CN105093490B - 光学成像镜头及应用该光学成像镜头的电子装置 - Google Patents

光学成像镜头及应用该光学成像镜头的电子装置 Download PDF

Info

Publication number
CN105093490B
CN105093490B CN201410249263.6A CN201410249263A CN105093490B CN 105093490 B CN105093490 B CN 105093490B CN 201410249263 A CN201410249263 A CN 201410249263A CN 105093490 B CN105093490 B CN 105093490B
Authority
CN
China
Prior art keywords
lens
optical axis
optical
optical imaging
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410249263.6A
Other languages
English (en)
Other versions
CN105093490A (zh
Inventor
陈思翰
陈雁斌
樊大正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genius Electronic Optical Xiamen Co Ltd
Original Assignee
Genius Electronic Optical Xiamen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genius Electronic Optical Xiamen Co Ltd filed Critical Genius Electronic Optical Xiamen Co Ltd
Priority to CN201410249263.6A priority Critical patent/CN105093490B/zh
Publication of CN105093490A publication Critical patent/CN105093490A/zh
Application granted granted Critical
Publication of CN105093490B publication Critical patent/CN105093490B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens

Abstract

本发明涉及一种光学成像镜头及应用该光学成像镜头的电子装置,一种光学成像镜头,包含一第一、二、三、四、五、六透镜,第一透镜具有正屈光率,第二透镜的材质为塑料,该第三透镜的该像侧面具有一位于光轴附近区域的凹面部,该第四透镜的该物侧面具有一位于光轴附近区域的凹面部,该第五透镜的该像侧面具有一位于光轴附近区域的凹面部,该第六透镜的该像侧面具有一位于圆周附近区域的凸面部。本发明的电子装置,包括一机壳;及一影像模块,是安装在该机壳内,并包括上述的光学成像镜头、一镜筒、一用于供该镜筒设置的模块后座单元,及一设置于该光学成像镜头的像侧的影像传感器。本发明光学成像镜头可有效缩短镜头之总长度,同时具备良好之光学性能。

Description

光学成像镜头及应用该光学成像镜头的电子装置
技术领域
本发明是有关于一种光学镜头,特别是指一种光学成像镜头及应用该光学成像镜头的电子装置。
背景技术
近年来,手机和数字相机等携带型电子产品的普及使得影像模块相关技术蓬勃发展,该影像模块主要包含光学成像镜头、模块后座单元(module holder unit)与传感器(sensor)等组件,而手机和数字相机的薄型轻巧化趋势也让影像模块的小型化需求愈来愈高,随着感光耦合组件(Charge Coupled Device,简称为CCD)或互补性氧化金属半导体组件(Complementary Metal-Oxide Semiconductor,简称为CMOS)之技术进步和尺寸缩小化,装载在影像模块中的光学成像镜头也需要相应地缩短长度,但是为了避免摄影效果与质量下降,在缩短光学成像镜头的长度时仍然要兼顾良好的光学性能。
因此如何能够有效缩减光学镜头之系统长度,同时仍能够维持足够之光学性能,一直是业界亟待解决之课题。
发明内容
因此,本发明之目的,即在提供一种在缩短镜头系统长度的条件下,仍能够保有良好的光学性能的光学成像镜头。
于是本发明光学成像镜头,从物侧至像侧沿一光轴依序包含一第一透镜、一第二透镜、一第三透镜、一第四透镜、一第五透镜,及一第六透镜,且该第一透镜至该第六透镜都具有屈光率,并包括一朝向物侧且使成像光线通过的物侧面及一朝向像侧且使成像光线通过的像侧面。
该第一透镜具有正屈光率;该第二透镜的材质为塑料;该第三透镜的该像侧面具有一位于光轴附近区域的凹面部;该第四透镜的该物侧面具有一位于光轴附近区域的凹面部;该第五透镜的该像侧面具有一位于光轴附近区域的凹面部;该第六透镜的该像侧面具有一位于圆周附近区域的凸面部。
其中,该光学成像镜头具有屈光率的透镜只有六片。
本发明光学成像镜头的有益效果在于:藉由该第一透镜的正屈光率可增加聚光能力,缩短该光学成像镜头长度。该第二透镜的材质为塑料,有利于制作成非球面透镜;另外,藉由该第三透镜的像侧面在光轴附近区域的凹面部、该第四透镜的物侧面在光轴附近区域的凹面部、该第五透镜的像侧面在光轴附近区域的凹面部与该第六透镜的像侧面在圆周附近区域的凸面部的相互搭配,使整个系统具有较佳的消除像差能力。
因此,本发明之另一目的,即在提供一种应用于前述的光学成像镜头的电子装置。
于是,本发明的电子装置,包含一机壳,及一安装在该机壳内的影像模块。
该影像模块包括一如前述所述的光学成像镜头、一用于供该光学成像镜头设置的镜筒、一用于供该镜筒设置的模块后座单元,及一设置于该光学成像镜头像侧的影像传感器。
本发明电子装置的有益效果在于:藉由在该电子装置中装载具有前述的光学成像镜头的影像模块,以利该成像镜头在缩短系统长度的条件下,仍能够提供良好之光学性能的优势,在不牺牲光学性能的情形下制出更为薄型轻巧的电子装置,使本发明兼具良好的实用性能且有助于轻薄短小化的结构设计,而能满足更高质量的消费需求。
附图说明
图1是一示意图,说明一透镜结构;
图2是一配置示意图,说明本发明光学成像镜头的一第一实施例;
图3是该第一实施例的纵向球差与各项像差图;
图4是一表格图,说明该第一实施例的各透镜的光学数据;
图5是一表格图,说明该第一实施例的各透镜的非球面系数;
图6是一配置示意图,说明本发明光学成像镜头的一第二实施例;
图7是该第二实施例的纵向球差与各项像差图;
图8是一表格图,说明该第二实施例的各透镜的光学数据;
图9是一表格图,说明该第二实施例的各透镜的非球面系数;
图10是一配置示意图,说明本发明光学成像镜头的一第三实施例;
图11是该第三实施例的纵向球差与各项像差图;
图12是一表格图,说明该第三实施例的各透镜的光学数据;
图13是一表格图,说明该第三实施例的各透镜的非球面系数;
图14是一配置示意图,说明本发明光学成像镜头的一第四实施例;
图15是该第四实施例的纵向球差与各项像差图;
图16是一表格图,说明该第四实施例的各透镜的光学数据;
图17是一表格图,说明该第四实施例的各透镜的非球面系数;
图18是一配置示意图,说明本发明光学成像镜头的一第五实施例;
图19是该第五实施例的纵向球差与各项像差图;
图20是一表格图,说明该第五实施例的各透镜的光学数据;
图21是一表格图,说明该第五实施例的各透镜的非球面系数;
图22是一配置示意图,说明本发明光学成像镜头的一第六实施例;
图23是该第六实施例的纵向球差与各项像差图;
图24是一表格图,说明该第六实施例的各透镜的光学数据;
图25是一表格图,说明该第六实施例的各透镜的非球面系数;
图26是一配置示意图,说明本发明光学成像镜头的一第七实施例;
图27是该第七实施例的纵向球差与各项像差图;
图28是一表格图,说明该第七实施例的各透镜的光学数据;
图29是一表格图,说明该第七实施例的各透镜的非球面系数;
图30是一表格图,说明该六片式光学成像镜头的该第一实施例至该第七实施例的光学参数;
图31是一表格图,说明该六片式光学成像镜头的该第一实施例至该第七实施例的光学参数;
图32是一剖视示意图,说明本发明电子装置的一第一实施例;及
图33是一剖视示意图,说明本发明电子装置的一第二实施例。
【符号说明】
10 光学成像镜头
2 光圈
3 第一透镜
31 物侧面
311 凸面部
312 凸面部
32 像侧面
321 凸面部
322 凸面部
4 第二透镜
41 物侧面
411 凹面部
412 凹面部
413 凸面部
414 凸面部
42 像侧面
421 凸面部
422 凸面部
423 凹面部
424 凹面部
5 第三透镜
51 物侧面
511 凸面部
512 凸面部
513 凹面部
514 凹面部
52 像侧面
521 凹面部
522 凹面部
6 第四透镜
61 物侧面
611 凹面部
612 凸面部
613 凹面部
62 像侧面
621 凸面部
622 凹面部
623 凸面部
7 第五透镜
71 物侧面
711 凸面部
712 凹面部
713 凹面部
72 像侧面
721 凹面部
722 凸面部
8 第六透镜
81 物侧面
811 凸面部
812 凹面部
82 像侧面
821 凹面部
822 凸面部
9 滤光片
91 物侧面
92 像侧面
100 成像面
I 光轴
1 电子装置
11 机壳
12 影像模块
120 模块后座单元
121 镜头后座
122 影像传感器后座
123 第一座体
124 第二座体
125 线圈
126 磁性组件
130 影像传感器
21 镜筒
Ⅱ、Ⅲ 轴线
具体实施方式
在本发明被详细描述之前,应当注意在以下的说明内容中,类似的组件是以相同的编号来表示。
本篇说明书所言之“一透镜具有正屈光率(或负屈光率)”,是指所述透镜在光轴附近区域具有正屈光率(或负屈光率)而言。“一透镜的物侧面(或像侧面)具有位于某区域的凸面部(或凹面部)”,是指该区域相较于径向上紧邻该区域的外侧区域,朝平行于光轴的方向更为“向外凸起”(或“向内凹陷”)而言,以图1为例,其中I为光轴且此一透镜是以该光轴I为对称轴径向地相互对称,该透镜之物侧面于A区域具有凸面部、B区域具有凹面部而C区域具有凸面部,原因在于A区域相较于径向上紧邻该区域的外侧区域(即B区域),朝平行于光轴的方向更为向外凸起,B区域则相较于C区域更为向内凹陷,而C区域相较于E区域也同理地更为向外凸起。“圆周附近区域”,是指位于透镜上仅供成像光线通过之曲面之圆周附近区域,亦即图中之C区域,其中,成像光线包括了主光线(chief ray)Lc及边缘光线(marginal ray)Lm。“光轴附近区域”是指该仅供成像光线通过之曲面之光轴附近区域,亦即图1中之A区域。此外,该透镜还包含一延伸部E,用以供该透镜组装于一光学成像镜头内,理想的成像光线并不会通过该延伸部E,但该延伸部E之结构与形状并不限于此,以下之实施例为求图式简洁均省略了延伸部。
参阅图2与图4,本发明光学成像镜头10之一第一实施例,从物侧至像侧沿一光轴I依序包含一光圈2、一第一透镜3、一第二透镜4、一第三透镜5、一第四透镜6、一第五透镜7、一第六透镜8,及一滤光片9。当由一待拍摄物所发出的光线进入该光学成像镜头10,并经由该光圈2、该第一透镜3、该第二透镜4、该第三透镜5、该第四透镜6、该第五透镜7、该第六透镜8,及该滤光片9之后,会在一成像面100(Image Plane)形成一影像。该滤光片9为红外线滤光片(IR Cut Filter),用于防止光线中的红外线透射至该成像面100而影响成像质量。补充说明的是,物侧是朝向该待拍摄物的一侧,而像侧是朝向该成像面100的一侧。
其中,该第一透镜3、该第二透镜4、该第三透镜5、该第四透镜6、该第五透镜7、该第六透镜8,及该滤光片9都分别具有一朝向物侧且使成像光线通过之物侧面31、41、51、61、71、81、91,及一朝向像侧且使成像光线通过之像侧面32、42、52、62、72、82、92。其中,该等物侧面31、41、51、61、71、81与该等像侧面32、42、52、62、72、82皆为非球面。
此外,为了满足产品轻量化的需求,该第一透镜3至该第六透镜8皆为具备屈光率且都是塑料材质所制成,但该第一透镜3至该第六透镜8的材质仍不以此为限制。
该第一透镜3为正屈光率的透镜。该第一透镜3的该物侧面31为一凸面,且具有一位于光轴I附近区域的凸面部311及一位于圆周附近区域的凸面部312,该第一透镜3的该像侧面32为一凸面,且具有一位于光轴I附近区域的凸面部321及一位于圆周附近区域的凸面部322。
该第二透镜4为正屈光率的透镜。该第二透镜4的该物侧面41为一凹面,且具有一位于光轴I附近区域的凹面部411及一位于圆周附近区域的凹面部412,该第二透镜4的该像侧面42具有一位于光轴I附近区域的凸面部421、一位于圆周附近区域的凸面部422及一位于该等凸面部421、422间的凹面部423。
该第三透镜5为负屈光率的透镜,该第三透镜5的该物侧面51具有一位于光轴I附近区域的凸面部511、一位于圆周附近区域的凸面部512及一位于该等凸面部511、512间的凹面部513,该第三透镜5的该像侧面52为一凹面,且具有一位于光轴I附近区域的凹面部521及一位于圆周附近区域的凹面部522。
该第四透镜6为正屈光率的透镜。该第四透镜6的该物侧面61具有一位于光轴I附近区域的凹面部611及一位于圆周附近区域的凸面部612,该第四透镜6的该像侧面62具有一位于光轴I附近区域的凸面部621及一位于圆周附近区域的凹面部622。
该第五透镜7为负屈光率的透镜。该第五透镜7的该物侧面71具有一位于光轴I附近区域的凸面部711及一位于圆周附近区域的凹面部712,该第五透镜7的该像侧面72具有一位于光轴I附近区域的凹面部721及一位于圆周附近区域的凸面部722。
该第六透镜8为正屈光率的透镜。该第六透镜8的该物侧面81具有一位于光轴I附近区域的凸面部811及一位于圆周附近区域的凹面部812,该第六透镜8的该像侧面82具有一位于光轴I附近区域的凹面部821及一位于圆周附近区域的凸面部822。
在本第一实施例中,只有上述透镜具有屈光率。
该第一实施例的其他详细光学数据如图4所示,且该第一实施例的整体系统焦距(effective focal length,简称EFL)为4.001mm,半视角(half field of view,简称HFOV)为37.98°、光圈值(Fno)为2.2,其系统长度为5.217mm。其中,该系统长度是指由该第一透镜3的该物侧面31到成像面100在光轴I上之间的距离。
此外,从第一透镜3、该第二透镜4、该第三透镜5、该第四透镜6、该第五透镜7,及该第六透镜8的物侧面31、41、51、61、71、81及像侧面32、42、52、62、72、82,共计十二个面均是非球面,而该非球面是依下列公式定义:
其中:
Y:非球面曲线上的点与光轴I的距离;
Z:非球面之深度(非球面上距离光轴I为Y的点,与相切于非球面光轴I上顶点之切面,两者间的垂直距离);
R:透镜表面的曲率半径;
K:锥面系数(conic constant);
a2i:第2i阶非球面系数。
该第一透镜3的物侧面31到第六透镜8的像侧面82在公式(1)中的各项非球面系数如图5所示。
另外,该第一实施例之光学成像镜头10中各重要参数间的关系为:
T1=0.689;G12=0.05;T2=0.2;G23=0.05;
T3=0.32;G34=0.387;T4=0.809;G45=0.055;
T5=0.677;G56=0.311;T6=0.363;G6F=0.5;
TF=0.3;GFI=0.505;BFL=1.305;ALT=3.058;
Gaa=0.853;T2/(G23+G56)=0.554;
T3/(G23+G56)=0.886;G34/(G23+G56)=1.072;
G34/T6=1.066;T4/(G23+G56)=2.241;
(G45+T5)/(G23+G56)=2.208;ALT/(G23+G56)=8.471;
ALT/T6=8.424;T6/T2=1.815;Gaa/T2=4.265;
BFL/T3=4.078;Gaa/T3=2.666;及BFL/G34=3.372。
其中,
T1为该第一透镜3在光轴I上的厚度;
T2为该第二透镜4在光轴I上的厚度;
T3为该第三透镜5在光轴I上的厚度;
T4为该第四透镜6在光轴I上的厚度;
T5为该第五透镜7在光轴I上的厚度;
T6为该第六透镜8在光轴I上的厚度;
G12为该第一透镜3到该第二透镜4在光轴I上的空气间隙;
G23为该第二透镜4到该第三透镜5在光轴I上的空气间隙;
G34为该第三透镜5到该第四透镜6在光轴I上的空气间隙;
G45为该第四透镜6到该第五透镜7在光轴I上的空气间隙;
G56为该第五透镜7到该第六透镜8在光轴I上的空气间隙;
G6F为该第六透镜8到该滤光片9在光轴I上的空气间隙;
TF为该滤光片9在光轴I上的厚度;
GFI为该滤光片9到该成像面100在光轴I上的空气间隙;
ALT为该第一透镜3、该第二透镜4、该第三透镜5、该第四透镜6、该第五透镜7及该第六透镜8在光轴I上的厚度总和,即T1、T2、T3、T4、T5、T6之和;
Gaa为该第一透镜3至该第六透镜8在光轴I上的五个空气间隙总和,即G12、G23、G34、G45、G56之和;
BFL为该第六透镜8的该像侧面82到该成像面100在光轴I上的距离;及
EFL为该光学成像镜头10的系统焦距。
再配合参阅图3,(a)的图式说明该第一实施例的纵向球差(longitudinalspherical aberration),(b)与(c)的图式则分别说明该第一实施例在成像面100上有关弧矢(sagittal)方向的像散像差(astigmatism aberration),及子午(tangential)方向的像散像差,(d)的图式则说明该第一实施例在成像面100上的畸变像差(distortionaberration)。本第一实施例的纵向球差图示图3(a)中,每一种波长所成的曲线皆很靠近并向中间靠近,说明每一种波长不同高度的离轴光线皆集中在成像点附近,由每一波长的曲线的偏斜幅度可看出,不同高度的离轴光线的成像点偏差控制在±0.02mm范围内,故本实施例确实明显改善相同波长的球差,此外,三种代表波长彼此间的距离也相当接近,代表不同波长光线的成像位置已相当集中,因而使色像差也获得明显改善。
在图3(b)与3(c)的二个像散像差图示中,三种代表波长在整个视场范围内的焦距变化量落在±0.2mm内,说明本第一实施例的光学系统能有效消除像差。而图3(d)的畸变像差图式则显示本第一实施例的畸变像差维持在±2.5%的范围内,说明本第一实施例的畸变像差已符合光学系统的成像质量要求,据此说明本第一实施例相较于现有光学镜头,在系统长度已缩短至约≤5.5mm的条件下,仍能提供较佳的成像质量,故本第一实施例能在维持良好光学性能之条件下,缩短镜头长度以实现更加薄型化的产品设计。
参阅图6,为本发明光学成像镜头10的一第二实施例,其与该第一实施例大致相似,仅各光学数据、非球面系数及该等透镜3、4、5、6、7、8间的参数或多或少有些不同,以及该第二透镜4的该物侧面41具有一位于光轴I附近区域的凹面部411、一位于圆周附近区域的凹面部412,及一位于该等凹面部411、412间的凸面部413。
其详细的光学数据如图8所示,且该第二实施例的整体系统焦距为4.065mm,半视角(HFOV)为37.223°、光圈值(Fno)为2.2,系统长度则为5.212mm。
如图9所示,则为该第二实施例的该第一透镜3的物侧面31到该第六透镜8的像侧面82在公式(1)中的各项非球面系数。
另外,该第二实施例之该光学成像镜头10中各重要参数间的关系为:
T1=0.657;G12=0.05;T2=0.2;G23=0.05;
T3=0.389;G34=0.55;T4=0.715;G45=0.05;
T5=0.56;G56=0.18;T6=0.547;G6F=0.5;
TF=0.3;GFI=0.464;BFL=1.264;ALT=3.068;
Gaa=0.88;T2/(G23+G56)=0.870;
T3/(G23+G56)=1.691;G34/(G23+G56)=2.391;
G34/T6=1.005;T4/(G23+G56)=3.109;
(G45+T5)/(G23+G56)=2.652;
ALT/(G23+G56)=13.339;
ALT/T6=5.609;T6/T2=2.735;Gaa/T2=4.400;
BFL/T3=3.249;Gaa/T3=2.262;及BFL/G34=2.298。
配合参阅图7,由(a)的纵向球差、(b)、(c)的像散像差,以及(d)的畸变像差图式可看出本第二实施例也能维持良好光学性能。
参阅图10,为本发明光学成像镜头10的一第三实施例,其与该第一实施例大致相似,仅各光学数据、非球面系数及该等透镜3、4、5、6、7、8间的参数或多或少有些不同,以及该第二透镜4的该物侧面41具有一位于光轴I附近区域的凹面部411、一位于圆周附近区域的凹面部412,及一位于该等凹面部411、412间的凸面部413。
其详细的光学数据如图12所示,且本第三实施例的整体系统焦距为4.126mm,半视角(HFOV)为39.808°、光圈值(Fno)为2.2,系统长度则为5.291mm。
如图13所示,则为该第三实施例的该第一透镜3的物侧面31到第六透镜8的像侧面82在公式(1)中的各项非球面系数。
另外,该第三实施例之该光学成像镜头10中各重要参数间的关系为:
T1=0.658;G12=0.05;T2=0.2;G23=0.05;
T3=0.332;G34=0.55;T4=0.759;G45=0.05;
T5=0.556;G56=0.18;T6=0.547;G6F=0.5;
TF=0.3;GFI=0.559;BFL=1.359;ALT=3.052;
Gaa=0.88;T2/(G23+G56)=0.870;
T3/(G23+G56)=1.443;G34/(G23+G56)=2.391;
G34/T6=1.005;T4/(G23+G56)=3.300;
(G45+T5)/(G23+G56)=2.635;
ALT/(G23+G56)=13.270;
ALT/T6=5.580;T6/T2=2.735;Gaa/T2=4.400;
BFL/T3=4.093;Gaa/T3=2.651;及BFL/G34=2.471。
配合参阅图11,由(a)的纵向球差、(b)、(c)的像散像差,以及(d)的畸变像差图式可看出本第三实施例也能维持良好光学性能。
参阅图14,为本发明光学成像镜头10的一第四实施例,其与该第一实施例大致相似。其中,其与该第一实施例大致相似,仅各光学数据、非球面系数及该等透镜3、4、5、6、7间的参数或多或少有些不同,以及该第二透镜4的该物侧面41具有一位于光轴I附近区域的凹面部411,及一位于圆周附近区域的凸面部414。该第二透镜4的该像侧面42为一凸面,且具有一位于光轴I附近区域的凸面部421,及一位于圆周附近区域的凸面部422。该第三透镜5的该物侧面51为一凸面,且具有一位于光轴I附近区域的凸面部511,及一位于圆周附近区域的凸面部512。该第四透镜6的该物侧面61为一凹面,且具有一位于光轴I附近区域的凹面部611,及一位于圆周附近区域的凹面部613。
其详细的光学数据如图16所示,且本第四实施例的整体系统焦距为3.945mm,半视角(HFOV)为37.712°、光圈值(Fno)为2.2,系统长度则为5.099mm。
如图17所示,则为该第四实施例的该第一透镜3的物侧面31到第六透镜8的像侧面82在公式(1)中的各项非球面系数。
另外,该第四实施例之该光学成像镜头10中各重要参数间的关系为:
T1=0.52;G12=0.105;T2=0.293;G23=0.08;
T3=0.346;G34=0.604;T4=0.559;G45=0.1;
T5=0.715;G56=0.25;T6=0.573;G6F=0.5;
TF=0.3;GFI=0.154;BFL=0.954;ALT=3.006;
Gaa=1.139;T2/(G23+G56)=0.888;
T3/(G23+G56)=1.048;G34/(G23+G56)=1.830;
G34/T6=1.054;T4/(G23+G56)=1.694;
(G45+T5)/(G23+G56)=2.470;
ALT/(G23+G56)=9.109;
ALT/T6=5.246;T6/T2=1.956;Gaa/T2=3.887;
BFL/T3=2.757;Gaa/T3=3.292;及BFL/G34=1.579。
配合参阅图15,由(a)的纵向球差、(b)、(c)的像散像差,以及(d)的畸变像差图式可看出本第四实施例也能维持良好光学性能。
参阅图18,为本发明光学成像镜头10的一第五实施例,其与该第一实施例大致相似,仅各光学数据、非球面系数及该等透镜3、4、5、6、7、8间的参数或多或少有些不同,以及该第二透镜4的该物侧面41具有一位于光轴I附近区域的凹面部411,以及一位于圆周附近区域的凸面部414。该第二透镜4的该像侧面42为一凸面,且具有一位于光轴I附近区域的凸面部421,以及一位于圆周附近区域的凸面部422。该第三透镜5的该物侧面51具有一位于光轴I附近区域的凸面部511,以及一位于圆周附近区域的凹面部514。该第四透镜6的该物侧面61为一凹面,且具有一位于光轴I附近区域的凹面部611,以及一位于圆周附近区域的凹面部613。该第四透镜6的该像侧面62为一凸面,且具有一位于光轴I附近区域的凸面部621,以及一位于圆周附近区域的凸面部623。该第五透镜7的该物侧面71为一凹面,具有一位于光轴I附近区域的凹面部713,以及一位于圆周附近区域的凹面部712。该第六透镜8具有负屈光率。
其详细的光学数据如图20所示,且本第五实施例的整体系统焦距为4.054mm,半视角(HFOV)为37.088°、光圈值(Fno)为2.2,系统长度则为5.364mm。
如图21所示,则为该第五实施例的该第一透镜3的物侧面31到第六透镜8的像侧面82在公式(1)中的各项非球面系数。
另外,该第五实施例之该光学成像镜头10中各重要参数间的关系为:
T1=0.561;G12=0.104;T2=0.372;G23=0.08;
T3=0.325;G34=0.517;T4=0.755;G45=0.05;
T5=1.078;G56=0.24;T6=0.353;G6F=0.5;
TF=0.3;GFI=0.128;BFL=0.928;ALT=3.444;
Gaa=0.991;T2/(G23+G56)=1.163;
T3/(G23+G56)=1.016;G34/(G23+G56)=1.616;
G34/T6=1.456;T4/(G23+G56)=2.359;
(G45+T5)/(G23+G56)=3.525;
ALT/(G23+G56)=10.763;
ALT/T6=9.756;T6/T2=0.949;Gaa/T2=2.664;
BFL/T3=2.855;Gaa/T3=3.049;及BFL/G34=1.795。
配合参阅图19,由(a)的纵向球差、(b)、(c)的像散像差,以及(d)的畸变像差图式可看出本第五实施例也能维持良好光学性能。
参阅图22,为本发明光学成像镜头10的一第六实施例,其与该第一实施例大致相似,仅各光学数据、非球面系数及该等透镜3、4、5、6、7、8间的参数或多或少有些不同,以及该第二透镜4的该物侧面41具有一位于光轴I附近区域的凹面部411,以及一位于圆周附近区域的凸面部414。该第二透镜4的该像侧面42具有一位于光轴I附近区域的凸面部421,以及一位于圆周附近区域的凹面部424。该第三透镜5的该物侧面51为一凸面,且具有一位于光轴I附近区域的凸面部511,以及一位于圆周附近区域的凸面部512。该第四透镜6的该像侧面62为一凸面,且具有一位于光轴I附近区域的凸面部621,以及一位于圆周附近区域的凸面部623。
其详细的光学数据如图24所示,且本第六实施例的整体系统焦距为3.973mm,半视角(HFOV)为37.853°、光圈值(Fno)为2.2,系统长度则为5.104mm。
如图25所示,则为该第六实施例的该第一透镜3的物侧面31到第六透镜8的像侧面82在公式(1)中的各项非球面系数。
另外,该第六实施例之该光学成像镜头10中各重要参数间的关系为:
T1=0.502;G12=0.05;T2=0.2;G23=0.055;
T3=0.381;G34=0.396;T4=0.719;G45=0.05;
T5=0.619;G56=0.318;T6=0.527;G6F=0.5;
TF=0.3;GFI=0.485;BFL=1.285;ALT=2.948;
Gaa=0.869;T2/(G23+G56)=0.536;
T3/(G23+G56)=1.021;G34/(G23+G56)=1.062;
G34/T6=0.751;T4/(G23+G56)=1.928;
(G45+T5)/(G23+G56)=1.794;
ALT/(G23+G56)=7.903;
ALT/T6=5.594;T6/T2=2.635;Gaa/T2=4.345;
BFL/T3=3.373;Gaa/T3=2.281;及BFL/G34=3.245。
配合参阅图23,由(a)的纵向球差、(b)、(c)的像散像差,以及(d)的畸变像差图式可看出本第六实施例也能维持良好光学性能。
参阅图26,为本发明光学成像镜头10的一第七实施例,其与该第一实施例大致相似,仅各光学数据、非球面系数及该等透镜3、4、5、6、7、8间的参数或多或少有些不同,以及该第二透镜4的该像侧面42为一凸面,且具有一位于光轴I附近区域的凸面部421,以及一位于圆周附近区域的凸面部422。该第三透镜5的该物侧面51为一凸面,且具有一位于光轴I附近区域的凸面部511,以及一位于圆周附近区域的凸面部512。该第四透镜6的该物侧面61为一凹面,且具有一位于光轴I附近区域的凹面部611,以及一位于圆周附近区域的凹面部613。该第四透镜6的该像侧面62为一凸面,且具有一位于光轴I附近区域的凸面部621,以及一位于圆周附近区域的凸面部623。
其详细的光学数据如图28所示,且本第七实施例的整体系统焦距为4.200mm,半视角(HFOV)为36.412°、光圈值(Fno)为2.2,系统长度则为5.490mm。
如图29所示,则为该第七实施例的该第一透镜3的物侧面31到第六透镜8的像侧面82在公式(1)中的各项非球面系数。
另外,该第七实施例之该光学成像镜头10中各重要参数间的关系为:
T1=0.778;G12=0.05;T2=0.2;G23=0.029;
T3=0.319;G34=0.683;T4=0.844;G45=0.05;
T5=0.583;G56=0.291;T6=0.456;G6F=0.5;
TF=0.3;GFI=0.408;BFL=1.208;ALT=3.18;
Gaa=1.103;T2/(G23+G56)=0.625;
T3/(G23+G56)=0.997;G34/(G23+G56)=2.134;
G34/T6=1.498;T4/(G23+G56)=2.638;
(G45+T5)/(G23+G56)=1.978;
ALT/(G23+G56)=9.938;
ALT/T6=6.974;T6/T2=2.280;Gaa/T2=5.515;
BFL/T3=3.787;Gaa/T3=3.458;及BFL/G34=1.769。
配合参阅图27,由(a)的纵向球差、(b)、(c)的像散像差,以及(d)的畸变像差图式可看出本第七实施例也能维持良好光学性能。
再配合参阅图30,为上述七个较佳实施的各项光学参数的表格图,当本发明光学成像镜头10中的各项光学参数间的关系式满足下列条件式时,在系统长度缩短的情形下,仍然会有较佳的光学性能表现,使本发明应用于相关可携式电子装置时,能制出更加薄型化的产品:
(1)T6/T2≦3.0、ALT/T6≧5.0、G34/T6≧1.0,由于该第六透镜8是所有透镜中光学有效径最大的透镜,因此该第六透镜8的厚度能缩小的比例较大,可使该光学成像镜头10的长度有效缩短,故将T6/T2驱小设计,而将ALT/T6及G34/T6驱大设计,当满足所述条件式时,有较佳的配置,使该光学成像镜头10的长度缩短,较佳地,0.7≦T6/T2≦3.0、5.0≦ALT/T6≦10.0,及1.0≦G34/T6≦2.0。
(2)BFL/T3≦4.1、BFL/G34≦3.40,BFL为该第六透镜8的该像侧面82到该成像面100在光轴I上的距离;若将BFL缩短的比例较大时,可使该光学成像镜头10的长度有效缩短,故BFL/CT3及BFL/AC34会朝驱小设计,当满足所述条件式时,有较佳的配置,使该光学成像镜头10的长度缩短,较佳地,2.5≦BFL/T3≦4.1,及1.0≦BFL/G34≦3.4。
(3)(G45+T5)/(G23+G56)≧1.4、T4/(G23+G56)≧1.5、T3/(G23+G56)≧1、G34/(G23+G56)≧0.75、T2/(G23+G56)≧0.5、ALT/(G23+G56)≧7.5,考虑光学路径及成像质量,G23及G56不能过大,故当满足上述条件式时,有较佳的配置,使该光学成像镜头10的长度缩短并且有较佳的成像质量,较佳地,1.4≦(G45+T5)/(G23+G56)≦4、1.5≦T4/(G23+G56)≦3.5、1≦T3/(G23+G56)≦2、0.75≦G34/(G23+G56)≦2.5、0.5≦T2/(G23+G56)≦1.5,及7.5≦ALT/(G23+G56)≦15。
(4)Gaa/T2≦4.4、Gaa/T3≦3.6,当所有空气间隙缩短的比例较大时,可使该光学成像镜头长度10有效缩短,故当满足上述条件式时,有较佳的配置,使该光学成像镜头10的长度缩短并且有较佳的成像质量,较佳地,2.3≦Gaa/T2≦4.4,及2≦Gaa/T3≦3.6。
归纳上述,本发明光学成像镜头10,可获致下述的功效及优点,故能达到本发明的目的:
一、该第一透镜3的正屈光率可增加聚光能力,缩短该光学成像镜头10长度。该第二透镜4的材质为塑料,有利于制作成非球面透镜。
二、本发明藉由该第三透镜5的像侧面52在光轴I附近区域的凹面部521、该第四透镜6的物侧面61在光轴附近区域的凹面部611、该第五透镜7的像侧面72在光轴I附近区域的凹面部721与该第六透镜8的像侧面82在圆周附近区域的凸面部822的相互搭配,使整个系统具有较佳的消除像差能力。
三、由前述七个实施例的说明,显示本发明光学成像镜头10的设计,其该等实施例的系统长度皆可以缩短到小于5.5mm以下,相较于现有的光学成像镜头,应用本发明的镜头能制造出更薄型化的产品,使本发明具有符合市场需求的经济效益。
参阅图31,为应用前述该光学成像镜头10的电子装置1的一第一实施例,该电子装置1包含一机壳11,及一安装在该机壳11内的影像模块12。在此仅是以手机为例说明该电子装置1,但该电子装置1的型式不以此为限。
该影像模块12包括一如前所述的该光学成像镜头10、一用于供该光学成像镜头10设置的镜筒21、一用于供该镜筒21设置的模块后座单元120,及一设置于该光学成像镜头10像侧的影像传感器130。该成像面100(见图2)是形成于该影像传感器130。
该模块后座单元120具有一镜头后座121,及一设置于该镜头后座121与该影像传感器130之间的影像传感器后座122。其中,该镜筒21是和该镜头后座121沿一轴线Ⅱ同轴设置,且该镜筒21设置于该镜头后座121内侧。
参阅图32,为应用前述该光学成像镜头10的电子装置1的一第二实施例,该第二实施例与该第一实施例的该电子装置1的主要差别在于:该模块后座单元120为音圈马达(VCM)型式。该镜头后座121具有一与该镜筒21外侧相贴合且沿一轴线Ⅲ设置的第一座体123、一沿该轴线Ⅲ并环绕着该第一座体123外侧设置的第二座体124、一设置在该第一座体123外侧与该第二座体124内侧之间的线圈125,及一设置在该线圈125外侧与该第二座体124内侧之间的磁性组件126。
该镜头后座121的第一座体123可带着该镜筒21及设置在该镜筒21内的该光学成像镜头10沿该轴线Ⅲ移动。该影像传感器后座122则与该第二座体124相贴合。其中,该滤光片8则是设置在该影像传感器后座122。该电子装置1的第二实施例的其他组件结构则与第一实施例的该电子装置1类似,在此不再赘述。
藉由安装该光学成像镜头10,由于该光学成像镜头10的系统长度能有效缩短,使该电子装置1的第一实施例与第二实施例的厚度都能相对缩小进而制出更薄型化的产品,且仍然能够提供良好的光学性能与成像质量,藉此,使本发明的该电子装置1除了具有减少机壳原料用量的经济效益外,还能满足轻薄短小的产品设计趋势与消费需求。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (18)

1.一种光学成像镜头,其特征在于:从物侧至像侧沿一光轴依序包含一第一透镜、一第二透镜、一第三透镜、一第四透镜、一第五透镜,及一第六透镜,且该第一透镜至该第六透镜都具有屈光率,并分别包括一朝向物侧且使成像光线通过的物侧面及一朝向像侧且使成像光线通过的像侧面;
该第一透镜具有正屈光率;
该第二透镜的材质为塑料;
该第三透镜的该像侧面具有一位于光轴附近区域的凹面部;
该第四透镜具有正屈光率,该第四透镜的该物侧面具有一位于光轴附近区域的凹面部;
该第五透镜具有负屈光率,该第五透镜的该像侧面具有一位于光轴附近区域的凹面部;及
该第六透镜的该像侧面具有一位于圆周附近区域的凸面部;
其中,该光学成像镜头具有屈光率的透镜只有六片;
该第一透镜至该第六透镜在光轴上的五个空气间隙总和为Gaa,该第三透镜在光轴上的厚度为T3,并还满足下列条件式:Gaa/T3≦3.60。
2.根据权利要求1所述的一种光学成像镜头,其特征在于:其中,该第二透镜在光轴上的厚度为T2,该第六透镜在光轴上的厚度为T6,并还满足下列条件式:T6/T2≦3.00。
3.根据权利要求2所述的一种光学成像镜头,其特征在于:其中,该第六透镜的该像侧面到一成像面在光轴上的距离为BFL,并还满足下列条件式:BFL/T3≦4.10。
4.根据权利要求3所述的一种光学成像镜头,其特征在于:其中,该第五透镜在光轴上的厚度为T5,该第二透镜与该第三透镜在光轴上的空气间隙为G23,该第四透镜与该第五透镜在光轴上的空气间隙为G45,该第五透镜与该第六透镜在光轴上的空气间隙为G56,并还满足下列条件式:(G45+T5)/(G23+G56)≥1.40。
5.根据权利要求3所述的一种光学成像镜头,其特征在于:还满足下列条件式:Gaa/T2≦4.40。
6.根据权利要求5所述的一种光学成像镜头,其特征在于:其中,该第三透镜与该第四透镜在光轴上的空气间隙为G34,并还满足下列条件式:G34/T6≧1.00。
7.根据权利要求2所述的一种光学成像镜头,其特征在于:其中,该第六透镜的该像侧面到该成像面在光轴上的距离为BFL,该第三透镜与该第四透镜在光轴上的空气间隙为G34,并还满足下列条件式:BFL/G34≦3.40。
8.根据权利要求7所述的一种光学成像镜头,其特征在于:其中,该第四透镜在光轴上的厚度为T4,该第二透镜与该第三透镜在光轴上的空气间隙为G23,该第五透镜与该第六透镜在光轴上的空气间隙为G56,并还满足下列条件式:T4/(G23+G56)≥1.50。
9.根据权利要求7所述的一种光学成像镜头,其特征在于:其中,该第五透镜在光轴上的厚度为T5,该第二透镜与该第三透镜在光轴上的空气间隙为G23,该第四透镜与该第五透镜在光轴上的空气间隙为G45,该第五透镜与该第六透镜在光轴上的空气间隙为G56,并还满足下列条件式:(G45+T5)/(G23+G56)≥1.40。
10.根据权利要求9所述的一种光学成像镜头,其特征在于:还满足下列条件式:T3/(G23+G56)≧1.00。
11.根据权利要求1所述的一种光学成像镜头,其特征在于:其中,该第六透镜的该像侧面到该成像面在光轴上的距离为BFL,并还满足下列条件式:BFL/T3≦4.10。
12.根据权利要求11所述的一种光学成像镜头,其特征在于:其中,该第二透镜与该第三透镜在光轴上的空气间隙为G23,该第三透镜与该第四透镜在光轴上的空气间隙为G34,该第五透镜与该第六透镜在光轴上的空气间隙为G56,并还满足下列条件式:G34/(G23+G56)≧0.75。
13.根据权利要求12所述的一种光学成像镜头,其特征在于:其中,该第三透镜的该像侧面具有一位于圆周附近区域的凹面部。
14.根据权利要求1所述的一种光学成像镜头,其特征在于:其中,该第二透镜在光轴上的厚度为T2,该第二透镜与该第三透镜在光轴上的空气间隙为G23,该第五透镜与该第六透镜在光轴上的空气间隙为G56,并还满足下列条件式:T2/(G23+G56)≧0.50。
15.根据权利要求14所述的一种光学成像镜头,其特征在于:其中,该第六透镜在光轴上的厚度为T6,该第一、二、三、四、五、六透镜在光轴上的厚度总和为ALT,并还满足下列条件式:ALT/T6≥5.00。
16.根据权利要求1所述的一种光学成像镜头,其特征在于:其中,该第六透镜的该像侧面到一成像面在光轴上的距离为BFL,该第三透镜与该第四透镜在光轴上的空气间隙为G34,并还满足下列条件式:BFL/G34≦3.40。
17.根据权利要求16所述的一种光学成像镜头,其特征在于:其中,该第一、二、三、四、五、六透镜在光轴上的厚度总和为ALT,该第二透镜与该第三透镜在光轴上的空气间隙为G23,该第五透镜与该第六透镜在光轴上的空气间隙为G56,还满足下列条件式:ALT/(G23+G56)≥7.50。
18.一种电子装置,其特征在于:包含:一机壳;及一影像模块,是安装在该机壳内,并包括一如权利要求1至权利要求17中任一项所述的光学成像镜头、一用于供该光学成像镜头设置的镜筒、一用于供该镜筒设置的模块后座单元,及一设置于该光学成像镜头的像侧的影像传感器。
CN201410249263.6A 2014-04-18 2014-06-06 光学成像镜头及应用该光学成像镜头的电子装置 Active CN105093490B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410249263.6A CN105093490B (zh) 2014-04-18 2014-06-06 光学成像镜头及应用该光学成像镜头的电子装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410158290 2014-04-18
CN2014101582902 2014-04-18
CN201410249263.6A CN105093490B (zh) 2014-04-18 2014-06-06 光学成像镜头及应用该光学成像镜头的电子装置

Publications (2)

Publication Number Publication Date
CN105093490A CN105093490A (zh) 2015-11-25
CN105093490B true CN105093490B (zh) 2017-12-01

Family

ID=52707473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410249263.6A Active CN105093490B (zh) 2014-04-18 2014-06-06 光学成像镜头及应用该光学成像镜头的电子装置

Country Status (3)

Country Link
US (1) US9641735B2 (zh)
CN (1) CN105093490B (zh)
TW (1) TWI521231B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777321B (zh) * 2013-09-06 2016-02-03 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
TWI493217B (zh) 2014-05-02 2015-07-21 Largan Precision Co Ltd 成像用光學鏡頭、取像裝置及可攜裝置
TWI493218B (zh) 2014-05-02 2015-07-21 Largan Precision Co Ltd 攝像光學系統、取像裝置及可攜裝置
CN104820276B (zh) 2015-01-23 2017-04-12 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
KR101690481B1 (ko) * 2016-03-07 2016-12-28 주식회사 세코닉스 고해상도 광각 렌즈 시스템
TWI620950B (zh) * 2016-03-30 2018-04-11 先進光電科技股份有限公司 光學成像系統
TWI574040B (zh) 2016-04-15 2017-03-11 大立光電股份有限公司 光學成像系統組、取像裝置及電子裝置
TWI618944B (zh) 2016-04-29 2018-03-21 大立光電股份有限公司 光學影像系統、取像裝置及電子裝置
JP6521410B1 (ja) * 2018-01-23 2019-05-29 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
JP6529627B1 (ja) * 2018-01-23 2019-06-12 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6517394B1 (ja) * 2018-01-23 2019-05-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
JP6541197B1 (ja) * 2018-01-23 2019-07-10 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
US10795124B2 (en) * 2018-02-11 2020-10-06 Aac Optics Solutions Pte. Ltd. Camera optical lens
JP6528885B1 (ja) * 2018-04-26 2019-06-12 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
CN110286471B (zh) * 2019-06-30 2021-08-17 瑞声光学解决方案私人有限公司 摄像光学镜头

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202067015U (zh) * 2011-03-25 2011-12-07 大立光电股份有限公司 摄影用光学镜头组
CN202837662U (zh) * 2012-06-19 2013-03-27 大立光电股份有限公司 影像透镜系统组

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI431312B (zh) * 2011-06-28 2014-03-21 Largan Precision Co Ltd 光學影像拾取鏡片組
JP5763141B2 (ja) * 2012-09-10 2015-08-12 サムソン エレクトロ−メカニックス カンパニーリミテッド. 撮像光学系
US9046672B2 (en) * 2012-09-14 2015-06-02 Samsung Electro-Mechanics Co., Ltd. Imaging lens
TWI448725B (zh) 2012-10-22 2014-08-11 Largan Precision Co Ltd 影像擷取光學鏡片系統
TWI477803B (zh) 2013-03-05 2015-03-21 Largan Precision Co Ltd 攝像系統透鏡組
TWI457591B (zh) 2013-04-25 2014-10-21 Largan Precision Co Ltd 攝影系統鏡片組
TWI461779B (zh) 2013-04-25 2014-11-21 Largan Precision Co Ltd 結像鏡組
CN103676106B (zh) 2013-08-29 2016-05-11 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202067015U (zh) * 2011-03-25 2011-12-07 大立光电股份有限公司 摄影用光学镜头组
CN202837662U (zh) * 2012-06-19 2013-03-27 大立光电股份有限公司 影像透镜系统组

Also Published As

Publication number Publication date
US9641735B2 (en) 2017-05-02
US20150301311A1 (en) 2015-10-22
CN105093490A (zh) 2015-11-25
TWI521231B (zh) 2016-02-11
TW201447357A (zh) 2014-12-16

Similar Documents

Publication Publication Date Title
CN105093490B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN104330868B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN103676089B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN104238083B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN104898256B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN104808320B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN105093488B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN105629446B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN104330876B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN103293637B (zh) 五片式光学成像镜头及应用该镜头的电子装置
CN105589182B (zh) 光学成像镜头及应用此镜头的电子装置
CN103969809B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN104007537B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN105093495B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN104330878B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN105334599B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN104808317B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN103777329A (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN103676107A (zh) 六片式光学成像镜头及应用该镜头的电子装置
CN104007539B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN103676101A (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN103969807A (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN104330880B (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN104122655A (zh) 光学成像镜头及应用该光学成像镜头的电子装置
CN104122656B (zh) 光学成像镜头及应用该光学成像镜头的电子装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant