CN105067687B - 聚多巴胺-金属离子复合纳米颗粒及其制备方法和应用 - Google Patents

聚多巴胺-金属离子复合纳米颗粒及其制备方法和应用 Download PDF

Info

Publication number
CN105067687B
CN105067687B CN201510502651.5A CN201510502651A CN105067687B CN 105067687 B CN105067687 B CN 105067687B CN 201510502651 A CN201510502651 A CN 201510502651A CN 105067687 B CN105067687 B CN 105067687B
Authority
CN
China
Prior art keywords
poly
concentration
dopamine
solution
pda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510502651.5A
Other languages
English (en)
Other versions
CN105067687A (zh
Inventor
马占芳
唐忠雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Capital Normal University
Original Assignee
Capital Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Capital Normal University filed Critical Capital Normal University
Priority to CN201510502651.5A priority Critical patent/CN105067687B/zh
Publication of CN105067687A publication Critical patent/CN105067687A/zh
Application granted granted Critical
Publication of CN105067687B publication Critical patent/CN105067687B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了聚多巴胺‑金属离子复合纳米颗粒及其制备方法和应用,在碱性条件下,利用空气中的氧气氧化多巴胺单体制备了聚多巴胺纳米颗粒;然后,吸附Pb2+、Zn2+、Cu2+、Cd2+和Hg2+,制备出了新型的具有电化学活性的导电复合纳米颗粒,所述纳米复合材料的制备方法简单,制备条件温和易控,制备过程简单快速;本发明的聚多巴胺纳米颗粒分别用于吸附五种金属离子得到的复合纳米颗粒具有单一的和可区分的电化学信号,在电化学检测和分析领域将具有广泛的应用前景。

Description

聚多巴胺-金属离子复合纳米颗粒及其制备方法和应用
技术领域
本发明涉及PDA纳米颗粒制备和用于分别吸附Pb2+、Zn2+、Cu2+、Cd2+和Hg2+作为新型电化学活性纳米颗粒及其制备方法,所述复合纳米材料具有电化学活性,能产生单一的和可区分的电化学信号,导电性好,可用于电化学检测水体、尿液、血清、大气中的分析对象。本发明属于电化学领域,可以用于电化学分析和检测。
背景技术
具有电化学氧化还原活性的电信号物质在多组分同时的电化学分析检测领域中具有重要的作用。电化学分析检测类型常见有电压型、电流型、电化学发光和电阻型等。电流型与其他类型电化学分析相比,具有突出的优点:检测灵敏、构建手段方便、仪器设备要求简单、重现性和稳定性优良、可选用的信号物质种类多等。
电化学信号物质由于具有相对稳定的氧化还原电位,它可以产生氧化还原化学信号,通过电化学仪器转化为可以测量的数字信号,将电信号的强弱与待测物质含量结合在一起,从而实现电化学组分分析。按电信号物质种类分为有机电信号物质和无机电信号物质。目前,满足实验要求的电信号物质已经有很多种,有机类电信号物质有有机小分子(硫堇、亚甲基蓝、甲苯胺蓝、二茂铁及其衍生物等)和有机高分子(聚苯胺衍生物等);无机类电信号物质有金属离子(Pb2+、Zn2+、Cu2+、Cd2+、Co2+、Sn2+等)、金属盐纳米结晶(普鲁士蓝等)以及金属单质(Ag、Au、Hg等)。在超灵敏电化学分析中,金属离子作为电信号物质较有机电信号物质具有较为尖锐的电化学信号峰和狭窄的半峰宽。因此,在同样的电势窗口范围之内金属离子作为电信号物质有望实现对更多种待测组分的同时分析检测。金属离子与纳米材料通过静电作用、络合作用、物理吸附及其他作用而复合在一起,这种复合材料制备过程简单、材料性能重现性较好。而有机小分子作为电信号物质因为他们种类较少,多数氧化还原峰电位位置相近、相互干扰,不易于实现多种组分的同时检测,而制备有机聚合物探针需要对实验条件精确调控才能保证得到形貌和性能均一的材料,并且分离纯化步骤相对复杂。
聚多巴胺制备方法简单,具有丰富的酚羟基和氨基,良好的生物相容性和优异的金属离子吸附性能。除此之外,聚多巴胺在溶液中具有良好的导电性,其Zata电位随着溶液pH不同而变化。本发明利用聚多巴胺的这些特点,制备分别吸附Pb2+、Zn2+、Cu2+、Cd2+和Hg2+的聚多巴胺-金属离子复合纳米颗粒。
发明内容
本发明要解决的技术问题是提供一种用聚多巴胺纳米颗粒分别吸附汞离子、铅离子、镉离子、铜离子和锌离子作为新型电化学活性纳米颗粒的方法;制备方法简单易控,实验条件温和,获得的复合纳米颗粒形貌均一,分散性好的特点;所制备的纳米复合材料具有良好的导电性,可产生单一的、分立的电化学信号,具有良好的稳定性和重现性。
为达上述目的,本发明一种聚多巴胺-金属离子复合纳米颗粒,其通过聚多巴胺水溶液与金属离子溶液混合,并调节溶液pH为3-11,搅拌6h以上后,离心分离制得所述聚多巴胺-金属离子复合纳米颗粒。
其中所述金属离子为Pb2+、Zn2+、Cu2+、Cd2+或Hg2+
其中所述pH调节剂为CH3COOH或NaOH水溶液。
一种制备所述聚多巴胺-金属离子复合纳米颗粒的方法,包括以下步骤:
将聚多巴胺水溶液与金属离子溶液混合,并调节溶液pH为3-11,室温条件下搅拌6h以上后,离心分离制得所述聚多巴胺-金属离子复合纳米颗粒。
其中聚多巴胺-金属离子复合纳米颗粒的制备方法:
聚多巴胺与Cu2+复合的步骤为:5mL浓度3.5±0.1mg/mL聚多巴胺水溶液与5mL浓度为1-100mM的Cu(NO3)2水溶液混合后加入1mL浓度为0-0.001M的NaOH水溶液;室温条件下,搅拌时间为6h以上后,制得聚多巴胺-Cu2+复合纳米颗粒;
聚多巴胺与Pd2+复合的步骤为:5mL浓度3.5±0.1mg/mL聚多巴胺水溶液与5mL浓度为5-20mM的Pb(NO3)2水溶液混合后加入1mL浓度为0-0.01M的CH3COOH水溶液或1mL浓度为0-0.001M的NaOH水溶液;室温条件下,搅拌时间为6h以上后,制得聚多巴胺-Pd2+复合纳米颗粒;
聚多巴胺与Cd2+复合的步骤为:5mL浓度3.5±0.1mg/mL聚多巴胺水溶液与5mL浓度为10-100mM的Cd(CH3COO)2水溶液混合后加入1mL浓度为0-0.01M的NaOH水溶液;室温条件下,搅拌时间为6h以上后制得聚多巴胺-Cd2+复合纳米颗粒;
聚多巴胺与Zn2+复合的步骤为:5m L浓度3.5±0.1mg/mL聚多巴胺水溶液与5mL浓度为200-150mM的Zn(CH3COO)2水溶液混合后加入1mL浓度为0-0.01M的NaOH水溶液;室温条件下,搅拌时间为6h以上制得聚多巴胺-Zn2+复合纳米颗粒;
聚多巴胺与Hg2+复合的步骤为:5mL浓度3.5±0.1mg/mL聚多巴胺水溶液与5mL含有1g Hg的100mL 5%HNO3水溶液混合后加入体积为2-4mL的1M NaOH;室温条件下,搅拌时间为6h以上制得聚多巴胺-Hg2+复合纳米颗粒。
聚多巴胺-金属离子复合纳米颗粒在电化学检测领域中的应用,其特征在于:将聚多巴胺分别与Pb2+、Zn2+、Cu2+、Cd2+和Hg2+制得的复合纳米颗粒中的一种或两种以上的混合复合纳米颗粒制备探针,用于电化学检测和分析。
本发明与现有技术不同之处在于本发明取得了如下技术效果:
本发明方法简单,且制备得到纳米尺寸聚多巴胺纳米颗粒制备和用于分别吸附Pb2+、Zn2+、Cu2+、Cd2+和Hg2+,具有可分辨的电化学信号。因此该PDA纳米颗粒分别吸附Pb2+、Zn2+、Cu2+、Cd2+和Hg2+的纳米复合材料可在同一个电势窗口范围内产生互不干扰的的电化学信号。
下面结合附图对本发明作进一步说明。
附图说明
图1为本发明实施例1制备的(A)PDA纳米颗粒,(B)PDA-Cd2+纳米颗粒,(C)PDA-Cu2+纳米颗粒的透射电镜图片,(D)PDA-Pb2+纳米颗粒,(E)PDA-Zn2+纳米颗粒和(F)PDA-Hg2+纳米颗粒的透射电镜图片;
图2为本发明实施例1制备的PDA纳米颗粒、PDA-Cd2+纳米颗粒,PDA-Cu2+纳米颗粒、PDA-Pb2+纳米颗粒、PDA-Zn2+纳米颗粒和PDA-Hg2+纳米颗粒分别的方波伏安图;
图3为本发明实施例2制备的PDA纳米颗粒、PDA-Cd2+纳米颗粒,PDA-Cu2+纳米颗粒、PDA-Pb2+纳米颗粒、PDA-Zn2+纳米颗粒和PDA-Hg2+纳米颗粒的方波伏安图;
图4为本发明实施例3制备的PDA纳米颗粒、PDA-Cd2+纳米颗粒,PDA-Cu2+纳米颗粒、PDA-Pb2+纳米颗粒、PDA-Zn2+纳米颗粒和PDA-Hg2+纳米颗粒的方波伏安图;
图5为本发明实施例1制备的PDA纳米颗粒、PDA-Cd2+纳米颗粒,PDA-Cu2+纳米颗粒、PDA-Pb2+纳米颗粒、PDA-Zn2+纳米颗粒、PDA-Hg2+纳米颗粒按一定比例混合后的方波伏安图;
具体实施方式
以下结合实施例,对本发明上述的和另外的技术特征和优点作更详细的说明。
实施例1:
1、聚多巴胺复合颗粒制备方法如下:将90mg多巴胺溶解到50mL水中,加入380μL浓度为1M的NaOH水溶液,在50℃下反应5h。离心分离,洗涤直至上层溶液无色透明,离心得到底层的PDA纳米颗粒,再分散到25mL去离子水中。然后取一定量的PDA溶液,与一定量的金属离子(Cd2+、Cu2+、Pb2+、Zn2+、Hg2+)溶液混合,调节溶液的pH,搅拌一定时间后,离心分离聚多巴胺-金属离子的复合纳米颗粒。
2、PDA吸附Cd2+方法如下:取5mL PDA溶液,与5mL浓度100mM的Cd(CH3COO)2水溶液混合。室温持续剧烈搅拌8h以上,离心分离,去离子水洗涤3次以上。
3、PDA吸附Cu2+方法如下:取5mL PDA溶液,与5mL浓度100mM的Cu(NO3)2溶液混合。室温剧烈搅拌,并加入1mL浓度0.01M的NaOH水溶液,持续搅拌8h以上,离心分离,去离子水洗涤3次以上。
4、PDA吸附Pd2+方法如下:取5mL PDA溶液,与5mL浓度10mM的Pb(NO3)2水溶液混合。室温持续剧烈搅拌8h以上,离心分离,去离子水洗涤3次以上。
5、PDA吸附Zn2+方法如下:取5mL PDA溶液,与5mL浓度160mM的Zn(CH3COO)2水溶液混合。室温持续剧烈搅拌8h以上,离心分离,去离子水洗涤3次以上。
6、PDA吸附Hg2+方法如下:取5mL PDA溶液,与5mL含有1g Hg的100mL 5%HNO3水溶液混合。室温剧烈搅拌,并加入3mL浓度1M的NaOH水溶液持续搅拌6h以上,离心分离,去离子水洗涤3次以上。
实施例2
1、PDA复合颗粒制备方法如下:将90mg多巴胺溶解到50mL水中,加入380μL浓度1MNaOH水溶液,在50℃下反应6h。离心分离,洗涤直至上层溶液无色透明,离心得到底层的PDA纳米颗粒再分散到25mL去离子水中。然后取一定量的PDA溶液,与一定量的金属离子(Cd2+、Cu2+、Pb2+、Zn2+、Hg2+)溶液混合,调节溶液的pH,搅拌一定时间后,离心分离聚多巴胺-金属离子的复合纳米颗粒。
2、PDA吸附Cd2+方法如下:取5mL PDA溶液,与5mL浓度10mM的Cd(CH3COO)2水溶液混合。室温持续剧烈搅拌8h以上,离心分离,去离子水洗涤3次以上。
3、PDA吸附Cu2+方法如下:取5mL PDA溶液,与5mL浓度10mM的Cu(NO3)2溶液混合。室温剧烈搅拌,并加入1mL浓度0.01M的NaOH水溶液,持续搅拌8h以上,离心分离,去离子水洗涤3次以上。
4、PDA吸附Pd2+方法如下:量取5.00mL PDA溶液,与5.00mL浓度1mM的Pb(NO3)2水溶液混合。室温持续剧烈搅拌8h以上,离心分离,去离子水洗涤3次以上。
5、PDA吸附Zn2+方法如下:取5mL PDA溶液,与5mL浓度16mM的Zn(CH3COO)2水溶液混合。室温持续剧烈搅拌8h以上,离心分离,去离子水洗涤3次以上。
6、PDA吸附Hg2+方法如下:取5mL PDA溶液,与2.5mL含有1g Hg的100mL 5%HNO3水溶液混合。室温剧烈搅拌,并加入1.3mL浓度为1M的NaOH水溶液持续搅拌6h以上,离心分离,去离子水洗涤3次以上。
实施例3
1、PDA复合颗粒制备方法如下:将90mg多巴胺溶解到50mL水中,加入380μL浓度为1M的NaOH水溶液,在50℃下反应5h。离心分离,洗涤直至上层溶液无色透明,离心得到底层的PDA纳米颗粒再分散到25mL去离子水中。然后取一定量的PDA溶液,与一定量的金属离子(Cd2+、Cu2+、Pb2+、Zn2+、Hg2+)溶液混合,调节溶液的pH,搅拌一定时间后,离心分离聚多巴胺-金属离子的复合纳米颗粒。
2、PDA吸附Cd2+方法如下:取5mL PDA溶液,与5mL浓度100mM的Cd(CH3COO)2水溶液混合。室温剧烈搅拌,加入1mL浓度0.01M的CH3COOH水溶液,并持续搅拌8h以上,离心分离,去离子水洗涤3次以上。
3、PDA吸附Cu2+方法如下:取5mL PDA溶液,与5mL浓度100mM的Cu(NO3)2水溶液混合。室温剧烈搅拌,加入1mL浓度0.01M的CH3COOH水溶液,并持续搅拌8h以上,离心分离,去离子水洗涤3次以上。
4、PDA吸附Pd2+方法如下:取5mL PDA溶液,与5mL浓度10mM的Pb(NO3)2水溶液混合。室温剧烈搅拌,加入1mL浓度0.01M的CH3COOH水溶液,并持续搅拌8h以上,离心分离,去离子水洗涤3次以上。
5、PDA吸附Zn2+方法如下:取5mL PDA溶液,与5mL浓度160mM的Zn(CH3COO)2水溶液混合。室温剧烈搅拌,加入1mL浓度0.01M的CH3COOH水溶液,并持续搅拌8h以上,离心分离,去离子水洗涤3次以上。
6、PDA吸附Hg2+方法如下:取5mL PDA溶液,与5mL含有1g Hg的100mL5%HNO3水溶液混合。室温剧烈搅拌,加入2mL浓度1M的NaOH水溶液持续搅拌6h以上,离心分离,去离子水洗涤3次以上。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (1)

1.一种制备聚多巴胺-金属离子复合纳米颗粒的方法,其特征在于:
聚多巴胺与Cu2+复合的方法为:5mL浓度3.5±0.1mg/mL聚多巴胺水溶液与5mL浓度为1-100mM的Cu(NO3)2水溶液混合后加入1mL浓度为0-0.001M的NaOH水溶液,调整溶液pH值至3-11;室温条件下,搅拌时间为6h以上后,制得聚多巴胺-Cu2+复合纳米颗粒;或
聚多巴胺与Pb2+复合的方法为:5mL浓度3.5±0.1mg/mL聚多巴胺水溶液与5mL浓度为5-20mM的Pb(NO3)2水溶液混合后加入1mL浓度为0-0.01M的CH3COOH水溶液或1mL浓度为0-0.001M的NaOH水溶液,调整溶液pH值至3-11;室温条件下,搅拌时间为6h以上后,制得聚多巴胺-Pb2+复合纳米颗粒;或
聚多巴胺与Cd2+复合的方法为:5mL浓度3.5±0.1mg/mL聚多巴胺水溶液与5mL浓度为10-100mM的Cd(CH3COO)2水溶液混合后加入1mL浓度为0-0.01M的NaOH水溶液,调整溶液pH值至3-11;室温条件下,搅拌时间为6h以上后制得聚多巴胺-Cd2+复合纳米颗粒;或
聚多巴胺与Zn2+复合的方法为:5mL浓度3.5±0.1mg/mL聚多巴胺水溶液与5mL浓度为200-150mM的Zn(CH3COO)2水溶液混合后加入1mL浓度为0-0.01M的NaOH水溶液,调整溶液pH值至3-11;室温条件下,搅拌时间为6h以上制得聚多巴胺-Zn2+复合纳米颗粒;或
聚多巴胺与Hg2+复合的方法为:5mL浓度3.5±0.1mg/mL聚多巴胺水溶液与5mL含有1gHg的100mL 5%HNO3水溶液混合后加入体积为2-4mL的1M NaOH,调整溶液pH值至3-11;室温条件下,搅拌时间为6h以上制得聚多巴胺-Hg2+复合纳米颗粒;
其中,上述各方法中所述聚多巴胺水溶液是通过以下方法制备得到:
将90mg多巴胺溶解到50mL水中,加入380μL浓度为1M的NaOH水溶液,在50℃下反应5h,离心分离,洗涤直至上层溶液无色透明,离心得到底层的PDA纳米颗粒,再分散到25mL去离子水中。
CN201510502651.5A 2015-08-14 2015-08-14 聚多巴胺-金属离子复合纳米颗粒及其制备方法和应用 Expired - Fee Related CN105067687B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510502651.5A CN105067687B (zh) 2015-08-14 2015-08-14 聚多巴胺-金属离子复合纳米颗粒及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510502651.5A CN105067687B (zh) 2015-08-14 2015-08-14 聚多巴胺-金属离子复合纳米颗粒及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN105067687A CN105067687A (zh) 2015-11-18
CN105067687B true CN105067687B (zh) 2018-11-06

Family

ID=54497109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510502651.5A Expired - Fee Related CN105067687B (zh) 2015-08-14 2015-08-14 聚多巴胺-金属离子复合纳米颗粒及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN105067687B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248750B (zh) * 2016-09-22 2018-03-27 济南大学 一种基于聚多巴胺复合胶囊标记的凝血酶核酸适配体光电化学传感器
CN108562561B (zh) * 2018-03-08 2020-12-29 湖北大学 一种可选择性识别亚铁及铁离子的有机荧光聚多巴胺纳米粒子溶液及其制备方法
CN108608005A (zh) * 2018-05-10 2018-10-02 燕山大学 一种以聚多巴胺为模板制备金纳米球壳的方法
CN108680635A (zh) * 2018-05-22 2018-10-19 中国科学院烟台海岸带研究所 一种可用于Cu2+检测的功能修饰针灸针电极及其制备方法
CN111036216B (zh) * 2018-10-12 2022-10-14 中国石油化工股份有限公司 通过高温焙烧得到高性能甲醇合成催化剂的方法
CN110142035A (zh) * 2019-05-24 2019-08-20 云南大学 一种聚多巴胺修饰的磁性纳米颗粒的制备方法及应用
CN112410098B (zh) * 2020-11-29 2021-09-03 清华大学 一种铜掺杂聚多巴胺纳米颗粒的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103599760A (zh) * 2013-10-30 2014-02-26 石河子大学 一种对汞离子具有高效及高选择性吸附的聚多巴胺纳米微球
CN103665770A (zh) * 2013-12-11 2014-03-26 复旦大学 金属聚合物复合材料的制备方法
CN103908682A (zh) * 2014-04-29 2014-07-09 中国科学院长春应用化学研究所 聚多巴胺纳米粒子的应用
KR20150015267A (ko) * 2013-07-31 2015-02-10 한국과학기술원 폴리도파민계 나노입자, 불수용성 약물이 표면에 코팅된 폴리도파민계 나노입자 및 이들의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150015267A (ko) * 2013-07-31 2015-02-10 한국과학기술원 폴리도파민계 나노입자, 불수용성 약물이 표면에 코팅된 폴리도파민계 나노입자 및 이들의 제조방법
CN103599760A (zh) * 2013-10-30 2014-02-26 石河子大学 一种对汞离子具有高效及高选择性吸附的聚多巴胺纳米微球
CN103665770A (zh) * 2013-12-11 2014-03-26 复旦大学 金属聚合物复合材料的制备方法
CN103908682A (zh) * 2014-04-29 2014-07-09 中国科学院长春应用化学研究所 聚多巴胺纳米粒子的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity;Zhihui Dong等;《Journal of Materials Chemistry A》;20140120;第5034-5040页 *
Determination of uric acid in human urine by eliminating ascorbic acid interference on copper(Ⅱ)-polydopamine immobilized electrode surface;Li Huang等;《Electrochimica Acta》;20140108;第233-239页 *
Polydopamine Nanoparticles as a New and Highly Selective Biosorbent for the Removal of Copper(Ⅱ) Ions from Aqueous Solutions;Neda Farnad等;《Water Air Soil Pollut》;20120328;第3535-3544页 *

Also Published As

Publication number Publication date
CN105067687A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
CN105067687B (zh) 聚多巴胺-金属离子复合纳米颗粒及其制备方法和应用
Cui et al. Electrochemical detection of Cu2+ through Ag nanoparticle assembly regulated by copper-catalyzed oxidation of cysteamine
Gupta et al. Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor
María-Hormigos et al. Disposable screen-printed electrode modified with bismuth–PSS composites as high sensitive sensor for cadmium and lead determination
Yang et al. Voltammetric determination of lead (II) and cadmium (II) using a bismuth film electrode modified with mesoporous silica nanoparticles
Torkashvand et al. Synthesis, characterization and application of a novel ion-imprinted polymer based voltammetric sensor for selective extraction and trace determination of cobalt (II) ions
Zhou et al. An electrochemical sensor for the detection of p-nitrophenol based on a cyclodextrin-decorated gold nanoparticle–mesoporous carbon hybrid
Kocak et al. Synthesis and characterization of novel nano-chitosan Schiff base and use of lead (II) sensor
Zhiani et al. Selective voltammetric sensor for nanomolar detection of silver ions using carbon paste electrode modified with novel nanosized Ag (I)-imprinted polymer
Sedaghat et al. Development of a nickel oxide/oxyhydroxide-modified printed carbon electrode as an all solid-state sensor for potentiometric phosphate detection
Daud et al. Electrochemical sensor for As (III) utilizing CNTs/leucine/nafion modified electrode
Chamjangali et al. Construction and characterization a non-amalgamation voltammetric flow sensor for online simultaneous determination of lead and cadmium ions
Faramarzi et al. Determination of paraquat in fruits and natural water using Ni (OH) 2 nanoparticles-carbon nanotubes composite modified carbon ionic liquid electrode
Wu et al. A dopamine sensor based on a methoxypolyethylene glycol polymer covalently modified glassy carbon electrode
CN108802122B (zh) 一种壳聚糖-石墨烯/金纳米粒子@碳纳米管离子印迹传感器的制备方法
Laghlimi et al. A new sensor based on graphite carbon paste modified by an organic molecule for efficient determination of heavy metals in drinking water
Rahim et al. Fabrication and characterization of extrinsic electrochemically modified graphite reinforcement carbon paste electrode for selective determination of Cu (II) in trace levels
Farida et al. Voltammetric study of ascorbic acid using polymelamine/gold nanoparticle modified carbon paste electrode
Xu et al. Ultrasensitive detection of nitrite based on gold-nanoparticles/polyrhodamine B/carbon nanotubes modified glassy carbon electrode with enhanced electrochemical performance
Madrakian et al. Fe 3 O 4@ Pt/MWCNT/carbon paste electrode for determination of a doxorubicin anticancer drug in a human urine sample
Ganjali et al. Bio-mimetic cadmium ion imprinted polymer based potentiometric nano-composite sensor
Liu et al. Covalent anchoring of multifunctionized gold nanoparticles on electrodes towards an electrochemical sensor for the detection of cadmium ions
Jiang et al. Selective determination of arsenic (III) using a Nafion/α-MnO2@ polydopamine modified electrode
Esmaeili et al. Sensitive and selective determination of trace amounts of mercury ions using a dimercaprol functionalized graphene quantum dot modified glassy carbon electrode
Niu et al. Electrochemical behavior of epinephrine at a penicillamine self-assembled gold electrode, and its analytical application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181106

Termination date: 20210814