CN105094144A - 一种无人飞艇自适应抗风路径跟踪控制方法 - Google Patents

一种无人飞艇自适应抗风路径跟踪控制方法 Download PDF

Info

Publication number
CN105094144A
CN105094144A CN201510552263.8A CN201510552263A CN105094144A CN 105094144 A CN105094144 A CN 105094144A CN 201510552263 A CN201510552263 A CN 201510552263A CN 105094144 A CN105094144 A CN 105094144A
Authority
CN
China
Prior art keywords
error
calculate
self
path
crab angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510552263.8A
Other languages
English (en)
Other versions
CN105094144B (zh
Inventor
郑泽伟
祝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Tianhang Huachuang Technology Co Ltd
Original Assignee
Beijing Tianhang Huachuang Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Tianhang Huachuang Technology Co Ltd filed Critical Beijing Tianhang Huachuang Technology Co Ltd
Priority to CN201510552263.8A priority Critical patent/CN105094144B/zh
Publication of CN105094144A publication Critical patent/CN105094144A/zh
Application granted granted Critical
Publication of CN105094144B publication Critical patent/CN105094144B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种无人飞艇自适应抗风路径跟踪控制方法,步骤如下:1.给定期望跟踪值:给定期望平面路径;给定期望速度;2.自适应积分制导计算:计算消除期望位置与实际位置之间的误差所需的期望偏航角?<b></b>和风场估计值<b></b>;3.偏航角跟踪控制计算:计算消除期望偏航角与实际偏航角之间的误差所需方向舵控制量<b></b>;4.相对速度跟踪控制计算:计算消除期望速度与实际速度之间的误差所需螺旋桨控制量<b></b>。控制流程见附图。

Description

一种无人飞艇自适应抗风路径跟踪控制方法
技术领域
本发明提供一种无人飞艇自适应抗风路径跟踪控制方法,它为无人飞艇在未知风场中飞行时提供一种跟踪参数化平面路径的新控制方法,属于自动控制技术领域。
背景技术
无人飞艇是一种轻于空气的航空器,它与气球最大的区别在于具有推进和控制飞行的装置。飞艇典型的飞行状态包括起飞、巡航飞行、降落等。对于无人飞艇的巡航飞行,主要的控制策略有轨迹跟踪控制和路径跟踪控制。目前的路径跟踪控制方法均基于确定的飞艇模型进行设计,未考虑外界风场等干扰因素。
本发明“一种无人飞艇自适应抗风路径跟踪控制方法”,针对在未知风场中巡航飞行的欠驱动无人飞艇,提出了基于其非线性模型的一种自适应抗风路径跟踪控制方法。该方法结合了自适应积分视线制导算法和反步控制理论。由该方法控制的闭环系统是渐近稳定的,且具有良好的收敛效果,这就为无人飞艇的巡航飞行工程实现提供了有效的设计手段。
发明内容
(1)目的:本发明的目的在于提供一种无人飞艇自适应抗风路径跟踪控制方法,控制工程师可以按照该方法并结合实际参数实现无人飞艇在未知风场环境中的精确自主巡航飞行。
(2)技术方案:本发明“一种无人飞艇自适应抗风路径跟踪控制方法”,其主要内容及程序是:先由给定期望跟踪位置和相对速度进行自适应积分视线制导计算,生成期望偏航角和估计风场值;然后进行偏航角跟踪控制计算得到方向舵控制量;由相对速度运动模型计算得到期望螺旋桨推力控制量。实际应用中,飞艇的位置、姿态、速度等状态量由组合惯导等传感器测量得到,将由该方法计算得到的控制量传输至舵机和推进螺旋桨等执行装置即可实现无人飞艇在未知风场中的自适应巡航飞行功能。
本发明“一种无人飞艇自适应抗风路径跟踪控制方法”,其具体步骤如下:
步骤一给定期望跟踪值:给定期望平面路径;给定期望速度;
步骤二自适应积分制导计算:计算消除期望位置与实际位置之间的误差所需的期望偏航角和风场估计值
步骤三偏航角跟踪控制计算:计算消除期望偏航角与实际偏航角之间的误差所需方向舵控制量
步骤四相对速度跟踪控制计算:计算消除期望速度与实际速度之间的误差所需螺旋桨控制量
其中,在步骤一中所述的给定期望路径为为路径参数,为飞艇期望位置;所述的给定期望速度为为常数。
其中,在步骤二中所述的计算消除期望位置与实际位置之间的误差所需的期望偏航角和风场估计值其计算方法如下:
1)计算期望路径参考点的方向角
2)计算飞艇当前位置与期望路径参考点的误差为无人飞艇的当前位置;
3)计算风场估计自适应律,,为自适应参数,得到风场估计值;计算位置误差积分值,为相对速度,为相对速度沿艇体坐标系的分解量;
4)计算期望偏航角为控制参数;按照更新路径参数,为控制参数。
其中,在步骤三中所述的计算消除期望偏航角与实际偏航角之间的误差所需方向舵控制量,其计算方法如下
1)计算偏航角跟踪误差,计算虚拟控制量,由指令滤波器计算得到,为滤波器阻尼和频率,为控制参数;
2)计算偏航角速度跟踪误差,计算方向舵控制量,由指令滤波器计算得到,为滤波器阻尼和频率,为控制参数,为飞艇模型参数。
其中,在步骤四中所述的计算消除期望速度与实际速度之间的误差所需螺旋桨控制量其计算方法如下
计算速度跟踪误差,计算螺旋桨控制量,为控制参数,为飞艇模型参数。
(3)优点及效果:
本发明“一种无人飞艇自适应抗风路径跟踪控制方法”,与现有技术比,其优点是:
1)该方法能够自适应估计未知风场环境,对干扰有足够的鲁棒性;
2)该方法能够利用积分环节消除路径跟踪误差,改进跟踪性能;
3)该方法针对非线性模型反步设计,能够保证闭环系统的全局渐近稳定性能。
控制工程师在应用过程中可不考虑环境风场因素,根据实际飞艇给定任意期望巡航路径,并将由该方法计算得到的控制量直接传输至执行机构实现路径跟踪功能。
附图说明
图1为本发明所述控制方法流程框图;
图2为本发明无人飞艇示意图;
符号说明如下:
为期望飞艇飞行路径,其中为路径参数,为期望惯性系位置;
为飞艇的当前位置,为当前惯性系位置;
飞艇期望相对速度为常数;
飞艇期望偏航角;
飞艇偏航角;
方向舵控制量;
螺旋桨控制量
惯性坐标系;
艇体坐标系;
相对速度沿艇体坐标系的分解量;
偏航角速度。
具体实施方式
下面结合附图,对本发明中的各部分设计方法作进一步的说明:
本发明“一种无人飞艇自适应抗风路径跟踪控制方法”,见图1所示,其具体步骤如下:
步骤一:给定期望跟踪值
1)给定期望路径为为路径参数,为飞艇期望位置;
2)给定期望速度为为常数。
步骤二:自适应积分制导计算
1)计算期望路径参考点的方向角
2)计算飞艇当前位置与期望路径参考点的误差为无人飞艇的当前位置;
3)计算风场估计自适应律,,为自适应参数,得到风场估计值;计算位置误差积分值,为相对速度,为相对速度沿艇体坐标系的分解量;
4)计算期望偏航角为控制参数;按照更新路径参数,为控制参数。
步骤三:偏航角跟踪控制计算
1)计算偏航角跟踪误差,计算虚拟控制量,由指令滤波器计算得到,为滤波器阻尼和频率,为控制参数;
2)计算偏航角速度跟踪误差,计算方向舵控制量,由指令滤波器计算得到,为滤波器阻尼和频率,为控制参数,为飞艇模型参数。
步骤四:相对速度跟踪控制计算
计算速度跟踪误差,计算螺旋桨控制量,为控制参数,为飞艇模型参数。

Claims (5)

1.一种无人飞艇自适应抗风路径跟踪控制方法,其特征在于:具体步骤如下:
步骤一给定期望跟踪值:给定期望平面路径;给定期望速度;
步骤二自适应积分制导计算:计算消除期望位置与实际位置之间的误差所需的期望偏航角和风场估计值
步骤三偏航角跟踪控制计算:计算消除期望偏航角与实际偏航角之间的误差所需方向舵控制量
步骤四相对速度跟踪控制计算:计算消除期望速度与实际速度之间的误差所需螺旋桨控制量
2.根据权利要求1所述的一种无人飞艇自适应抗风路径跟踪控制方法,其特征在于:
在步骤一中所述的给定期望路径为为路径参数,为飞艇期望位置;所述的给定期望速度为为常数。
3.根据权利要求1所述的一种无人飞艇自适应抗风路径跟踪控制方法,其特征在于:
在步骤二中所述的计算消除期望位置与实际位置之间的误差所需的期望偏航角和风场估计值其计算方法如下:
1)计算期望路径参考点的方向角
2)计算飞艇当前位置与期望路径参考点的误差为无人飞艇的当前位置;
3)计算风场估计自适应律,,为自适应参数,得到风场估计值;计算位置误差积分值,为相对速度,为相对速度沿艇体坐标系的分解量;
4)计算期望偏航角为控制参数;按照更新路径参数,为控制参数。
4.根据权利要求1所述的一种无人飞艇自适应抗风路径跟踪控制方法,其特征在于:
在步骤三中所述的计算消除期望偏航角与实际偏航角之间的误差所需方向舵控制量,其计算方法如下
1)计算偏航角跟踪误差,计算虚拟控制量,由指令滤波器计算得到,为滤波器阻尼和频率,为控制参数;
2)计算偏航角速度跟踪误差,计算方向舵控制量,由指令滤波器计算得到,为滤波器阻尼和频率,为控制参数,为飞艇模型参数。
5.根据权利要求1所述的一种无人飞艇自适应抗风路径跟踪控制方法,其特征在于:
在步骤四中所述的计算消除期望速度与实际速度之间的误差所需螺旋桨控制量其计算方法如下
计算速度跟踪误差,计算螺旋桨控制量,为控制参数,为飞艇模型参数。
CN201510552263.8A 2015-09-02 2015-09-02 一种无人飞艇自适应抗风路径跟踪控制方法 Active CN105094144B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510552263.8A CN105094144B (zh) 2015-09-02 2015-09-02 一种无人飞艇自适应抗风路径跟踪控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510552263.8A CN105094144B (zh) 2015-09-02 2015-09-02 一种无人飞艇自适应抗风路径跟踪控制方法

Publications (2)

Publication Number Publication Date
CN105094144A true CN105094144A (zh) 2015-11-25
CN105094144B CN105094144B (zh) 2018-01-09

Family

ID=54574817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510552263.8A Active CN105094144B (zh) 2015-09-02 2015-09-02 一种无人飞艇自适应抗风路径跟踪控制方法

Country Status (1)

Country Link
CN (1) CN105094144B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105912025A (zh) * 2016-06-08 2016-08-31 北京控制工程研究所 一种基于特征模型的高空飞艇水平位置控制方法
CN109460041A (zh) * 2018-12-28 2019-03-12 珠海市汉图达科技有限公司 一种无人艇自动舵控制系统及方法
CN113359861A (zh) * 2021-07-22 2021-09-07 北京航空航天大学 一种无人飞艇编队飞行控制方法及系统
CN114371610A (zh) * 2021-11-29 2022-04-19 上海工程技术大学 多矢量螺旋桨组合浮空器故障诊断和容错控制系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163057A (zh) * 2011-04-14 2011-08-24 北京航空航天大学 一种自治飞艇平面路径跟踪控制方法
CN104199457A (zh) * 2014-09-19 2014-12-10 北京航空航天大学 一种基于h∞和模型修复抗饱和的平流层飞艇姿态控制方法
CN104216417A (zh) * 2014-09-22 2014-12-17 北京航空航天大学 一种基于四矢量螺旋桨的平流层飞艇的动态控制分配方法
CN104317300A (zh) * 2014-09-22 2015-01-28 北京航空航天大学 一种基于模型预测控制的平流层飞艇平面路径跟踪控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163057A (zh) * 2011-04-14 2011-08-24 北京航空航天大学 一种自治飞艇平面路径跟踪控制方法
CN104199457A (zh) * 2014-09-19 2014-12-10 北京航空航天大学 一种基于h∞和模型修复抗饱和的平流层飞艇姿态控制方法
CN104216417A (zh) * 2014-09-22 2014-12-17 北京航空航天大学 一种基于四矢量螺旋桨的平流层飞艇的动态控制分配方法
CN104317300A (zh) * 2014-09-22 2015-01-28 北京航空航天大学 一种基于模型预测控制的平流层飞艇平面路径跟踪控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MING ZHU,等: "Model Predictive Control for Path Following of Stratospheric Airship with Magnitude and Rate Constrains of Rudder", 《CONTROL AND DECISION CONFERENCE(CCDC),2015 27TH CHINESE》 *
郑泽伟,等: "自治飞艇直接自适应模糊路径跟踪控制", 《控制与决策》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105912025A (zh) * 2016-06-08 2016-08-31 北京控制工程研究所 一种基于特征模型的高空飞艇水平位置控制方法
CN105912025B (zh) * 2016-06-08 2019-03-26 北京控制工程研究所 一种基于特征模型的高空飞艇水平位置控制方法
CN109460041A (zh) * 2018-12-28 2019-03-12 珠海市汉图达科技有限公司 一种无人艇自动舵控制系统及方法
CN113359861A (zh) * 2021-07-22 2021-09-07 北京航空航天大学 一种无人飞艇编队飞行控制方法及系统
CN113359861B (zh) * 2021-07-22 2022-06-10 北京航空航天大学 一种无人飞艇编队飞行控制方法及系统
CN114371610A (zh) * 2021-11-29 2022-04-19 上海工程技术大学 多矢量螺旋桨组合浮空器故障诊断和容错控制系统及方法
CN114371610B (zh) * 2021-11-29 2023-08-08 上海工程技术大学 多矢量螺旋桨组合浮空器故障诊断和容错控制系统及方法

Also Published As

Publication number Publication date
CN105094144B (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
WO2021244545A1 (zh) 一种无人机制导方法、无人机及存储介质
Ren et al. Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints
CN106444822B (zh) 一种基于空间矢量场制导的平流层飞艇路径跟踪控制方法
CN111306989B (zh) 一种基于平稳滑翔弹道解析解的高超声速再入制导方法
Lee et al. Formation flight of unmanned aerial vehicles using track guidance
CN108845588B (zh) 一种基于非线性制导的四旋翼飞行器轨迹跟踪控制方法
CN106774400B (zh) 一种基于逆动力学的无人机三维轨迹制导方法
CN105045284B (zh) 一种抗干扰无人飞行器路径跟踪控制方法
CN102163057B (zh) 一种自治飞艇平面路径跟踪控制方法
CN107515617B (zh) 一种固定翼无人机航线平滑切换控制方法
CN104199303B (zh) 一种基于矢量场制导的平流层卫星平面路径跟踪控制方法
CN107807663A (zh) 基于自适应控制的无人机编队保持控制方法
CN105425812B (zh) 一种基于双模型下的无人机自动着舰轨迹控制方法
CN105116914B (zh) 一种平流层飞艇解析模型预测路径跟踪控制方法
CN112198886B (zh) 一种跟踪机动目标的无人机控制方法
CN111506099B (zh) 一种无人机高度智能控制系统及方法
CN105094144A (zh) 一种无人飞艇自适应抗风路径跟踪控制方法
EP2673681A1 (en) Flight control laws for constant vector flat turns
Mills et al. Vision based control for fixed wing UAVs inspecting locally linear infrastructure using skid-to-turn maneuvers
Yamasaki et al. Sliding mode based pure pursuit guidance for UAV rendezvous and chase with a cooperative aircraft
CN104656657A (zh) 一种常值风干扰平流层飞艇定点控制方法
Brezoescu et al. Straight-line path following in windy conditions
CN107450313B (zh) 基于自适应控制的无人机自动驾驶仪控制系统
Yamasaki et al. Sliding mode-based pure pursuit guidance for unmanned aerial vehicle rendezvous and chase with a cooperative aircraft
Kwon et al. EKF based sliding mode control for a quadrotor attitude stabilization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant