CN105114062A - Testing device for simulating permeability rule of low-permeability horizontal well and testing method - Google Patents

Testing device for simulating permeability rule of low-permeability horizontal well and testing method Download PDF

Info

Publication number
CN105114062A
CN105114062A CN201510602805.8A CN201510602805A CN105114062A CN 105114062 A CN105114062 A CN 105114062A CN 201510602805 A CN201510602805 A CN 201510602805A CN 105114062 A CN105114062 A CN 105114062A
Authority
CN
China
Prior art keywords
core
water
receptacle
rock core
horizontal
Prior art date
Application number
CN201510602805.8A
Other languages
Chinese (zh)
Other versions
CN105114062B (en
Inventor
王金凯
卢浩
谢俊
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to CN201510602805.8A priority Critical patent/CN105114062B/en
Publication of CN105114062A publication Critical patent/CN105114062A/en
Application granted granted Critical
Publication of CN105114062B publication Critical patent/CN105114062B/en

Links

Abstract

The invention discloses a testing device for simulating the permeability rule of a low-permeability horizontal well and a testing method. The testing device comprises a constant-flux pump, intermediate containers, a cylindrical rock core clamper and a pressurizing device. A cuboid rock core is arranged in the cylindrical rock core clamper. A horizontal circular hole is formed in the opposite angles of the rock core along the long edge, and a horizontal injection well and a horizontal production well are simulated. An injection end is arranged in an inlet of the horizontal injection well. A production end is arranged in an outlet of the horizontal production well. The constant-flux pump is connected with the input ends of the intermediate containers. The output ends of the intermediate containers are connected with the injection end. The testing method utilizing the testing device for simulating the permeability rule of the low-permeability horizontal well comprises the following steps that 1, a rock core is prepared; 2, water saturation is carried out on the artificial rock core; 3, a pipeline and a device are connected, simulation formation water is injected into the first intermediate container, simulation oil is injected into the second intermediate container, and the rock core achieving water saturation is placed in the rock core clamper; 4, oil saturation is carried out; 5, water drive operation is carried out. The testing device is simple in structure, convenient to use and high in testing efficiency.

Description

A kind of experimental facilities and experimental technique of simulating hypotonic Horizontal Well Flow rule

Technical field

The invention belongs to the technical field of Simulated Water horizontal well percolation law, be specifically related to a kind of experimental facilities and experimental technique of simulating hypotonic Horizontal Well Flow rule.

Background technology

Indoor water drive experiment is a kind of thing mould means determining development scheme, and oil displacement efficiency is one of important indicator of flood pot test.The device of traditional indoor water drive physical simulation experiment, usually adopt the planar water filling of column type, device is made up of a water filling device, rock core and collection water, oily device usually.This unidirectional water drive device can simulate straight well percolation law, and horizontal well water drive is multidirectional, can not Simulated Water horizontal well seepage flow effectively.

Therefore, research and develop a kind of can the experimental facilities of Simulated Water horizontal well percolation law and experimental technique, the high-strength injection for heterogeneous body sandstone underground oil storage adopts research far reaching significance.

Summary of the invention

For above-mentioned problems of the prior art, the present invention aims to provide experimental facilities and the test method of the hypotonic Horizontal Well Flow rule of simulation that a kind of structure is simple, easy to operate, experimentation efficiency is high.

To achieve these goals, the present invention takes following technical scheme:

Simulate an experimental facilities for hypotonic Horizontal Well Flow rule, comprise constant-flux pump, intermediate receptacle one, intermediate receptacle two, rock core fastener and water booster system.

Described rock core fastener is cylindric, core is provided with in described cylindric rock core fastener, described core adopts rectangular shape, core diagonal angle has horizontal circular hole along long limit, dummy level Injection Well and horizontal extraction well respectively, described horizontal injection well entrance is provided with injection end, and described horizontal extraction well outlet is provided with production end.

Described intermediate receptacle one is connected side by side with intermediate receptacle two, and described constant-flux pump is connected with intermediate receptacle one/intermediate receptacle two (input).Described intermediate receptacle one is for holding simulated formation water, and described intermediate receptacle two is for holding simulated oil.

The output of described intermediate receptacle one/intermediate receptacle two is connected with described injection end, filling pipe between the output of intermediate receptacle one/intermediate receptacle two and injection end is provided with controlled valve and input pressure sensor, described input pressure sensor is used for testing water injection end pressure.

Be provided with the pressurization mouth of pipe bottom described rock core fastener, the described pressurization mouth of pipe is connected with described water booster system.The pipeline that the described pressurization mouth of pipe is connected with water booster system is provided with controlled valve and water booster system pressure sensor.Described water booster system and described water booster system pressure sensor closely can fix core.

Be provided with resistance to compression resin in described rock core fastener, described resistance to compression resin, between rock core fastener and core, for closely fixing core, enables core bear test pressure.

The filling pipe of described production end is provided with output end pressure sensor, controlled valve and micro-metering device, the fluid (You Heshui) that production end flows out enters liquid header, and record corresponding oil and water body accumulated amount respectively by described micro-metering device, accurate measurement water yield and oil pump capacity; Described pressure sensor is for obtaining real-time pressure.

The skin of described rock core fastener is clamping stainless steel casing, and described clamping stainless steel casing inwall is provided with high-performance rubber circle.

Described rock core fastener two ends are provided with sealer, are provided with paraffin in described sealer.

Further, the present invention is also provided with computer, and described input pressure sensor/output end pressure sensor is connected with computer, by computer controlled automatic.

Further, the present invention is also provided with insulating box, and described computer, rock core fastener, input pressure sensor and output end pressure sensor are located in insulating box, thus ensures that experiment is carried out at demand temperature.

Further, described core is of a size of 36cm × 13cm × 4.5cm.

Further, described horizontal circle hole length is 10cm.

Further, described core is that bedding changes obvious and that lamina is thinner region.

Further, the described pressurization mouth of pipe is positioned at rock core fastener bottom centre position.

Utilize an experimental technique for the experimental facilities of simulating hypotonic Horizontal Well Flow rule, comprise the following steps:

The first step, prepare core: adopt three layers of vertical heterogeneity core that quartz sand is cementing, the horizontal circular hole of twice is opened along opposite side at core diagonal angle, dummy level Injection Well and horizontal extraction well respectively, electricity consumption is drilled in the boring of horizontal circle hole site, and makes screw thread to connect microsimulation horizontal well tube pipeline when testing.The core prepared is put into rock core fastener resistance to compression resin to fix, solidify until resin hardens completely.

Second step: after being weighed by dry artificial cores, put into the container filling simulated formation water, this container is put into vacuum drying chamber, carry out saturation water under vacuo, after some hours, the rock core taking out saturation formation water is weighed again, calculates saturated water amount V 1(voids volume) and core porosity.

3rd step: by shown in Fig. 1 pipeline and equipment connection good, in intermediate receptacle one, load simulated formation water, in intermediate receptacle two, load simulated oil, loaded in rock core fastener by the core of saturation water, (55 DEG C) keep 24 hours at the formation temperature.

4th step, saturated oils: start constant-flux pump, inject Simulation of Crude Oil to core, reach till 100% until port of export oil-containing, saturated oils completes, and the volume of the water collected in record graduated cylinder, is the volume V of core Crude Oil 2, calculate initial oil saturation So with this.

5th step, water drive operates: in intermediate receptacle one or intermediate receptacle two, load Natural Water, water filling inlet is at core left end, and displacement is carried out under reservoir temperature (55 DEG C), in displacement process, record oil, discharge and pressure at set intervals.After water drive to the port of export moisture 98%, accumulative oil pump capacity V 3with water yield V 4, calculate waterflood recovery efficiency factor R with this.

Computational methods and the design formulas of oil displacement efficiency are as follows:

Core porosity:

Oil saturation: * MERGEFORMAT

Oil displacement efficiency: * MERGEFORMAT

In formula:

V 1for saturated water amount, ml;

V 2for saturated oil mass, ml;

V 3for accumulative oil pump capacity, ml;

L is the long limit of rock core, cm;

M is rock core broadside, cm;

N is rock core flash, cm.

Further, in a first step, described three layers of vertical heterogeneity core perm-plug method are respectively: 10 × 10-3 μm 2; 40 × 10-3 μm 2; 90 × 10-3 μm 2; It is 46 × 10-3 μm 2 that average water surveys permeability, and vertical permeability be that positive rhythm distributes.Described three layers of vertical heterogeneity core are of a size of 36cm × 13cm × 4.5cm.

Further, in the 4th step, the core of saturated complete oil need leave standstill aging 24 hours at the formation temperature, so that oil and core Minerals particle fully adsorb, the speed injecting Simulation of Crude Oil to core is 0.3ml/min.

Further, in the 5th step, waterflood injection rate is 0.3m1/min, every a hour record oil, discharge and pressure in the 5th step displacement process.

Beneficial effect of the present invention is: can the different core sample of gripping, is convenient for measuring same core or the recovery ratio of different core under different PV number; Structure is simple, and easy to operate, experimentation efficiency is high.

Accompanying drawing explanation

Fig. 1 is structural representation of the present invention;

Fig. 2 is core holding unit structural representation;

Fig. 3 is core holding unit cross-sectional;

Fig. 4 is core holding unit vertical section schematic diagram;

Reference numeral: 1-constant-flux pump, 2-intermediate receptacle one, 3-intermediate receptacle two, 4-input pressure sensor, 5-computer, the micro-metering device of 6-, 7-sealer, 8-paraffin, 9-core, 10-rock core fastener, 11-controlled valve, 12-pressurizes the mouth of pipe, 13-insulating box, 14-water booster system, 15-output end pressure sensor, 16-water booster system pressure sensor, the long limit of 17-rock core, 18-rock core broadside, 19-rock core flash, 20-injection end, 21-production end, 22-clamps stainless steel casing, 23-high-performance rubber circle, 24-resistance to compression resin.

Detailed description of the invention

For the ease of understanding, below in conjunction with accompanying drawing, by embodiment, technical solution of the present invention is further described in detail:

As Figure 1-Figure 4, a kind of experimental facilities of simulating hypotonic Horizontal Well Flow rule, comprises constant-flux pump 1, intermediate receptacle 1, intermediate receptacle 23, computer 5, rock core fastener 10, insulating box 13 and water booster system 14.

Rock core fastener 10 is cylindric, be provided with core 9 in circular rock core fastener 10, core 9 adopts rectangular shape, is of a size of 36cm × 13cm × 4.5cm, rock core diagonal angle has the horizontal circular hole that length is 10cm along long limit, respectively dummy level Injection Well and horizontal extraction well.Horizontal injection well entrance is provided with injection end 20, and horizontal extraction well outlet is provided with production end 21, and experiment specimen in use core 9 is obvious and that lamina is thinner region for bedding changes.

Intermediate receptacle 1 is connected side by side with intermediate receptacle 23, and constant-flux pump 1 is by the input of filling pipe with intermediate receptacle 1 intermediate receptacle two 3() be connected.Intermediate receptacle 1 is for holding simulated formation water, and intermediate receptacle 23 is for holding simulated oil.

The output of intermediate receptacle 1 intermediate receptacle 23 is connected with injection end 20 by filling pipe, filling pipe between the output of intermediate receptacle 1 intermediate receptacle 23 and injection end 20 is provided with controlled valve 11 and input pressure sensor 4, input pressure sensor 4 is used for testing water injection end pressure.

Rock core fastener 10 bottom centre position is provided with the pressurization mouth of pipe 12, and the pressurization mouth of pipe 12 is connected with water booster system 14 by pipeline; The pipeline that the pressurization mouth of pipe 12 is connected with water booster system 14 is provided with controlled valve 11 and water booster system pressure sensor 16; Water booster system 14 and water booster system pressure sensor 16 can closely fix core 9.

Be provided with resistance to compression resin in rock core fastener 10, resistance to compression resin, between rock core fastener 10 and core 9, for closely fixing core 9, makes core 9 bear test pressure.

The filling pipe of production end 21 is provided with output end pressure sensor 15, controlled valve 11 and micro-metering device 6, the fluid (You Heshui) that production end 21 flows out enters liquid header, and record corresponding oil and water body accumulated amount respectively by micro-metering device 6, accurate measurement water yield and oil pump capacity; Pressure sensor 15 is for obtaining real-time pressure.

The skin of rock core fastener 10 is clamping stainless steel casing 22, and clamping stainless steel casing 22 inwall is provided with high-performance rubber circle 23.

Rock core fastener 10 two ends are provided with sealer 7, are provided with paraffin 8 in sealer 7.

Input pressure sensor 4/ output end pressure sensor 15 is connected with computer 5, is automatically controlled by computer 5.

Computer 5, rock core fastener 10, input pressure sensor 4 and output end pressure sensor 15 are located in insulating box 13, thus ensure that experiment is carried out at demand temperature.

Utilize an experimental technique for the experimental facilities of simulating hypotonic Horizontal Well Flow rule, comprise the following steps:

The first step, prepare core:

Adopt the cementing three layers of vertical heterogeneity core of quartz sand, three layers of perm-plug method are respectively: 10 × 10-3 μm 2; 40 × 10-3 μm 2; 90 × 10-3 μm 2; It is 46 × 10-3 μm 2 that average water surveys permeability, and vertical permeability be that positive rhythm distributes; Core is of a size of 36cm × 13cm × 4.5cm.Open along opposite side the horizontal circular hole that twice length is 10cm, dummy level Injection Well and horizontal extraction well at core diagonal angle.Electricity consumption is drilled in the boring of horizontal circle hole site, and makes screw thread to connect microsimulation horizontal well tube pipeline when testing.Put into the novel rock core fastener 10 resistance to compression resin 24 prepared to fix, solidify until resin hardens completely.

Second step: after being weighed by dry artificial cores, put into the container filling simulated formation water, this container is put into vacuum drying chamber, carry out saturation water under vacuo, after 6 hours, the rock core taking out saturation formation water is weighed again, calculates saturated water amount V 1(voids volume) and core porosity * MERGEFORMAT.

3rd step: by shown in Fig. 1 pipeline and equipment connection good, simulated formation water is loaded in intermediate receptacle 1, in intermediate receptacle 23, load simulated oil, load in rock core fastener 10 by the core 9 of saturation water, (55 DEG C) keep 24 hours at the formation temperature.

4th step, saturated oils: start constant-flux pump 1, inject Simulation of Crude Oil with the flow of 0.3ml/min to core 9, reach till 100% until port of export oil-containing, saturated oils completes, the volume of the water collected in record graduated cylinder, is the volume V of core 9 Crude Oil 2, calculate initial oil saturation So with this.The core 9 of saturated complete oil need leave standstill aging 24 hours at the formation temperature, so that oil and core 9 Minerals particle fully adsorb.

5th step, water drive operates: water drive oil flow process is roughly the same with the flow process of saturated oils, at intermediate receptacle one 2(or intermediate receptacle 2 3) load Natural Water, water filling inlet is at core 9 left end, displacement is carried out under reservoir temperature (55 DEG C), injection rate 0.3m1/min, every 1h record oil, discharge and pressure in displacement process.After water drive to the port of export moisture 98%, accumulative oil pump capacity V 3with water yield V 4, calculate waterflood recovery efficiency factor R with this.

Computational methods and the design formulas of oil displacement efficiency are as follows:

Core porosity: * MERGEFORMAT

Oil saturation: * MERGEFORMAT

Oil displacement efficiency: * MERGEFORMAT

In formula:

V 1for saturated water amount, ml;

V 2for saturated oil mass, ml;

V 3for accumulative oil pump capacity, ml;

L is the long limit of rock core, cm;

M is rock core broadside, cm;

N is rock core flash, cm.

Above-described embodiment just illustrating or explaining technical solution of the present invention, and should not be construed as the restriction to technical solution of the present invention, obviously, those skilled in the art can carry out various modifications and variations to the present invention and not depart from the spirit and scope of the present invention.If these amendments and modification belong within the scope of the claims in the present invention and equivalent technologies thereof, then the present invention also comprises these amendment and modification.

Claims (10)

1. simulate an experimental facilities for hypotonic Horizontal Well Flow rule, comprise constant-flux pump, intermediate receptacle one, intermediate receptacle two, rock core fastener and water booster system;
Described rock core fastener is cylindric, core is provided with in described cylindric rock core fastener, described core adopts rectangular shape, core diagonal angle has horizontal circular hole along long limit, dummy level Injection Well and horizontal extraction well respectively, described horizontal injection well entrance is provided with injection end, and described horizontal extraction well outlet is provided with production end;
Described intermediate receptacle one is connected side by side with intermediate receptacle two, and described constant-flux pump is connected with the input of intermediate receptacle one/intermediate receptacle two;
The output of described intermediate receptacle one/intermediate receptacle two is connected with described injection end, the filling pipe between the output of intermediate receptacle one/intermediate receptacle two and injection end is provided with controlled valve and input pressure sensor;
Be provided with the pressurization mouth of pipe bottom described rock core fastener, the described pressurization mouth of pipe is connected with described water booster system, and the pipeline that the described pressurization mouth of pipe is connected with water booster system is provided with controlled valve and water booster system pressure sensor;
Be provided with resistance to compression resin in described rock core fastener, described resistance to compression resin is between rock core fastener and core;
The filling pipe of described production end is provided with output end pressure sensor, controlled valve and micro-metering device;
The skin of described rock core fastener is clamping stainless steel casing, and described clamping stainless steel casing inwall is provided with high-performance rubber circle;
Described rock core fastener two ends are provided with sealer, are provided with paraffin in described sealer.
2. the experimental facilities of the hypotonic Horizontal Well Flow rule of simulation according to claim 1, is characterized in that: this experimental facilities is provided with computer, and described input pressure sensor/output end pressure sensor is connected with described computer.
3. the experimental facilities of the hypotonic Horizontal Well Flow rule of simulation according to claim 2, it is characterized in that: this experimental facilities is provided with insulating box, described computer, rock core fastener, input pressure sensor and output end pressure sensor are located in described insulating box.
4. the experimental facilities of the hypotonic Horizontal Well Flow rule of simulation according to claim 3, is characterized in that: described core is that bedding changes obvious and that lamina is thinner region, and described core is of a size of 36cm × 13cm × 4.5cm.
5. the experimental facilities of the hypotonic Horizontal Well Flow rule of simulation according to claim 3, is characterized in that: described horizontal circle hole length is 10cm.
6. the experimental facilities of the hypotonic Horizontal Well Flow rule of simulation according to claim 5, is characterized in that: the described pressurization mouth of pipe is positioned at rock core fastener bottom centre position.
7. utilize an experimental technique for the experimental facilities of the hypotonic Horizontal Well Flow rule of simulation according to any one of claim 1-6, it is characterized in that: comprise the following steps:
The first step, prepare core: adopt three layers of vertical heterogeneity core that quartz sand is cementing, the horizontal circular hole of twice is opened along opposite side at core diagonal angle, dummy level Injection Well and horizontal extraction well respectively, electricity consumption is drilled in the boring of horizontal circle hole site, and make screw thread, the core prepared is put into rock core fastener resistance to compression resin and fix, solidify until resin hardens completely;
Second step: after being weighed by dry artificial cores, put into the container filling simulated formation water, this container is put into vacuum drying chamber, carry out saturation water under vacuo, after some hours, the rock core taking out saturation formation water is weighed again, calculates saturated water amount V 1and core porosity * MERGEFORMAT;
3rd step: by shown in Fig. 1 pipeline and equipment connection good, in intermediate receptacle one, load simulated formation water, in intermediate receptacle two, load simulated oil, the core of saturation water is loaded in rock core fastener, keep 24 hours at the formation temperature;
4th step, saturated oils: start constant-flux pump, inject Simulation of Crude Oil to core, reach till 100% until port of export oil-containing, saturated oils completes, and the volume of the water collected in record graduated cylinder, is the volume V of core Crude Oil 2, calculate initial oil saturation So with this;
5th step, water drive operates: in intermediate receptacle one or intermediate receptacle two, load Natural Water, water filling inlet is at core left end, displacement is carried out under reservoir temperature, oil, discharge and pressure is recorded at set intervals in displacement process, after water drive to the port of export moisture 98%, accumulative oil pump capacity V 3with water yield V 4.
8. the experimental technique of the experimental facilities of the simulation hypotonic Horizontal Well Flow rule of a kind of utilization as claimed in claim 7 according to any one of claim 1-6, it is characterized in that: in a first step, described three layers of vertical heterogeneity core perm-plug method are respectively: 10 × 10-3 μm 2; 40 × 10-3 μm 2; 90 × 10-3 μm 2; It is 46 × 10-3 μm 2 that average water surveys permeability, and vertical permeability be that positive rhythm distributes, and described three layers of vertical heterogeneity core are of a size of 36cm × 13cm × 4.5cm.
9. the experimental technique of the experimental facilities of the simulation hypotonic Horizontal Well Flow rule of a kind of utilization as claimed in claim 7 according to any one of claim 1-6, it is characterized in that: in the 4th step, the core of saturated complete oil need leave standstill aging 24 hours at the formation temperature, so that oil and core 9 Minerals particle fully adsorb, the speed injecting Simulation of Crude Oil to core is 0.3ml/min.
10. the experimental technique of the experimental facilities of the simulation hypotonic Horizontal Well Flow rule of a kind of utilization as claimed in claim 7 according to any one of claim 1-6, it is characterized in that: in the 5th step, waterflood injection rate is 0.3m1/min, every a hour record oil, discharge and pressure in the 5th step displacement process.
CN201510602805.8A 2015-09-21 2015-09-21 Experimental device and experimental method for simulating seepage law of low-permeability horizontal well CN105114062B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510602805.8A CN105114062B (en) 2015-09-21 2015-09-21 Experimental device and experimental method for simulating seepage law of low-permeability horizontal well

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510602805.8A CN105114062B (en) 2015-09-21 2015-09-21 Experimental device and experimental method for simulating seepage law of low-permeability horizontal well

Publications (2)

Publication Number Publication Date
CN105114062A true CN105114062A (en) 2015-12-02
CN105114062B CN105114062B (en) 2020-08-04

Family

ID=54662148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510602805.8A CN105114062B (en) 2015-09-21 2015-09-21 Experimental device and experimental method for simulating seepage law of low-permeability horizontal well

Country Status (1)

Country Link
CN (1) CN105114062B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105628894A (en) * 2016-01-13 2016-06-01 西南石油大学 Simulation and evaluation system for low-salinity water injection experiment and method
CN106404498A (en) * 2016-08-30 2017-02-15 海安华达石油仪器有限公司 Vacuumizing and pressurizing saturation apparatus
CN106771090A (en) * 2016-12-26 2017-05-31 浙江海洋大学 Along the assay method and measure device of journey emulsification of crude oil ability during a kind of simulation surfactant flooding
CN106932041A (en) * 2015-12-30 2017-07-07 核工业北京地质研究院 A kind of water pressure test in borehole multistage flow high precision measuring device and method
CN108106969A (en) * 2017-11-14 2018-06-01 中国石油天然气股份有限公司 Measure experimental system and method for the pressure wave in core diffusion inside
CN108194068A (en) * 2017-12-30 2018-06-22 东北石油大学 Comparative polymer drives the method and driving device of stage Flooding Efficiency
CN108194067A (en) * 2017-12-30 2018-06-22 东北石油大学 The method and apparatus of binary combination flooding Flooding Efficiency after the poly- drive of comparison
CN108194066A (en) * 2017-12-30 2018-06-22 东北石油大学 The device of chemical flooding effect after comparison water drive
CN108222906A (en) * 2017-12-30 2018-06-29 东北石油大学 Functional polymer drives the apparatus and method of effect after the poly- drive of comparison
CN108222907A (en) * 2017-12-30 2018-06-29 东北石油大学 It is preferred that the method and apparatus of ternary composite driving displacement scheme
CN108519258A (en) * 2018-03-10 2018-09-11 东北石油大学 The apparatus and method tested using matrix-high infiltration strip rock core
CN108590607A (en) * 2017-12-30 2018-09-28 东北石油大学 The method and apparatus of chemical flooding effect after the poly- drive of comparison
CN108716392A (en) * 2018-05-20 2018-10-30 东北石油大学 Viscous fingering optimization method and device in the gravitational effect control surface activating agent displacement of reservoir oil
CN109470616A (en) * 2018-10-31 2019-03-15 重庆大学 Rock multifunction seepage test macro
CN109838218A (en) * 2019-03-05 2019-06-04 西南石油大学 It is a kind of to simulate the experimental provision exploited after the bored well of multistage pressure break horizontal gas well and method
CN109870396A (en) * 2019-03-06 2019-06-11 中国石油大学(北京) A kind of method and device obtaining starting pressure gradient

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103452543A (en) * 2013-08-27 2013-12-18 中国石油天然气股份有限公司 Fractured horizontal well pattern model and method for manufacturing same
CN104141481A (en) * 2013-05-06 2014-11-12 中国石油天然气股份有限公司 Well spacing method of ultralow-permeability tight-oil reservoir horizontal well
CN104297126A (en) * 2014-10-17 2015-01-21 中国石油天然气股份有限公司 Device and method applied to measurement of low-permeability reservoir gas seepage start-up pressure gradient
RU2558838C1 (en) * 2014-07-02 2015-08-10 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий-Газпром ВНИИГАЗ" Modelling and estimating active storage capacity of underground gas storage in water-bearing fractured porous structures
CN205036373U (en) * 2015-09-21 2016-02-17 山东科技大学 Simulate novel experimental apparatus of hypotonic horizontal well seepage flow law

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104141481A (en) * 2013-05-06 2014-11-12 中国石油天然气股份有限公司 Well spacing method of ultralow-permeability tight-oil reservoir horizontal well
CN103452543A (en) * 2013-08-27 2013-12-18 中国石油天然气股份有限公司 Fractured horizontal well pattern model and method for manufacturing same
RU2558838C1 (en) * 2014-07-02 2015-08-10 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий-Газпром ВНИИГАЗ" Modelling and estimating active storage capacity of underground gas storage in water-bearing fractured porous structures
CN104297126A (en) * 2014-10-17 2015-01-21 中国石油天然气股份有限公司 Device and method applied to measurement of low-permeability reservoir gas seepage start-up pressure gradient
CN205036373U (en) * 2015-09-21 2016-02-17 山东科技大学 Simulate novel experimental apparatus of hypotonic horizontal well seepage flow law

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
唐林等: "非达西渗流效应对低渗气藏水平井产能的影响", 《断块油气田》 *
杨正明等: "低渗/致密油藏分段压裂水平井渗流特征的物理模拟及数值模拟", 《石油学报》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106932041A (en) * 2015-12-30 2017-07-07 核工业北京地质研究院 A kind of water pressure test in borehole multistage flow high precision measuring device and method
CN106932041B (en) * 2015-12-30 2019-07-12 核工业北京地质研究院 A kind of water pressure test in borehole multistage flow high precision measuring device and method
CN105628894A (en) * 2016-01-13 2016-06-01 西南石油大学 Simulation and evaluation system for low-salinity water injection experiment and method
CN106404498A (en) * 2016-08-30 2017-02-15 海安华达石油仪器有限公司 Vacuumizing and pressurizing saturation apparatus
CN106771090A (en) * 2016-12-26 2017-05-31 浙江海洋大学 Along the assay method and measure device of journey emulsification of crude oil ability during a kind of simulation surfactant flooding
CN106771090B (en) * 2016-12-26 2019-11-12 浙江海洋大学 Along the measuring method and measurement device of journey emulsification of crude oil ability during a kind of template surface activating agent displacement of reservoir oil
CN108106969A (en) * 2017-11-14 2018-06-01 中国石油天然气股份有限公司 Measure experimental system and method for the pressure wave in core diffusion inside
CN108194067A (en) * 2017-12-30 2018-06-22 东北石油大学 The method and apparatus of binary combination flooding Flooding Efficiency after the poly- drive of comparison
CN108194066A (en) * 2017-12-30 2018-06-22 东北石油大学 The device of chemical flooding effect after comparison water drive
CN108222906A (en) * 2017-12-30 2018-06-29 东北石油大学 Functional polymer drives the apparatus and method of effect after the poly- drive of comparison
CN108194068A (en) * 2017-12-30 2018-06-22 东北石油大学 Comparative polymer drives the method and driving device of stage Flooding Efficiency
CN108590607A (en) * 2017-12-30 2018-09-28 东北石油大学 The method and apparatus of chemical flooding effect after the poly- drive of comparison
CN108222907A (en) * 2017-12-30 2018-06-29 东北石油大学 It is preferred that the method and apparatus of ternary composite driving displacement scheme
CN108519258A (en) * 2018-03-10 2018-09-11 东北石油大学 The apparatus and method tested using matrix-high infiltration strip rock core
CN108716392A (en) * 2018-05-20 2018-10-30 东北石油大学 Viscous fingering optimization method and device in the gravitational effect control surface activating agent displacement of reservoir oil
CN109470616A (en) * 2018-10-31 2019-03-15 重庆大学 Rock multifunction seepage test macro
CN109838218A (en) * 2019-03-05 2019-06-04 西南石油大学 It is a kind of to simulate the experimental provision exploited after the bored well of multistage pressure break horizontal gas well and method
CN109870396A (en) * 2019-03-06 2019-06-11 中国石油大学(北京) A kind of method and device obtaining starting pressure gradient

Also Published As

Publication number Publication date
CN105114062B (en) 2020-08-04

Similar Documents

Publication Publication Date Title
WO2016078164A1 (en) Simulation experiment system and simulation method for full process of natural gas hydrate extraction
CN103954544B (en) A kind of polymer control water increases experimental provision and the experimental technique of gas effect assessment
CN103206210B (en) Experimental apparatus for exploiting natural gas hydrate reservoir by means of thermal fluid fracturing
CN101793137B (en) Oil-water displacement efficiency experimental method of longitudinal and planar nonhomogeneous slab models
CN105221122B (en) Simulate the visual experimental apparatus and method of fractured-cavernous carbonate reservoir gas injection
CN103174412B (en) A kind of coalbed methane reservoir layering is with adopting HTHP mining dynamic evaluation instrument
CN104568678B (en) HTHP acid gas reservoir gas-liquid sulphur phase percolation curve test device and method
RU2558838C1 (en) Modelling and estimating active storage capacity of underground gas storage in water-bearing fractured porous structures
CN103645126A (en) Determining method for stratum high-temperature high-pressure gas-phase and water-phase relative permeability curve
CN101344515B (en) Permeability coefficient determinator
CN104675394B (en) Heterogeneous bottom-water reservoir three-dimensional physical simulation experimental provision and saturation degree determine method
CN104594885B (en) Measuring test device and method for seepage law of shale gas in microfractures
CN104237460B (en) A kind of device and application thereof of simulating the complicated seam of volume fracturing net proppants settle down rule
CN106121601B (en) A kind of foam flooding physical simulating device and method
CN202102631U (en) Carbon dioxide transfer physical simulation platform under geological storage conditions
CN104297128A (en) Triaxial stress seepage experiment device under high pressure water and subpressure loading condition
CN105092446B (en) A kind of two dimensional visible Seepage Experiment method for simulating in-layer heterogeneity
CN105089589B (en) A kind of polymer flooding that realizes closes visual experimental apparatus and the method for work thereof that layer injects with layering
CN103278615B (en) Test method for geological storage of carbon dioxide coal seams
CN103471976B (en) A kind of device measured containing hydrate porous deposit permeability
WO2016061854A1 (en) Simulation experiment device for natural gas hydrate exploitation at permeable boundary layers
CN105178926B (en) Fractured-cavernous carbonate reservoir physical model, displacement simulation experimental provision and system
CN104101559B (en) Measure the device and method of supercritical carbon dioxide fracturing fluid rheological characteristic
CN204315152U (en) Phreatic well flood-pot-test device
CN102797458B (en) For the three-dimensional simulation device of bottom and edge water

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant