CN105047759A - 一种降低薄膜硅组件表面色差的方法 - Google Patents

一种降低薄膜硅组件表面色差的方法 Download PDF

Info

Publication number
CN105047759A
CN105047759A CN201510512884.3A CN201510512884A CN105047759A CN 105047759 A CN105047759 A CN 105047759A CN 201510512884 A CN201510512884 A CN 201510512884A CN 105047759 A CN105047759 A CN 105047759A
Authority
CN
China
Prior art keywords
thin film
front electrode
chromatic aberration
assembly surface
tco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510512884.3A
Other languages
English (en)
Inventor
李沅民
沈章大
彭长涛
何颜玲
潘靖
许永元
赵沙桐
郭勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
APOLLO PRECISION (FUJIAN) Ltd
Original Assignee
APOLLO PRECISION (FUJIAN) Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by APOLLO PRECISION (FUJIAN) Ltd filed Critical APOLLO PRECISION (FUJIAN) Ltd
Priority to CN201510512884.3A priority Critical patent/CN105047759A/zh
Publication of CN105047759A publication Critical patent/CN105047759A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种降低薄膜硅组件表面色差的方法,属于半导体薄膜工艺和光伏建筑一体化(BIPV)应用领域。本发明一种降低薄膜硅组件表面色差的方法,主要是通过对前电极的处理,从而达到改变电池组件表面色差的目的,其中,在前电极上镀膜包括以下步骤:a、沉积0nm<金属膜层≤10nm;b、利用PVD技术,在金属层上再沉积0nm<TCO薄膜≤60nm。本发明通过处理电池组件的前电极后,表面色差都可以得到明显改善,处理过后的样品表面平均反射率降低,且反射率谱中的干涉条纹振幅减小,其△E<2的比例大幅度提升,可达80%以上;色差明显降低,片与片之间色差不明显,可大面积用于BIPV。

Description

一种降低薄膜硅组件表面色差的方法
技术领域
本发明涉及一种降低薄膜硅组件表面色差的方法,属于半导体薄膜工艺和光伏建筑一体化(BIPV)应用领域。
背景技术
薄膜硅太阳能电池组件可以用作建筑一体化光伏(BIPV)产品。在BIPV应用中,组件的颜色均匀性(色差)是一项很重要的性能参数。颜色的均匀性会显著影响建筑的美观,减少组件表面色差可以使光伏产品更好的结合到建筑中。
视觉所产生的颜色效果取决于物体表面反射的光对人眼中的三种锥形细胞产生的刺激程度。三种锥形细胞对不同波长λ的光所产生的刺激相应函数分别为R(λ),G(λ),B(λ)。当人眼接收到的物体表面反射光谱为S(λ)时,该物体所变现出来的颜色为(R,G,B)
当调节表面反射的光谱时,物体表现出来的颜色就会发生改变。
在同一块组件表面,由于工艺限制,膜层本身的厚度具有一定的不均匀性。从不同位置处反射的光谱S(λ)会随该位置出的膜层厚度发生变化而发生变化,使得外观上的色彩产生变化,变现为色差。
国际上通用的颜色表示方法遵照CIELAB系统,它是一个均匀的颜色空间,每种颜色表示为(L*,a*,b*),其中L*显示的是光的强度,a*表示红/绿的程度,b*表示黄/蓝的程度。(L*,a*,b*)可通过(R,G,B)值通过线性变换得到。为与国际通用标准保持一致,后文所用的颜色测量和色差表征均使用CIELAB方法。
一般用ΔE来评判色差的大小,ΔE代表色差综合偏差量,数值等于L、a*、b*的平方和再开方。
ΔE a b * = [ ( Δ L * ) 2 + ( Δ a * ) 2 + ( Δ b * ) 2 ] 1 / 2
ΔE越小代表色差越小,国家标准要求BIPV中,点与点的色差值ΔE小于3。在同等条件下,当物体颜色变暗时,表面色差更小。
申请号为“201110366694.7”,发明名称为“薄膜太阳电池高导电性前电极的制备方法”,公开了一种在玻璃基板上沉积TCO膜层上沉积超薄金属膜层,达到与太阳能电池结构层良好欧姆接触,导电性能好的目的。该发明是为了提供一种可以提高电池转换效率的薄膜太阳能电池高导电性前电极的制备方法。
发明内容
本发明所要解决的技术问题是提供一种降低薄膜硅组件表面色差的方法,该方法的目的是通过处理导电玻璃前电极来减小组件表面色差。
一种降低薄膜硅组件表面色差的方法,包括在前电极上先镀膜,再镀非晶硅薄膜电池,最后镀金属背电极的步骤,其中,在前电极上镀膜包括以下步骤:
a、沉积金属薄膜:在前电极上,沉积金属膜层;其中,0nm<金属膜层≤10nm;
b、沉积TCO薄膜:用氩气轰击AZO靶材,在磁场的作用下,AZO靶材在a步骤制备的金属层上沉积形成TCO薄膜;其中,0nm<TCO薄膜≤60nm。
上述所述AZO靶材为铝掺杂的氧化锌透明导电膜。
上述所述一种降低薄膜硅组件表面色差的方法,a步骤中所述金属层的材料为Cu、Ag、Al、Ta、Ni、Cr、NiCr中的一种。
进一步的,a步骤中所述金属层的材料优选为透过率较高的Ag,且由于银材料还具有优异的导电特性,不会对载流子的收集和在膜层内的输运造成影响。
其中,超薄金属银层的作用为吸收一定量的可见光,减小反射,其厚度为0~10nm时就可以吸收一定量的可见光,减小反射,虽然厚度>10nm的银层会显著的增大表面的反射率。但是,如果金属层太厚会阻挡太多的可见光进入电池中,影响电池对光的吸收从而影响电池的发电效率。
上述所述一种降低薄膜硅组件表面色差的方法,b步骤中所述TCO薄膜优选为AZO薄膜,其中,AZO薄膜靶材中铝的掺杂浓度为0.5~1.5%。
其中,TCO薄膜即为透明导电氧化物薄膜,优选由AZO(铝掺杂的氧化锌)层通过PVD(物理气相沉积)技术中的磁控溅射技术制备而成,其过程为氩气轰击AZO靶材,在磁场的作用下,AZO逐渐沉积在金属层上形成导电氧化物膜层。AZO的介电常数介于其两侧介质之间,可以通过改变AZO层的厚度调节进入到电池吸收层的透光量。
进一步的,作为更优选的技术方案,上述所述一种降低薄膜硅组件表面色差的方法,是在前电极上,用物理气相沉积的方法镀3nm厚的Ag薄膜层和60nm厚的TCO薄膜层。
或者,作为更优选的技术方案,上述所述一种降低薄膜硅组件表面色差的方法,是在前电极上,用物理气相沉积的方法镀5nm厚的Ag薄膜层和60nm厚的TCO薄膜层。
本发明一种降低薄膜硅组件表面色差的方法,通过处理电池组件的前电极后,表面色差都可以得到明显改善,其△E<2的比例大幅度提升,可达80%以上;色差明显降低,片与片之间色差不明显,可大面积用于BIPV;处理过后的样品表面平均反射率降低,且反射率谱中的干涉条纹振幅减小,有利于减小色差。当Ag膜层厚度固定时,组件相应的色差从△E>3分别降低到△E<2(3nmAg+60nmAZO)和△E<1.5(5nmAg+60nmAZO)。
说明书附图
图1色差组件结构和表面示意图;
图2经前电极处理和未经过处理(对比样品)的组件表面反射率谱;
图3组件表面平均反射率(可见光波段380nm~780nm)随不同膜层厚度的变化趋势。
具体实施方式
一种降低薄膜硅组件表面色差的方法,包括在前电极上先镀膜,再镀非晶硅薄膜电池,最后镀金属背电极的步骤,其中,在前电极上镀膜包括以下步骤:
a、沉积金属薄膜:在前电极上,沉积金属膜层;其中,0nm<金属膜层≤10nm;
b、沉积TCO薄膜:用氩气轰击AZO靶材,在磁场的作用下,AZO靶材在a步骤制备的金属层上沉积形成TCO薄膜;其中,0nm<TCO薄膜≤60nm。
所述AZO靶材为铝掺杂的氧化锌透明导电膜。
上述所述一种降低薄膜硅组件表面色差的方法,a步骤中所述金属层的材料为Cu、Ag、Al、Ta、Ni、Cr或NiCr。
进一步的,a步骤中所述金属层的材料优选为透过率较高的Ag,且由于银材料还具有优异的导电特性,不会对载流子的收集和在膜层内的输运造成影响。
其中,超薄金属银层的作用为吸收一定量的可见光,减小反射,其厚度为0~10nm时就可以吸收一定量的可见光,减小反射,虽然厚度>10nm的银层会显著的增大表面的反射率。但是,如果金属层太厚会阻挡太多的可见光进入电池中,影响电池对光的吸收从而影响电池的发电效率。
上述所述一种降低薄膜硅组件表面色差的方法,b步骤中所述TCO薄膜优选为AZO薄膜,其中,AZO薄膜靶材中铝的掺杂浓度为0.5~1.5%。
其中,TCO薄膜即为透明导电氧化物薄膜,优选由AZO(铝掺杂的氧化锌)层通过PVD(物理气相沉积)技术中的磁控溅射技术制备而成,其过程为氩气轰击AZO靶材,在磁场的作用下,AZO逐渐沉积在金属层上形成导电氧化物膜层。AZO的介电常数介于其两侧介质之间,可以通过改变AZO层的厚度调节进入到电池吸收层的透光量。
进一步的,作为更优选的技术方案,上述所述一种降低薄膜硅组件表面色差的方法,是在前电极上,用物理气相沉积的方法镀3nm厚的Ag薄膜层和60nm厚的TCO薄膜层。
或者,作为更优选的技术方案,上述所述一种降低薄膜硅组件表面色差的方法,是在前电极上,用物理气相沉积的方法镀5nm厚的Ag薄膜层和60nm厚的TCO薄膜层。
下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实施例范围之中。
实施例1
在前电极上,用物理气相沉积的方法镀金属Ag层和AZO导电氧化物薄膜层,再用化学气相沉积的方法镀非晶硅薄膜电池,最后用物理气相沉积的方法镀一层金属背电极。
对比样品为只在前电极上用化学气相沉积的方法镀非晶硅薄膜电池,再用物理气相沉积的方法镀一层金属背电极。
其中,Ag层和AZO导电氧化物薄膜层的厚度选择如下表1所示:
表1经前电极处理和未经过处理(对比样品)的组件膜层实验
编号 金属薄膜层厚度(/nm) TCO薄膜层厚度(/nm) 色差值(△E)
1 3 60 1.9
2 5 60 1.5
3 8 30 1
4 10 10 1.2
5 1 50 1.6
6 0 0 3.7
从表1中经前电极处理和未经过处理(对比样品)的组件膜层厚度实验可以得到:
1、实施例1中编号1~5组中是在沉积双层膜之后的导电玻璃基底上制备非晶硅/非晶硅锗单结或多结电池;编号6组是对比制作在未经处理的导电玻璃基底上的组件,表面色差都可以得到改善。图1为色差组件结构和表面示意图。
2、经过△E色差判定方法发现,未经过前电极处理的组件,△E<2的比例非常小,一般小于10%。基于同一批玻璃及工艺的基础上,经过前电极处理的组件,△E<2的比例大幅度提升,可达80%。
3、未经过前电极处理的组件色差明显,片与片之间有明显的颜色不均匀性。经过前电极处理的组件,色差明显降低,片与片之间色差不明显,可大面积用于BIPV。
4、对比前电极未经处理的组件,处理过后的样品表面平均反射率降低,且反射率谱中的干涉条纹振幅减小。干涉条纹来源于膜层的不均匀性,并且对波长敏感。干涉条纹强时,色差相对明显。处理过的组件表面反射率谱中的干涉条纹幅度减小,有利于减小色差。其结果如图2所示。
5、组件表面平均反射率(可见光波段380nm~780nm)随不同膜层厚度的变化趋势为:组件相应的色差从△E>3分别降低到△E<2(3nmAg+60nmAZO)和△E<1.5(5nmAg+60nmAZO)。其结果如图3所示。

Claims (6)

1.一种降低薄膜硅组件表面色差的方法,包括在前电极上先镀膜,再镀非晶硅薄膜电池,最后镀金属背电极的步骤,其特征在于:在前电极上镀膜包括以下步骤:
a、沉积金属薄膜:在前电极上,沉积金属膜层;其中,0nm<金属膜层≤10nm;
b、沉积TCO薄膜:用氩气轰击AZO靶材,在磁场的作用下,AZO靶材在a步骤制备的金属层上沉积形成TCO薄膜;其中,0nm<TCO薄膜≤60nm。
2.根据权利要求1所述一种降低薄膜硅组件表面色差的方法,其特征在于:a步骤中所述金属层的材料为Cu、Ag、Al、Ta、Ni、Cr、NiCr中一种。
3.根据权利要求2所述一种降低薄膜硅组件表面色差的方法,其特征在于:a步骤中所述金属层的材料为Ag。
4.根据权利要求1所述一种降低薄膜硅组件表面色差的方法,其特征在于:b步骤中所述AZO靶材中铝的掺杂浓度为0.5~1.5%。
5.根据权利要求1~4任一项所述一种降低薄膜硅组件表面色差的方法,其特征在于:在前电极上,用物理气相沉积法镀3nm厚的Ag薄膜层和60nm厚的TCO薄膜层。
6.根据权利要求1~4任一项所述一种降低薄膜硅组件表面色差的方法,其特征在于:在前电极上,用物理气相沉积法镀5nm厚的Ag薄膜层和60nm厚的TCO薄膜层。
CN201510512884.3A 2015-08-20 2015-08-20 一种降低薄膜硅组件表面色差的方法 Pending CN105047759A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510512884.3A CN105047759A (zh) 2015-08-20 2015-08-20 一种降低薄膜硅组件表面色差的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510512884.3A CN105047759A (zh) 2015-08-20 2015-08-20 一种降低薄膜硅组件表面色差的方法

Publications (1)

Publication Number Publication Date
CN105047759A true CN105047759A (zh) 2015-11-11

Family

ID=54454145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510512884.3A Pending CN105047759A (zh) 2015-08-20 2015-08-20 一种降低薄膜硅组件表面色差的方法

Country Status (1)

Country Link
CN (1) CN105047759A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110305602A (zh) * 2018-03-27 2019-10-08 拓自达电线株式会社 导电性胶粘剂层用承载膜及包括该导电性胶粘剂层用承载膜的粘结膜

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110305602A (zh) * 2018-03-27 2019-10-08 拓自达电线株式会社 导电性胶粘剂层用承载膜及包括该导电性胶粘剂层用承载膜的粘结膜

Similar Documents

Publication Publication Date Title
Sai et al. High-efficiency microcrystalline silicon solar cells on honeycomb textured substrates grown with high-rate VHF plasma-enhanced chemical vapor deposition
Rech et al. New materials and deposition techniques for highly efficient silicon thin film solar cells
Müller et al. Development of highly efficient thin film silicon solar cells on texture-etched zinc oxide-coated glass substrates
Sahu et al. High quality transparent conductive ZnO/Ag/ZnO multilayer films deposited at room temperature
Hüpkes et al. Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells
Gwamuri et al. A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices
Löffler et al. Amorphous silicon solar cells on natively textured ZnO grown by PECVD
Müller et al. Upscaling of texture-etched zinc oxide substrates for silicon thin film solar cells
Ruske et al. Large area ZnO: Al films with tailored light scattering properties for photovoltaic applications
Calnan et al. High deposition rate aluminium-doped zinc oxide films with highly efficient light trapping for silicon thin film solar cells
Ren et al. Fabrication of textured SnO2: F thin films by spray pyrolysis
Wang et al. Influence of Al/Cu thickness ratio and deposition sequence on photoelectric property of ZnO/Al/Cu/ZnO multilayer film on PET substrate prepared by RF magnetron sputtering
Feltrin et al. Advanced light trapping designs for high efficiency thin film silicon solar cells
CN111584647A (zh) 一种光伏组件用黄色前板玻璃及其制备的黄色光伏组件
US20130340817A1 (en) Thin film silicon solar cell in tandem junction configuration on textured glass
CN101654331A (zh) 一种制备绒面ZnO透明导电镀膜玻璃的方法
Chiang et al. Deposition of high-transmittance ITO thin films on polycarbonate substrates for capacitive-touch applications
CN108515743B (zh) 一种金属/介质超宽带吸收薄膜及其制备方法
Hishida et al. Designing band offset of a-SiO: H solar cells for very high open-circuit voltage (1.06 V) by adjusting band gap of p–i–n junction
Sommer et al. Influence of deposition conditions and substrate morphology on the electrical properties of sputtered ZnO: Al grown on texture-etched glass
CN105047759A (zh) 一种降低薄膜硅组件表面色差的方法
Flikweert et al. Microcrystalline thin-film solar cell deposition on moving substrates using a linear VHF-PECVD reactor and a cross-flow geometry
CN103081028A (zh) 透明导电膜层叠体及其制造方法、以及薄膜太阳能电池及其制造方法
Steinhauser et al. Improving low pressure chemical vapor deposited zinc oxide contacts for thin film silicon solar cells by using rough glass substrates
CN111584652A (zh) 一种光伏组件用绿色前板玻璃及其制备的绿色光伏组件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151111