-mentioned two-dimensional visual sand filling model, a diversion groove is provided on the bottom plate at the liquid inlet end of the sand filling tank; a fluid channel is uniformly engraved between the diversion groove and the sand filling tank ;
所述进液口与所述导流槽相连通;所述导流槽可以保证驱油体系沿所述填砂槽内形成的渗透层的横截面均匀推进,准确模拟驱油体系在地层深部的渗流状况。The liquid inlet is connected to the diversion groove; the diversion groove can ensure that the oil displacement system advances evenly along the cross-section of the permeable layer formed in the sand filling groove, and accurately simulates the displacement of the oil displacement system in the deep formation. Seepage condition.
上述的二维可视填砂模型中,每个所述填砂槽的一端均设有一所述出液口,且所述出液口与所述填砂槽的长度方向平行,上述设置的所述出液口能够使流经所述填砂槽内形成的渗透层的驱替液分别从不同的出口流出,实现分层测量,能够精确地反应不同驱油体系在层内非均质模型中渗流的变化规律。In the above two-dimensional visual sand filling model, one end of each sand filling tank is provided with a liquid outlet, and the liquid outlet is parallel to the length direction of the sand filling tank. The liquid outlet can make the displacement fluid flowing through the permeable layer formed in the sand filling tank flow out from different outlets respectively, realize layered measurement, and can accurately reflect the heterogeneity model of different oil displacement systems in the layer Seepage variation law.
上述的二维可视填砂模型中,所述导流槽上设有一洗液出口,在交替注入流体时,可打开所述洗液出口的阀门排放冲洗所述导流槽内多余的液体。In the above-mentioned two-dimensional visual sand filling model, a washing liquid outlet is provided on the diversion tank, and when fluid is alternately injected, the valve of the washing liquid outlet can be opened to discharge and flush excess liquid in the diversion tank.
上述的二维可视填砂模型中,所述盖板上设有一加压口,所述加压口与所述围压腔相连通,所述加压口用于对所述围压腔施加围压。In the above-mentioned two-dimensional visual sand filling model, a pressurized port is provided on the cover plate, and the pressurized port communicates with the confining pressure chamber, and the pressurized port is used to apply pressure to the confining pressure chamber. Confining pressure.
上述的二维可视填砂模型中,所述底板与所述盖板具体可由PMMA制成;所述底板与所述盖板之间设有密封圈,以增强两者之间的密封性。In the above-mentioned two-dimensional visible sand filling model, the base plate and the cover plate may be made of PMMA; a sealing ring is provided between the base plate and the cover plate to enhance the sealing between the two.
本发明进一步提供了一种模拟层内非均质性的二维可视渗流实验装置,它包括供压模块、压力数据采集模块、图像采集模块、注入模块、所述二维可视填砂模型和计量模块;The present invention further provides a two-dimensional visual seepage experimental device for simulating intralayer heterogeneity, which includes a pressure supply module, a pressure data acquisition module, an image acquisition module, an injection module, and the two-dimensional visual sand filling model and metering modules;
所述供压模块包括空压机和与之相连通的若干个气瓶Ⅰ;The pressure supply module includes an air compressor and several cylinders I connected thereto;
所述注入模块包括若干个储液罐或设有刻度的管线,所述储液罐或所述管线的入口端与所述气瓶Ⅰ相连通,其出口端与所述二维可视填砂模型中所述进液口相连通;The injection module includes several liquid storage tanks or pipelines with scales, the inlet end of the liquid storage tanks or the pipelines is connected with the gas cylinder I, and the outlet end is connected with the two-dimensional visible sand filling The liquid inlet described in the model is connected;
所述二维可视填砂模型中所述出液口与所述计量模块相连通;The liquid outlet in the two-dimensional visual sand filling model is connected to the metering module;
压力数据采集模块包括若干个压力传感器和与之连接的计算机,所述压力传感器设于所述气瓶Ⅰ的出口端;The pressure data acquisition module includes several pressure sensors and a computer connected thereto, and the pressure sensors are arranged at the outlet end of the gas cylinder I;
所述图像采集模块包括高清摄像头、LED光源和计算机,所述高清摄像头与所述计算机相连接;所述LED光源设于所述二维可视填砂模型中所述底板的下方,所述高清摄像头设于所述二维可视填砂模型中所述盖板的上方。The image acquisition module includes a high-definition camera, an LED light source and a computer, the high-definition camera is connected to the computer; the LED light source is arranged under the bottom plate in the two-dimensional visual sand filling model, and the high-definition The camera is arranged above the cover plate in the two-dimensional visual sand filling model.
本发明的二维可视渗流实验装置中,所述二维可视渗流实验装置还包括一覆压模块,所述覆压模块包括一气瓶Ⅱ,所述气瓶Ⅱ分别与所述气瓶Ⅰ和所述维可视填砂模型中所述围压口相连通。In the two-dimensional visible seepage test device of the present invention, the two-dimensional visible seepage test device further includes a pressure covering module, and the pressure covering module includes a gas cylinder II, and the gas cylinder II is connected to the gas cylinder I respectively. It is connected with the confining pressure port in the dimensional visible sand packing model.
本发明具有如下有益效果:The present invention has following beneficial effects:
(1)在各个填砂槽内填入不同粒径的岩心砂岩颗粒或石英砂形成各个层之间的渗透率差异,可以根据需要进行不同填砂组合以模拟多种非均质性油藏;(1) Fill each sand filling tank with core sandstone particles or quartz sand with different particle sizes to form the permeability difference between each layer. Different sand filling combinations can be carried out according to the needs to simulate various heterogeneous reservoirs;
(2)设于填砂槽之间的流体通道可以保证各个渗透层之间流体交换而不会导致砂子的运移,能够模拟实际储层的层内非均质状况(如图4);(2) The fluid channel between the sand filling tanks can ensure the fluid exchange between each permeable layer without causing sand migration, and can simulate the intralayer heterogeneity of the actual reservoir (as shown in Figure 4);
(3)采用密封圈和密封胶垫(气压)附加围压,模拟地层上覆压力,可以实现完全均质(驱替前缘推进均匀,如图4);(3) The sealing ring and sealing rubber pad (air pressure) are used to add confining pressure to simulate the overlying pressure of the formation, which can achieve complete homogeneity (displacement front advances evenly, as shown in Figure 4);
(4)进样导流槽可以保证驱油体系在各个渗透层横截面均匀推进,模拟驱油体系在地层深部的渗流状况;(4) The sample injection diversion groove can ensure that the oil displacement system advances evenly in the cross-section of each permeable layer, and simulate the seepage status of the oil displacement system in the deep formation;
(5)PMMA面板透光率高,可直观动态观察驱油体系在层内非均质性填砂模型中的渗流变化规律,便于记录驱替前缘推进过程;(5) The light transmittance of the PMMA panel is high, and the seepage change law of the oil displacement system in the heterogeneous sand filling model in the layer can be observed directly and dynamically, which is convenient for recording the advancement process of the displacement front;
(6)可以使流经各个渗透层的驱替液分别从不同的出口流出,实现分层测量,能够精确地反应不同驱油体系在层内非均质模型中渗流的变化规律。(6) The displacement fluid flowing through each permeable layer can flow out from different outlets respectively, realizing layered measurement, and can accurately reflect the change law of seepage of different oil displacement systems in the intralayer heterogeneity model.
附图说明Description of drawings
图1是本发明模拟层内非均质性的二维可视填砂模型的侧视图。Fig. 1 is a side view of a two-dimensional visual sand filling model for simulating intralayer heterogeneity of the present invention.
图2是本发明模拟层内非均质性的二维可视填砂模型底板的俯视图。Fig. 2 is a top view of the bottom plate of the two-dimensional visual sand filling model for simulating intralayer heterogeneity of the present invention.
图3是本发明模拟层内非均质性的二维可视渗流实验装置的结构示意图。Fig. 3 is a schematic structural diagram of a two-dimensional visible seepage experimental device for simulating intralayer heterogeneity of the present invention.
图4是流体在本发明模拟层内非均质性的二维可视填砂模型中渗流的过程示意图。Fig. 4 is a schematic diagram of the process of fluid seepage in the two-dimensional visual sand filling model for simulating intralayer heterogeneity of the present invention.
图5是不同驱油体系模型含油饱和度下降对比(0.3PV)。Figure 5 is a comparison of oil saturation decline (0.3PV) of different flooding system models.
图中各标记如下:The marks in the figure are as follows:
A供压模块、B压力数据采集模块、C图像采集模块、D注入模块、E覆压模块、F二维可视填砂模型、G计量模块、1底板、2盖板、3加压口、4密封圈、5密封胶垫、6围压腔、7填充腔、8螺纹孔、9进液口、10洗液出口、11出液口、12填砂槽、13流体通道、14导流槽。A pressure supply module, B pressure data acquisition module, C image acquisition module, D injection module, E overburden pressure module, F two-dimensional visual sand filling model, G metering module, 1 bottom plate, 2 cover plate, 3 pressure port, 4 sealing ring, 5 sealing rubber pad, 6 confining pressure chamber, 7 filling chamber, 8 threaded hole, 9 liquid inlet, 10 washing liquid outlet, 11 liquid outlet, 12 sand filling groove, 13 fluid channel, 14 diversion groove .
具体实施方式Detailed ways
下面结合附图对本发明做进一步说明,但本发明并不局限于以下实施例。The present invention will be further described below in conjunction with the accompanying drawings, but the present invention is not limited to the following embodiments.
如图1和图2所示,为本发明提供的模拟层内非均质性的二维可视填砂模型,其包括底板1和盖板2,均为长方形的PMMA面板。底板1和盖板2通过螺栓密封配合(螺纹孔8设于底板1上)。为了使两者密封配合,在底板1与面板2之间设有密封圈4。As shown in Figure 1 and Figure 2, the two-dimensional visible sand filling model for simulating layer heterogeneity provided by the present invention includes a bottom plate 1 and a cover plate 2, both of which are rectangular PMMA panels. The base plate 1 and the cover plate 2 are tightly fitted by bolts (the threaded hole 8 is provided on the base plate 1). A sealing ring 4 is provided between the base plate 1 and the panel 2 in order to make the two seal fit.
如图1所示,在底板1与盖板2之间设有一密封胶垫5,该密封胶垫5与盖板2之间形成一个围压腔6,该密封胶垫5与底板1之间形成一个填充腔7,可用于填充岩心砂岩颗粒或石英砂。As shown in Figure 1, a sealing rubber pad 5 is provided between the bottom plate 1 and the cover plate 2, and a confining pressure chamber 6 is formed between the sealing rubber pad 5 and the cover plate 2, and the sealing rubber pad 5 and the bottom plate 1 A filling cavity 7 is formed, which can be used to fill core sandstone particles or quartz sand.
如图2所示,在底板1上设有3个平行设置的长方形填砂槽12,且3个填砂槽12之间设有均匀细密的流体通道13,可以保证填砂槽内形成的渗透层之间流体交换而不会导致砂子的运移。在填砂槽12的一端设有一个导流槽14,且导流槽14与填砂槽12之间也通过流体通道相连通,可以保证驱油体系沿填砂槽内形成的渗透层的横截面均匀推进,准确模拟驱油体系在地层深部的渗流状况。在导流槽14的侧壁上设有3个进液口9,远离导流槽14的填砂槽12的一端部设有出液口11,且在每个填砂槽12的末端均设有一个相应的出液口,出液口11与填砂槽12的长度方向平行,这样能够使流经填砂槽内形成的渗透层的驱替液分别从不同的出口流出,实现分层测量,能够精确地反应不同驱油体系在层内非均质模型中渗流的变化规律。As shown in Figure 2, there are three rectangular sand-filling tanks 12 arranged in parallel on the bottom plate 1, and uniform and fine fluid channels 13 are arranged between the three sand-filling tanks 12, which can ensure the penetration of the sand-filling tanks. Fluid exchange between layers without causing sand migration. One end of the sand filling tank 12 is provided with a diversion tank 14, and the diversion tank 14 and the sand filling tank 12 are also communicated through a fluid channel, which can ensure that the oil displacement system is formed along the horizontal direction of the permeable layer formed in the sand filling tank. The section advances uniformly, accurately simulating the seepage status of the oil displacement system in the deep formation. On the side wall of diversion tank 14, be provided with 3 liquid inlets 9, be provided with liquid outlet 11 at one end of the sand filling tank 12 away from diversion tank 14, and be provided with at the end of each sand filling tank 12 There is a corresponding liquid outlet, and the liquid outlet 11 is parallel to the length direction of the sand filling tank 12, so that the displacement fluid flowing through the permeable layer formed in the sand filling tank can flow out from different outlets respectively, realizing layered measurement , which can accurately reflect the change law of seepage of different oil displacement systems in the intralayer heterogeneity model.
如图2所示,在导流槽的侧壁上设有一个洗液出口10,在交替注入流体时,可打开洗液出口10的阀门排放冲洗导流槽14内多余的液体。如图1所示,在盖板2上设有一个加压口3,该加压口3与围压腔6相连通,用于对所述围压腔施加围压。As shown in FIG. 2 , a washing liquid outlet 10 is provided on the side wall of the diversion tank. When fluid is alternately injected, the valve of the washing liquid outlet 10 can be opened to discharge and flush excess liquid in the diversion tank 14 . As shown in FIG. 1 , a pressure port 3 is provided on the cover plate 2 , and the pressure port 3 communicates with the confining pressure chamber 6 for applying confining pressure to the confining pressure chamber.
如图3所示,为本发明提供的模拟层内非均质性的二维可视渗流实验装置,其包括供压模块A、压力数据采集模块B、图像采集模块C、注入模块D、覆压模块E、二维可视填砂模型F和计量模块G。As shown in Figure 3, the two-dimensional visual seepage experimental device for simulating intralayer heterogeneity provided by the present invention includes a pressure supply module A, a pressure data acquisition module B, an image acquisition module C, an injection module D, an overlay Compression module E, two-dimensional visual sand filling model F and metering module G.
供压模块A由一台空压机和与之相连通的气瓶Ⅰ(图中未标),空压机提供的高压经过气瓶Ⅰ上减压阀控制得到不同的压力,为流体注入提供动力,压力控制范围:0~6MPa,流速范围:0~20m/d。The pressure supply module A consists of an air compressor and a gas cylinder I (not marked in the figure) connected to it. The high pressure provided by the air compressor is controlled by the pressure reducing valve on the gas cylinder I to obtain different pressures, providing fluid injection. Power, pressure control range: 0~6MPa, flow rate range: 0~20m/d.
注入模块D包括储液罐(图中未标),该储液罐的入口端与气瓶Ⅰ相连通,其出口端与本发明提供的二维可视填砂模型中的进液口9相连通,二维可视填砂模型中的出液口11与计量模块相连通G;计量模块G可以分别计量各个渗透层的出液情况,如见水时期、分液量及累计产油/产液量等。The injection module D includes a liquid storage tank (not marked in the figure), the inlet end of the liquid storage tank is connected with the gas cylinder I, and its outlet end is connected with the liquid inlet 9 in the two-dimensional visual sand filling model provided by the present invention The fluid outlet 11 in the two-dimensional visual sand packing model is connected to the metering module G; the metering module G can measure the fluid outlet conditions of each permeable layer, such as water breakthrough period, liquid separation amount and cumulative oil production/production Liquid volume etc.
压力数据采集模块B包括压力传感器和与之连接的计算机(图中未标),压力传感器设于气瓶Ⅰ的出口端,可以实时监测各个气瓶Ⅰ出口的压力值。The pressure data acquisition module B includes a pressure sensor and a computer (not marked) connected thereto. The pressure sensor is located at the outlet of the gas cylinder I and can monitor the pressure value at the outlet of each gas cylinder I in real time.
图像采集模块C包括高清摄像头、LED光源和计算机(图中未标),其中高清摄像头与计算机相连接;LED光源设于二维可视填砂模型中底板1的正下方,高清摄像头设于二维可视填砂模型中盖板2的正上方,可实时采集流体在填砂模型中的渗流图像,监测填砂模型中含油饱和度变化。The image acquisition module C includes a high-definition camera, an LED light source and a computer (not marked in the figure), wherein the high-definition camera is connected to the computer; the LED light source is located directly under the bottom plate 1 of the two-dimensional visual sand filling model, and the high-definition camera is located at the second Directly above the cover plate 2 in the three-dimensional visual sand-packing model, the seepage image of the fluid in the sand-packing model can be collected in real time, and the change of oil saturation in the sand-packing model can be monitored.
覆压模块E包括带减压阀的气瓶Ⅱ,气瓶Ⅱ分别与气瓶Ⅰ和二维可视填砂模型中围压口3相连通,可为填砂模型提供不同大小的维压,模拟地层上覆压力,供压范围:0~10MPa。Overburden module E includes gas cylinder II with a pressure reducing valve. Gas cylinder II is respectively connected with gas cylinder I and the confining pressure port 3 in the two-dimensional visual sand-packing model, which can provide different sizes of maintenance pressure for the sand-packing model. Simulate formation overburden pressure, supply pressure range: 0~10MPa.
使用本发明的二维可视渗流实验装置时,除图像采集模块C外,其它模块由能够承受一定的压力的不锈钢管线或软管连接。When using the two-dimensional visible percolation experimental device of the present invention, except the image acquisition module C, other modules are connected by stainless steel pipelines or hoses that can withstand a certain pressure.
用本发明二维可视渗流实验装置测试层内非均质性的二维可视填砂模型渗透率时,可按照下述步骤进行:When using the two-dimensional visible seepage experimental device of the present invention to test the permeability of the heterogeneous two-dimensional sand filling model in the layer, it can be carried out according to the following steps:
在层内非均质性的二维可视填砂模型的3个填砂槽12内分别填充不同粒径的石英砂:所用石英砂为60~80目、160~180目和>220目的三种粒径石英砂。The three sand-fill tanks 12 of the two-dimensional visual sand-fill model of heterogeneity in the layer are filled with quartz sand of different particle sizes: the quartz sand used is 60-80 mesh, 160-180 mesh and >220 mesh. particle size quartz sand.
每填一层砂子后刮平压实,直至装满填砂槽12,盖上密封胶垫5、密封圈4和盖板2,拧紧固定螺丝,加围压1MPa,按照图3所示的顺序连接好实验装置。After each layer of sand is filled, it is scraped and compacted until the sand filling tank 12 is filled, and the sealing rubber pad 5, sealing ring 4 and cover plate 2 are covered, the fixing screws are tightened, and the confining pressure is increased to 1MPa, according to the sequence shown in Figure 3 Connect the experimental device.
模拟地层矿化水,矿化度为9374.13mg/L。Simulated stratum mineralized water, the salinity is 9374.13mg/L.
打开供压模块A和注入模块D,以15KPa的驱动压力饱和目标油藏地层矿化水,可测模型中每个渗透层的渗透率,渗流的过程示意图如图4所示。Turn on the pressure supply module A and the injection module D, and saturate the mineralized water in the formation of the target reservoir with a driving pressure of 15KPa. The permeability of each permeable layer in the model can be measured. The schematic diagram of the seepage process is shown in Figure 4.
通过三次重复性实验验证,填砂模型各个渗透层的渗透率具有良好的渗透率重现性和稳定性,渗透率误差小于10%,具体参数如表1中所示。Through three repeated experiments, the permeability of each permeability layer of the sand-fill model has good permeability reproducibility and stability, and the permeability error is less than 10%. The specific parameters are shown in Table 1.
表1低、中、高渗透层渗透率检验结果Table 1 Permeability inspection results of low, medium and high permeability layers
用本发明二维可视渗流实验装置进行层内非均质性的二维可视渗流实验时,可按照下述步骤进行:When using the two-dimensional visible seepage experimental device of the present invention to carry out the two-dimensional visible seepage experiment of intralayer heterogeneity, it can be carried out according to the following steps:
1、实验条件1. Experimental conditions
(1)实验用驱油体系:实验选取具有流变性差异的两种驱油体系,分别为浓度为500mg/L的AP-P4溶液(AP-P4疏水缔合聚合物干粉,固含量为90%,相对分子量为978万,四川光亚提供)和70%的甘油(分子量为92.09,分析纯,成都市科龙化工试剂厂)。采用MCR301流变仪(德国Antonpaar)的CP75锥板系统对待测样品进行剪切速率扫描测试(测试温度为25℃),以上流变性实验分析发现,在剪切速率为25.2s-1时,两种驱油体系的粘度近似相等,具体参数如表2中所示。(1) Oil displacement system for experiment: Two kinds of oil displacement systems with different rheological properties were selected in the experiment, which were AP-P4 solution with a concentration of 500 mg/L (AP-P4 hydrophobic association polymer dry powder, solid content of 90% , with a relative molecular weight of 9.78 million, provided by Sichuan Guangya) and 70% glycerol (with a molecular weight of 92.09, analytically pure, Chengdu Kelong Chemical Reagent Factory). The CP75 cone and plate system of the MCR301 rheometer (Antonpaar, Germany) was used to carry out the shear rate scanning test on the sample to be tested (the test temperature was 25°C). The above rheological experiment analysis found that when the shear rate was 25.2s The viscosities of the two flooding systems are approximately equal, and the specific parameters are shown in Table 2.
表2AP-P4和甘油的参数Table 2 The parameters of AP-P4 and glycerol
(2)实验模型:层内非均质性的二维可视填砂模型中3个渗透层的渗透率分别为1.08μm2、2.30μm2和4.30μm2,每个填砂槽12长宽高均为100×20×2mm;(2) Experimental model: In the two-dimensional visual sand filling model of intralayer heterogeneity, the permeability of the three permeable layers are 1.08μm 2 , 2.30μm 2 and 4.30μm 2 respectively, and each sand filling tank has a length and width of 12 The height is 100×20×2mm;
(3)实验用水:模拟地层矿化水,矿化度为9374.13mg/L;(3) Experimental water: simulated stratum mineralized water with a salinity of 9374.13mg/L;
(4)实验用油:渤海SZ36-1原油与航空煤油按体积比7:2混合配制,粘度为70mpa.s;(4) Experimental oil: Bohai SZ36-1 crude oil and aviation kerosene are mixed and prepared at a volume ratio of 7:2, and the viscosity is 70mpa.s;
2、实验步骤2. Experimental steps
(1)使用图3所示层内非均质性的二维可视渗流实验装置,以15KPa的驱动压力饱和地层矿化水,然后以30KPa的驱动压力饱和粘度为70mpa.s的模拟油;(1) Using the two-dimensional visible seepage experimental device of intralayer heterogeneity shown in Figure 3, saturate formation mineralized water with a driving pressure of 15KPa, and then saturate simulated oil with a viscosity of 70mpa.s at a driving pressure of 30KPa;
(2)控制驱油体系在二维可视填砂模型中的剪切速率为25.2s-1,根据二维可视填砂模型及500mg/L的AP-P4溶液参数,用公式(a)计算500mg/L的AP-P4溶液渗流实验的注入流量;(2) Control the shear rate of the oil displacement system in the two-dimensional visual sand packing model to be 25.2s -1 , according to the two-dimensional visual sand packing model and the AP-P4 solution parameters of 500 mg/L, use the formula (a) Calculate the injection flow rate of 500mg/L AP-P4 solution percolation experiment;
上述公式(a)中:Q——注入流量,ml/s;In the above formula (a): Q——injection flow rate, ml/s;
n——幂律指数,无量纲;n—power law exponent, dimensionless;
γ——剪切速率,s-1;γ——shear rate, s -1 ;
A——横截面积,cm2;A - cross-sectional area, cm 2 ;
k——模型平均渗透率,1×10-6μm2;k——model average permeability, 1×10 -6 μm 2 ;
——模型孔隙度,%; —— model porosity, %;
(3)以计算出的注入流量进行500mg/L的AP-P4溶液渗流实验,同时利用图像采集模块C每隔30秒采集图片和每个渗透层的图片像素点亮度信息,并根据采集到的像素点个数和对应色阶值的统计,计算渗透层亮度增加百分比,得到填砂槽12内的含油饱和度变化,记录流体驱替前缘的变化情况;(3) Carry out the AP-P4 solution percolation experiment of 500mg/L with the calculated injection flow rate, utilize image acquisition module C to gather picture and the picture pixel point brightness information of each percolation layer at every 30 seconds simultaneously, and according to the collected Count the number of pixels and the corresponding color scale value, calculate the percentage increase of the brightness of the permeable layer, obtain the oil saturation change in the sand filling tank 12, and record the change of the fluid displacement front;
(4)模型中含油饱和度变化趋于稳定时结束实验,注入体积不少于0.6PV;(4) End the experiment when the change of oil saturation in the model tends to be stable, and the injection volume shall not be less than 0.6PV;
(5)重复实验步骤(1),同样以剪切速率25.2s-1为准,根据二维可视填砂模型及70%的甘油参数,用公式(a)计算70%的甘油渗流实验的注入流量;(5) Repeat the experimental step (1), also subject to the shear rate of 25.2s -1 , according to the two-dimensional visual sand filling model and the parameters of 70% glycerol, use the formula (a) to calculate the 70% glycerol seepage test Inject flow;
(6)以计算出的注入流量进行70%的甘油的渗流实验,同时利用图像采集模块C每隔30秒采集图片和每个渗透层的图片像素点亮度信息,并根据采集到的像素点个数和色阶值的统计,计算渗透层亮度增加百分比,得到填砂槽12内各渗透层的含油饱和度变化,记录流体驱替前缘的变化情况(即驱替前缘在模型中的位置);(6) Carry out the percolation experiment of 70% glycerol with the calculated injection flow rate, and utilize the image acquisition module C to gather the pictures and the picture pixel brightness information of each percolation layer every 30 seconds at the same time, and according to the collected pixel points Number and color scale value statistics, calculate the percentage increase of the brightness of the permeable layer, obtain the oil saturation change of each permeable layer in the sand filling tank 12, and record the change of the fluid displacement front (that is, the position of the displacement front in the model );
(7)二维可视填砂模型中含油饱和度变化趋于稳定时结束实验,注入体积不少于0.6PV。(7) When the change of oil saturation in the two-dimensional visual sand packing model tends to be stable, the experiment is ended, and the injection volume is not less than 0.6PV.
上述AP-P4及甘油两种驱油体系渗流实验时,二维可视填砂模型中含油饱和度变化结果如表3中所示。Table 3 shows the change results of oil saturation in the two-dimensional visual sand packing model during the seepage experiments of the AP-P4 and glycerol displacement systems mentioned above.
不同驱油体系模型含油饱和度下降对比(0.3PV)如图5所示。The comparison of oil saturation decline (0.3PV) of different flooding system models is shown in Fig. 5.
表3含油饱和度下降分析结果Table 3 Analysis results of oil saturation decline
表3中,低油降表示低渗透层中含油饱和度下降的比例,中油降表示中渗透层中含油饱和度下降的比例,高油降表示高渗透层中含油饱和度下降的比例;In Table 3, low oil drop indicates the proportion of oil saturation decrease in low permeability layers, medium oil drop indicates the proportion of oil saturation decrease in medium permeability layers, and high oil drop indicates the proportion of oil saturation decrease in high permeability layers;
高低表示高渗透层于低渗透层之间含油饱和度下降比例的差值,中低表示中渗透层于低渗透层之间含油饱和度下降比例的差值;High and low represent the difference in the ratio of oil saturation decline between the high-permeability layer and the low-permeability layer, and medium-low represents the difference in the ratio of oil saturation reduction between the medium-permeability layer and the low-permeability layer;
差幅表示渗流实验前后含油饱和度的变化差值。The difference range represents the change difference of oil saturation before and after the seepage test.
通过直接动态观察驱油体系的驱替前缘在二维可视填砂模型中的位置,以高渗透层流体驱替前缘刚好到达出口为终点,记录并计算2种驱油体系在模型中的体积波及效率,如表4所示。By directly and dynamically observing the position of the displacement front of the oil displacement system in the two-dimensional visual sand-packing model, with the displacement front of the fluid in the high permeability layer just reaching the outlet as the end point, record and calculate the displacement of the two displacement systems in the model The volumetric sweep efficiency is shown in Table 4.
表4非均质性填砂模型波及效率Table 4 Sweep efficiency of heterogeneous sand filling model
由上述表3和表4中的数据可以得知,驱油体系的非牛顿性影响油藏的波及效率,表现为幂律指数n越小,驱油体系对层内非均质油藏波及效率越高。From the data in Table 3 and Table 4 above, it can be known that the non-Newtonian nature of the oil displacement system affects the sweep efficiency of the reservoir, which is shown as the smaller the power law exponent n, the higher the sweep efficiency of the oil displacement system on the intralayer heterogeneous reservoir. higher.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410194051.2A CN105096719A (en) | 2014-05-08 | 2014-05-08 | Anisotropic two-dimensional visual sand filling model in simulation layer and two-dimensional visual seepage experimental device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410194051.2A CN105096719A (en) | 2014-05-08 | 2014-05-08 | Anisotropic two-dimensional visual sand filling model in simulation layer and two-dimensional visual seepage experimental device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105096719A true CN105096719A (en) | 2015-11-25 |
Family
ID=54577028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410194051.2A Pending CN105096719A (en) | 2014-05-08 | 2014-05-08 | Anisotropic two-dimensional visual sand filling model in simulation layer and two-dimensional visual seepage experimental device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105096719A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105715239A (en) * | 2016-01-22 | 2016-06-29 | 中国石油大学(华东) | Visual nanometer magnetofluid panel oil displacement experiment device and experiment method |
CN106093049A (en) * | 2016-08-19 | 2016-11-09 | 江苏理工学院 | Experimental observation system based on bionics compound eye and working method thereof |
CN106153499A (en) * | 2016-08-11 | 2016-11-23 | 江苏理工学院 | Microfluid observation experiment device and working method thereof |
CN106205330A (en) * | 2016-06-23 | 2016-12-07 | 长江大学 | A kind of experiment device for teaching predicting inter well connectivity |
CN106226496A (en) * | 2016-08-11 | 2016-12-14 | 江苏理工学院 | Micro-pore channel test model and use method thereof |
CN106285590A (en) * | 2016-09-30 | 2017-01-04 | 东北石油大学 | A kind of judge the apparatus and method whether chemical agent lost efficacy for high infiltration strip parameter |
CN106323975A (en) * | 2016-08-10 | 2017-01-11 | 李忠 | Micro-fluid experiment device, system and work method based on remote data acquisition |
CN106370562A (en) * | 2016-08-16 | 2017-02-01 | 江苏理工学院 | Microfluid simulation experiment device suitable for omnibearing observation and working method thereof |
CN106437678A (en) * | 2016-11-28 | 2017-02-22 | 重庆科技学院 | Device which integrates self-circulation fluid supply and measure for oil recovery simulation experiment |
CN106437697A (en) * | 2016-11-03 | 2017-02-22 | 西南石油大学 | Simulate five-spot network micro carve visualization model and apply method |
CN106640048A (en) * | 2016-09-13 | 2017-05-10 | 东北石油大学 | Pressure determining device and method for oil flooding experiment of indoor constant-pressure chemical flooding |
CN106769331A (en) * | 2017-02-10 | 2017-05-31 | 西南石油大学 | One kind is used for loose sand side's rock core simulation model and preparation method |
CN109209358A (en) * | 2018-07-26 | 2019-01-15 | 中国石油大学(华东) | It is a kind of for measuring the experimental provision of heterogeneous reservoir oil saturation |
CN109519156A (en) * | 2018-11-01 | 2019-03-26 | 中海石油(中国)有限公司上海分公司 | A kind of side water sand rock gas reservoir water drive section model Seepage Experiment method |
CN110541691A (en) * | 2019-09-26 | 2019-12-06 | 中国地质大学(北京) | A visual water flooding experimental device and method for heterogeneous sandstone reservoirs |
CN111119874A (en) * | 2018-10-31 | 2020-05-08 | 中国石油化工股份有限公司 | Combined type sand filling device with controllable permeability and sand filling method |
CN112240925A (en) * | 2019-07-17 | 2021-01-19 | 中国石油化工股份有限公司 | Manufacturing method and experimental device of two-dimensional sand filling model |
CN112885221A (en) * | 2021-01-13 | 2021-06-01 | 江苏联友科研仪器有限公司 | Visual model structure convenient to high pressure circulation heating |
CN113027431A (en) * | 2021-03-12 | 2021-06-25 | 东北石油大学 | Semi-sealed two-dimensional seepage model and manufacturing method thereof |
CN114200083A (en) * | 2021-12-07 | 2022-03-18 | 中海石油(中国)有限公司 | Chemical oil displacement full-process physical simulation device and method |
WO2024198584A1 (en) * | 2023-03-29 | 2024-10-03 | 中国石油天然气股份有限公司 | High-dip-angle heterogeneous sandstone reservoir bidirectional flooding simulation device and method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19806923C1 (en) * | 1998-02-19 | 1999-05-12 | Ochs Bohrgesellschaft Mbh | Sealing water well |
CN2500803Y (en) * | 2001-08-27 | 2002-07-17 | 石油大学(华东) | Visible physics simulation displacement plane model for oil displacement |
CN101393103A (en) * | 2008-10-31 | 2009-03-25 | 中国科学院力学研究所 | Hydrate microscopic seepage experimental device |
CN101975053A (en) * | 2010-09-27 | 2011-02-16 | 中国石油大学(华东) | Hydraulic power pulse oil displacement experimental facility and experimental method thereof |
CN102094642A (en) * | 2010-12-17 | 2011-06-15 | 中国石油天然气股份有限公司 | In-layer heterogeneous model oil-water displacement efficiency evaluation system |
CN103615241A (en) * | 2013-12-10 | 2014-03-05 | 西南石油大学 | Fully-three-dimensional simulated visualized displacement simulation experiment system of fractured-vuggy oil reservoir |
CN203499660U (en) * | 2013-10-09 | 2014-03-26 | 中国石油大学(华东) | Plane visual sand-packed model used for displacement of reservoir oil |
CN203808987U (en) * | 2014-05-08 | 2014-09-03 | 中国海洋石油总公司 | Two-dimensional visual sand filling model for simulating in-layer heterogeneity and two-dimensional visual seepage test device |
-
2014
- 2014-05-08 CN CN201410194051.2A patent/CN105096719A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19806923C1 (en) * | 1998-02-19 | 1999-05-12 | Ochs Bohrgesellschaft Mbh | Sealing water well |
CN2500803Y (en) * | 2001-08-27 | 2002-07-17 | 石油大学(华东) | Visible physics simulation displacement plane model for oil displacement |
CN101393103A (en) * | 2008-10-31 | 2009-03-25 | 中国科学院力学研究所 | Hydrate microscopic seepage experimental device |
CN101975053A (en) * | 2010-09-27 | 2011-02-16 | 中国石油大学(华东) | Hydraulic power pulse oil displacement experimental facility and experimental method thereof |
CN102094642A (en) * | 2010-12-17 | 2011-06-15 | 中国石油天然气股份有限公司 | In-layer heterogeneous model oil-water displacement efficiency evaluation system |
CN203499660U (en) * | 2013-10-09 | 2014-03-26 | 中国石油大学(华东) | Plane visual sand-packed model used for displacement of reservoir oil |
CN103615241A (en) * | 2013-12-10 | 2014-03-05 | 西南石油大学 | Fully-three-dimensional simulated visualized displacement simulation experiment system of fractured-vuggy oil reservoir |
CN203808987U (en) * | 2014-05-08 | 2014-09-03 | 中国海洋石油总公司 | Two-dimensional visual sand filling model for simulating in-layer heterogeneity and two-dimensional visual seepage test device |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105715239A (en) * | 2016-01-22 | 2016-06-29 | 中国石油大学(华东) | Visual nanometer magnetofluid panel oil displacement experiment device and experiment method |
CN105715239B (en) * | 2016-01-22 | 2018-07-24 | 中国石油大学(华东) | Visualize nanometer magnetofluid tablet oil displacement experiment device and experimental method |
CN106205330A (en) * | 2016-06-23 | 2016-12-07 | 长江大学 | A kind of experiment device for teaching predicting inter well connectivity |
CN108956608A (en) * | 2016-08-10 | 2018-12-07 | 李忠 | Micro-fluid experiment system based on remote data acquisition |
CN106323975B (en) * | 2016-08-10 | 2018-09-04 | 李忠 | Micro-fluid experiment device based on remote data acquisition |
CN108956608B (en) * | 2016-08-10 | 2021-10-01 | 李忠 | Microfluid experiment system based on remote data acquisition |
CN106323975A (en) * | 2016-08-10 | 2017-01-11 | 李忠 | Micro-fluid experiment device, system and work method based on remote data acquisition |
CN106226496A (en) * | 2016-08-11 | 2016-12-14 | 江苏理工学院 | Micro-pore channel test model and use method thereof |
CN106226496B (en) * | 2016-08-11 | 2018-02-23 | 江苏理工学院 | Micro-pore channel test model and use method thereof |
CN106153499B (en) * | 2016-08-11 | 2018-08-28 | 江苏理工学院 | Microfluid observation experiment device and working method thereof |
CN106153499A (en) * | 2016-08-11 | 2016-11-23 | 江苏理工学院 | Microfluid observation experiment device and working method thereof |
CN106370562A (en) * | 2016-08-16 | 2017-02-01 | 江苏理工学院 | Microfluid simulation experiment device suitable for omnibearing observation and working method thereof |
CN106093049A (en) * | 2016-08-19 | 2016-11-09 | 江苏理工学院 | Experimental observation system based on bionics compound eye and working method thereof |
CN106640048A (en) * | 2016-09-13 | 2017-05-10 | 东北石油大学 | Pressure determining device and method for oil flooding experiment of indoor constant-pressure chemical flooding |
CN106285590A (en) * | 2016-09-30 | 2017-01-04 | 东北石油大学 | A kind of judge the apparatus and method whether chemical agent lost efficacy for high infiltration strip parameter |
CN106285590B (en) * | 2016-09-30 | 2019-04-09 | 东北石油大学 | A device and method for judging whether a chemical agent fails based on parameters of a hypertonic strip |
CN106437697A (en) * | 2016-11-03 | 2017-02-22 | 西南石油大学 | Simulate five-spot network micro carve visualization model and apply method |
CN106437678A (en) * | 2016-11-28 | 2017-02-22 | 重庆科技学院 | Device which integrates self-circulation fluid supply and measure for oil recovery simulation experiment |
CN106437678B (en) * | 2016-11-28 | 2023-06-02 | 重庆科技学院 | An integrated device integrating self-circulating liquid supply and metering for oil recovery simulation experiment |
CN106769331A (en) * | 2017-02-10 | 2017-05-31 | 西南石油大学 | One kind is used for loose sand side's rock core simulation model and preparation method |
CN106769331B (en) * | 2017-02-10 | 2023-06-27 | 西南石油大学 | Square rock core simulation model for loose sandstone and manufacturing method |
CN109209358A (en) * | 2018-07-26 | 2019-01-15 | 中国石油大学(华东) | It is a kind of for measuring the experimental provision of heterogeneous reservoir oil saturation |
CN111119874B (en) * | 2018-10-31 | 2023-09-01 | 中国石油化工股份有限公司 | Combined sand filling device with controllable permeability and sand filling method |
CN111119874A (en) * | 2018-10-31 | 2020-05-08 | 中国石油化工股份有限公司 | Combined type sand filling device with controllable permeability and sand filling method |
CN109519156B (en) * | 2018-11-01 | 2020-10-02 | 中海石油(中国)有限公司上海分公司 | A seepage experiment method for water-flooding profile model in edge-water sandstone gas reservoirs |
CN109519156A (en) * | 2018-11-01 | 2019-03-26 | 中海石油(中国)有限公司上海分公司 | A kind of side water sand rock gas reservoir water drive section model Seepage Experiment method |
CN112240925A (en) * | 2019-07-17 | 2021-01-19 | 中国石油化工股份有限公司 | Manufacturing method and experimental device of two-dimensional sand filling model |
CN110541691A (en) * | 2019-09-26 | 2019-12-06 | 中国地质大学(北京) | A visual water flooding experimental device and method for heterogeneous sandstone reservoirs |
CN112885221A (en) * | 2021-01-13 | 2021-06-01 | 江苏联友科研仪器有限公司 | Visual model structure convenient to high pressure circulation heating |
CN113027431A (en) * | 2021-03-12 | 2021-06-25 | 东北石油大学 | Semi-sealed two-dimensional seepage model and manufacturing method thereof |
CN113027431B (en) * | 2021-03-12 | 2021-09-07 | 东北石油大学 | A kind of semi-sealed two-dimensional seepage model and manufacturing method |
CN114200083A (en) * | 2021-12-07 | 2022-03-18 | 中海石油(中国)有限公司 | Chemical oil displacement full-process physical simulation device and method |
CN114200083B (en) * | 2021-12-07 | 2024-02-23 | 中海石油(中国)有限公司 | Chemical agent oil displacement whole-flow physical simulation device and method |
WO2024198584A1 (en) * | 2023-03-29 | 2024-10-03 | 中国石油天然气股份有限公司 | High-dip-angle heterogeneous sandstone reservoir bidirectional flooding simulation device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105092446B (en) | A kind of two dimensional visible Seepage Experiment method for simulating in-layer heterogeneity | |
CN105096719A (en) | Anisotropic two-dimensional visual sand filling model in simulation layer and two-dimensional visual seepage experimental device | |
CN203808987U (en) | Two-dimensional visual sand filling model for simulating in-layer heterogeneity and two-dimensional visual seepage test device | |
CN103556994B (en) | The experiment detecting system of fractured-vuggy reservoir remaining oil distribution and detection method | |
CN103048431B (en) | Hydrofracture propping agent settlement and permeability testing device | |
CN102590456B (en) | Device and method for simulating volume fracturing of horizontal well on shale reservoir stratum | |
CN103498669B (en) | Quantitative determination method for interlayer channeling flow of heterogeneous core model | |
CN105041280B (en) | A method and device for realizing indoor experiment of carbon dioxide miscible flooding | |
CN101344515B (en) | Permeability tester | |
CN101504351B (en) | Sand bed seepage flow sludge plugging simulation apparatus | |
CN103352695B (en) | Visualization physical simulation device with consideration of interlamination fluid channeling | |
CN106223928B (en) | Sand filling method of multilateral well experimental model | |
CN202673289U (en) | Visual simulation experiment device for fracture-cavity carbonate reservoir | |
CN105114062A (en) | Testing device for simulating permeability rule of low-permeability horizontal well and testing method | |
CN204827440U (en) | Simulation crack oil reservoir gel particle evaluation experimental apparatus | |
CN103983551B (en) | Two-dimensional visual seepage experiment device for simulating homogeneity in layer and experiment method thereof | |
CN103256045A (en) | Coal bed methane reservoir pulverized coal generation, migration, sedimentation, blocking dynamic evaluation instrument | |
CN110541691A (en) | A visual water flooding experimental device and method for heterogeneous sandstone reservoirs | |
CN107831106B (en) | Intelligent permeability measurement test bed | |
CN105178926A (en) | Fracture-cave carbonate reservoir physical model and displacement simulation experimental device and system | |
CN105178927B (en) | A kind of displacement simulation experimental provision and system | |
CN103148888A (en) | High temperature and high pressure drainage dynamic evaluation system for coal bed and gas reservoir double-layer commingled production | |
CN104196503A (en) | Visual water displacing oil physical model of fractured reservoir and physical simulation experiment device | |
CN105738252A (en) | Measurement method of flowable opening degree limit of thickened oil in cracks | |
CN204140039U (en) | The visual water drive oil physical model of fractured reservoir and physical simulation experiment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151125 |
|
RJ01 | Rejection of invention patent application after publication |