CN105025556A - 风载荷传感节点装置及其工作状态管控方法 - Google Patents

风载荷传感节点装置及其工作状态管控方法 Download PDF

Info

Publication number
CN105025556A
CN105025556A CN201410177859.XA CN201410177859A CN105025556A CN 105025556 A CN105025556 A CN 105025556A CN 201410177859 A CN201410177859 A CN 201410177859A CN 105025556 A CN105025556 A CN 105025556A
Authority
CN
China
Prior art keywords
wind load
sensing node
instruction
data
load sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410177859.XA
Other languages
English (en)
Other versions
CN105025556B (zh
Inventor
王冰
王文襄
许海燕
毛超民
马明鸿
孙晋玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunshan Shuangqiao Sensor Measurement Controlling Co Ltd
Original Assignee
Kunshan Shuangqiao Sensor Measurement Controlling Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunshan Shuangqiao Sensor Measurement Controlling Co Ltd filed Critical Kunshan Shuangqiao Sensor Measurement Controlling Co Ltd
Priority to CN201410177859.XA priority Critical patent/CN105025556B/zh
Publication of CN105025556A publication Critical patent/CN105025556A/zh
Application granted granted Critical
Publication of CN105025556B publication Critical patent/CN105025556B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种风载荷传感节点装置包括用于测量建筑物风载荷监测数据的风载荷压力传感器模块、用于处理监测数据的数据管理控制模块以及通过ZigBee无线传感器网络传送检测数据和数据控制指令的ZigBee射频收发模块,该节点装置可执行两种工作模式:一是最低功耗休眠模式,就是如果没有收到休眠唤醒指令,风载荷传感节点一直处于最低功耗休眠模式,定时器唤醒失效;二是定时休眠模式,就是只要定时器定时时间到就自动唤醒,但也可以通过发送数据控制指令重新设置风载荷传感节点的休眠模式,该方法采用自动休眠唤醒实时工作算法,对传感节点的工作和休眠进行有效的管控,节省网络开销和降低功耗,提高传感节点的工作效率和寿命,有效地管控风载荷传感节点。

Description

风载荷传感节点装置及其工作状态管控方法
技术领域
本发明涉及一种ZigBee无线传感器网络技术领域,尤其涉及在ZigBee无线传感器网络中的一种风载荷传感节点装置及其工作状态管控方法。
背景技术
随着信息化、网络化和智能化的发展,无线传感器网络应用已逐渐深入到社会的各个方面,而无线传感器网络技术是现在乃至将来信息科学技术发展的中坚力量,将会对人类的生产和生活产生巨大的影响,在众多无线传感器网络中,ZigBee无线传感器网络技术备受关注,应用领域越来越广泛,如家居智能化管理、楼宇办公自动化控制、工业智能化控制以及建筑物风载荷监测等。
ZigBee无线传感器网络设备主要由ZigBee协调器设备,ZigBee路由设备和ZigBee终端设备组成,ZigBee协调器设备开启和维护管理无线传感器网络及其网络中的设备,ZigBee路由设备是无线传感器网络中具有AP功能的设备,负责网络的扩展和数据的接力传输,ZigBee终端设备可设计为具有执行特定功能的传感节点,是具有信息收集者角色的设备。
在ZigBee无线传感器网络中,ZigBee终端设备和传感器融合到一起,构成具有能执行特定功能的传感节点,传感节点的研究设计始于上世纪70年代,研究时间长,取得了很多的成果,特别为现阶段传感节点的研究设计提供了丰富的经验和技术路线,为了实现在不同领域的应用,传感节点从开始的微型、简单化等到现在高性能、低功耗等功能的发展,目前针对不同领域和场合的应用需求,研究和设计的传感节点层出不穷,总体可概括为:一小,二低,三能力,一小:体积小;二低:成本低,功耗低;三能力:自组网通信能力,感测能力,数据处理及网络管理能力。在这些条件中,低功耗是决定传感节点能否长时间工作的决定因素,也是无线传感器网络稳定工作基础。而对于传感节点的低功耗管理设计问题,当前传感节点产品的设计主要采用定时工作唤醒机制,但这种方法存在着不足,等待定时时间到自动唤醒工作或者自动唤醒后由父节点对其进行参数配置,这样传感节点的实时性工作就受到限制,网络开销也比较大。
发明内容
为了克服以上不足,本发明提供一种风载荷传感节点装置及其工作状态管控方法,该方法采用自动休眠唤醒实时工作算法,对传感节点的工作和休眠进行有效的管控,节省网络开销和降低功耗,提高传感节点的工作效率和寿命,有效地管控风载荷传感节点。
针对本发明目的之一:提供一种风载荷传感节点装置,其技术方案是这样实现:一种风载荷传感节点装置,包括用于测量建筑物风载荷监测数据的风载荷压力传感器模块、用于处理监测数据的数据管理控制模块,以及通过ZigBee无线传感器网络传送检测数据和数据控制指令的ZigBee射频收发模块,其中:
(1)该风载荷压力传感器模块,包括风载荷压力传感器和信号调理电路,该监测数据包括建筑物风载荷压力和风载荷传感节点的工作电压;
(2)该数据管理控制模块,包括MCU中央控制单元、FLASH存储单元和数据缓冲区单元,该MCU中央控制单元用于执行数据控制指令,该FLASH存储单元用于保存及读取数据控制指令,该数据缓冲区单元用于保存风载荷压力数据、工作电压监测数据和数据控制指令;
(3)该ZigBee射频收发模块,用于发送风载荷压力传感器的监测数据,以及接收风载荷传感节点工作状态的数据控制指令;
(4)该数据控制指令包括传感节点地址判定状态位、休眠工作控制状态位和测量通道控制状态位,该传感节点地址判定状态位,用于判定是否是对本风载荷传感节点进行数据更新配置的指令,该休眠工作控制状态位,用于配置风载荷传感节点的低功耗休眠模式或定时休眠模式。
针对本发明目的之二:提供一种风载荷传感节点装置的工作状态管控方法,其技术方案是这样实现:该风载荷传感节点可执行两种工作模式:一是最低功耗休眠模式,就是如果没有收到休眠唤醒指令,风载荷传感节点一直处于最低功耗休眠模式,定时器唤醒失效;二是定时休眠模式,就是只要定时器定时时间到就自动唤醒,但也可以通过发送数据控制指令重新设置风载荷传感节点的休眠模式,其具体操作步骤如下:
第一步、该ZigBee射频收发模块接收ZigBee无线传感器网络的数据控制指令,更新数据缓冲区单元,并唤醒数据管理控制模块;
第二步、该数据管理控制模块根据数据控制指令中风载荷传感节点地址判定状态位判断是否为本传感节点地址:如果不是就转入等待休眠唤醒模式,否则执行下一步;
第三步、根据数据控制指令中休眠工作控制状态位进入不同的工作模式:
(一)如果判定为最低功耗休眠模式,就配置最低功耗休眠模式,并根据数据控制指令中测量通道控制状态位,控制不同测量通道测量建筑物的风载荷压力数据和风载荷传感节点工作电压,并送入数据缓冲区单元,再由ZigBee射频收发模块发送监测数据,再进入等待休眠唤醒指令状态,如果该ZigBee射频收发模块收到数据控制指令,就重复执行第一步,否则风载荷传感节点处于最低功耗休眠模式;
(二)如果判定为定时休眠模式,就配置定时休眠模式,根据数据控制指令中测量通道控制状态位,控制不同测量通道测量建筑物的风载荷压力数据和风载荷传感节点工作电压,并送入数据缓冲区单元,再由ZigBee射频收发模块发送监测数据,再进入定时休眠模式,如果定时器定时时间唤醒,就重复执行第三步中第二部分,如果该ZigBee射频收发模块收到数据控制指令,就重复执行第一步。
本发明的有益技术效果是:所述数据管理控制模块,利用自动休眠唤醒实时工作算法实现风载荷传感节点地址判断,休眠,定时唤醒和测量通道数据控制指令分配、更新、存取和调度,该ZigBee射频收发模块接收ZigBee无线传感器网络的数据控制指令,更新数据缓冲区单元,并唤醒数据管理控制模块,该数据管理控制模块根据数据控制指令中传感节点地址判定状态位判断是否为本传感节点地址:如果不是就转入等待休眠唤醒模式,否则就根据数据控制指令中休眠工作控制状态位进入不同的工作模式:(一)如果是最低功耗休眠模式,就配置低功耗休眠模式,根据数据控制指令中测量通道控制状态位,控制不同测量通道测量建筑物的风载荷压力数据和风载荷传感节点工作电压,并送入数据缓冲区单元,再由ZigBee射频收发模块发送监测数据,并将数据控制指令保存在FLASH存储单元中,如果没有任务就进入最低功耗休眠模式,等待下一次休眠唤醒指令;(二)如果是定时休眠模式,就配置定时休眠模式,根据数据控制指令中测量通道控制状态位,控制不同测量通道测量建筑物的风载荷压力数据和风载荷传感节点工作电压,并送入数据缓冲区单元,再由ZigBee射频收发模块发送监测数据,再进入定时休眠模式,由此利用自动休眠唤醒实时工作算法,对风载荷传感节点实时管控,提高风载荷传感节点的工作效率,节省网络开销,降低功耗。
附图说明
图1是本发明的结构原理示意图之一;
图2是本发明的结构原理示意图之二;
图3是本发明中所述风载荷传感节点自动休眠唤醒实时工作算法流程图。
具体实施方式
结合附图1、附图2和附图3,以下作详细描述。
针对现有传感节点定时唤醒方法的实时性不足问题及网络开销问题,本发明提供一种风载荷传感节点装置,包括用于测量建筑物风载荷监测数据的风载荷压力传感器模块1、用于处理监测数据的数据管理控制模块2,以及通过ZigBee无线传感器网络传送检测数据和数据控制指令的ZigBee射频收发模块3,其中:
(1)该风载荷压力传感器模块1,是建筑物风载荷压力数据的收集者,也是风载荷传感节点的数据源以及构成风载荷传感节点的关键组成部分,包括风载荷压力传感器9和信号调理电路10,该监测数据包括建筑物风载荷压力和风载荷传感节点的工作电压;
(2)该数据管理控制模块2,包括MCU中央控制单元11、FLASH存储单元13和数据缓冲区单元12,该MCU中央控制单元11用于执行数据控制指令,该FLASH存储单元13用于保存及读取数据控制指令,该数据缓冲区12单元用于保存风载荷压力数据、工作电压监测数据和数据控制指令;
(3)该ZigBee射频收发模块3,用于发送风载荷压力传感器的监测数据,以及接收风载荷传感节点工作状态的数据控制指令;
(4)该数据控制指令包括传感节点地址判定状态位、休眠工作控制状态位和测量通道控制状态位,该传感节点地址判定状态位,用于判定是否是对本风载荷传感节点进行数据更新配置的指令,该休眠工作控制状态位,用于配置风载荷传感节点的低功耗休眠模式或定时休眠模式,该测量通道控制状态位,用于测量风载荷压力的数据测量通道提出一种风载荷传感节点的工作状态管控方案,即利用自动休眠唤醒实时工作算法实现对风载荷传感节点休眠、唤醒和工作有效管理。
同时本发明还提供一种风载荷传感节点装置的工作状态管控方法,该风载荷传感节点可执行两种工作模式:一是最低功耗休眠模式,就是如果没有收到休眠唤醒指令,风载荷传感节点一直处于最低功耗休眠模式,定时器唤醒失效;二是定时休眠模式,就是只要定时器定时时间到就自动唤醒,但也可以通过发送数据控制指令重新设置风载荷传感节点的休眠模式,其具体操作步骤如下:
第一步、该ZigBee射频收发模块接收ZigBee无线传感器网络的数据控制指令,更新数据缓冲区单元,并唤醒数据管理控制模块;
第二步、该数据管理控制模块根据数据控制指令中传感节点地址判定状态位判断是否为本传感节点地址;如果不是就转入等待休眠唤醒模式,否则执行下一步;
第三步、根据数据控制指令中休眠工作控制状态位进入不同的工作模式:
(一)如果判定为最低功耗休眠模式,就配置最低功耗休眠模式,并根据数据控制指令中测量通道控制状态位,控制不同测量通道测量建筑物的风载荷压力数据和风载荷传感节点工作电压,并送入数据缓冲区单元,再由ZigBee射频收发模块发送监测数据,再进入等待休眠唤醒指令状态,如果该ZigBee射频收发模块收到数据控制指令,就重复执行第一步,否则风载荷传感节点处于最低功耗休眠模式;
(二)如果判定为定时休眠模式,就配置定时休眠模式,根据数据控制指令中测量通道控制状态位,控制不同测量通道测量建筑物的风载荷压力数据和风载荷传感节点工作电压,并送入数据缓冲区单元,再由ZigBee射频收发模块发送监测数据,再进入定时休眠模式,如果定时器定时时间唤醒,就重复执行第三步中第二部分,如果该ZigBee射频收发模块收到数据控制指令,就重复执行第一步。
在实际应用中,数据管理控制模块根据32位数据控制指令进行调度,该32位数据控制指令包括风载荷传感节点地址判定状态位、休眠工作控制状态位和测量通道控制状态位,该风载荷传感节点地址判定状态位为0-7位,该休眠工作控制状态位为8-15位,第8位为1时,风载荷传感节点工作在最低功耗休眠模式,唤醒至工作状态需要ZigBee射频接收模块接收到休眠唤醒指令,第8位为0时,风载荷传感节点工作在定时器定时自动休眠模式,休眠时间由休眠工作控制状态位8-15位决定(具体地,休眠时间由休眠工作状态位的9-15位作为计数器确定);此工作状态下,也可以通过接收休眠唤醒指令唤醒,该测量通道控制状态位为16-23位,用低3位控制8路测量通道,其中7路测量通道测量风载荷传感器压力数据,第8路用于测量风载荷传感节点工作的电压数据,而每路测量通道都通过相应的通道号辨别不同通道测量的数据。ZigBee射频接收模块每接收一次数据,该数据管理控制模块就会自动更新每个测量通道数据控制指令,该测量通道,用于测量风载荷压力的数据测量通道。而32位数据控制指令24-31位是保留位,作为实际应用中风载荷传感节点数量增加扩展备用。
ZigBee射频收发模块接收的32位数据控制指令,根据休眠工作控制状态位设置最低功耗休眠模式或者是定时自动休眠模式,风载荷传感节点被唤醒后都要进行一次风载荷压力数据测量和发送。如果想要风载荷传感节点功耗低,可以设置发送的32位数据控制指令的第8位为1,风载荷传感节点就进入最低功耗休眠模式,如果没有收到休眠唤醒指令,风载荷传感节点一直处于最低功耗休眠模式,定时器唤醒失效(数据管理控制模块)。如果32位数据控制指令的第8位为0,风载荷传感节点就进入定时自动休眠模式;这种模式下,风载荷传感节点不需要接收外部的休眠唤醒指令唤醒,只要定时器定时时间到,自动唤醒。当然也可以通过发送32位数据控制指令重新设置风载荷传感节点的休眠模式。
图3是本发明风载荷传感节点自动休眠唤醒实时工作算法流程图,风载荷传感节点包括两种工作方式:一是休眠唤醒指令唤醒工作方式;二是定时器定时自动唤醒工作方式,其工作流程如下:
首先,该数据管理控制模块接收32位数据控制指令,唤醒后判断是否为本传感器节点地址配置数据,如果不是就丢弃数据,等待下一次休眠唤醒指令;如果是,则判断休眠工作控制状态位第8位是否为1:
(1)如果为1,则进入第一种工作方式,进行最低功耗休眠模式配置,测量通道配置并测量风载荷压力数据和工作电压监测数据并发送,然后进入最低功耗休眠模式,等待下一次休眠唤醒指令唤醒;
(2)如果为0,则进入第二种工作方式,进行定时自动休眠模式配置,再进行测量通道配置并测量风载荷压力数据和工作电压监测数据并发送,然后进入定时自动休眠模式,等待定时器定时唤醒,如果没有收到32位数据控制指令,则风载荷传感节点始终处于定时自动休眠模式。(第二种工作方式也可以随时接收休眠唤醒指令对风载荷传感节点工作休眠模式进行重新配置)
本发明利用自动休眠唤醒实时工作算法,再结合风载荷压力传感器设计了一种风载荷传感节点,实现对风载荷传感节点实时有效地管控,提高风载荷传感节点工作与休眠控制的灵活性和实时性,极大地降低了风载荷传感节点的功耗,节省网络开销,提高工作效率和寿命。
以上阐述为本发明的基本原理,技术方法,主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围。本发明要求保护范围由所附的权利要求书及其等同物界定。

Claims (2)

1.一种风载荷传感节点装置,其特征在于,包括用于测量建筑物风载荷监测数据的风载荷压力传感器模块(1)、用于处理监测数据的数据管理控制模块(2),以及通过ZigBee无线传感器网络传送检测数据和数据控制指令的ZigBee射频收发模块(3),其中:
(1)该风载荷压力传感器模块(1),包括风载荷压力传感器(9)和信号调理电路(10),该监测数据包括建筑物风载荷压力和风载荷传感节点的工作电压;
(2)该数据管理控制模块(2),包括MCU中央控制单元(11)、FLASH存储单元(13)和数据缓冲区单元(12),该MCU中央控制单元(11)用于执行数据控制指令,该FLASH存储单元(13)用于保存及读取数据控制指令,该数据缓冲区单元(12)用于保存风载荷压力数据、工作电压监测数据和数据控制指令;
(3)该ZigBee射频收发模块(3),用于发送风载荷压力传感器的监测数据,以及接收风载荷传感节点工作状态的数据控制指令;
(4)该数据控制指令包括传感节点地址判定状态位、休眠工作控制状态位和测量通道控制状态位,该传感节点地址判定状态位,用于判定是否是本风载荷传感节点数据更新配置的指令,该休眠工作控制状态位,用于配置风载荷传感节点的最低功耗休眠模式或定时休眠模式,该测量通道控制状态位,用于测量风载荷压力的数据测量通道。
2.一种如权利要求1所述风载荷传感节点装置的工作状态管控方法,其特征在于,该风载荷传感节点可执行两种工作模式:一是最低功耗休眠模式,就是如果没有收到休眠唤醒指令,风载荷传感节点一直处于最低功耗休眠模式,定时器唤醒失效;二是定时休眠模式,就是只要定时器定时时间到就自动唤醒,但也可以通过发送数据控制指令重新设置风载荷传感节点的休眠模式,其具体操作步骤如下:
第一步、该ZigBee射频收发模块接收ZigBee无线传感器网络的数据控制指令,更新数据缓冲区单元,并唤醒数据管理控制模块;
第二步、该数据管理控制模块根据数据控制指令中的传感节点地址判定状态位判断是否为本传感节点地址:如果不是就转入等待休眠唤醒模式,否则执行下一步;
第三步、根据数据控制指令中的休眠工作控制状态位进入不同的工作模式:
(一)如果判定为最低功耗休眠模式,就配置最低功耗休眠模式,并根据数据控制指令中测量通道控制状态位,控制不同测量通道测量建筑物的风载荷压力数据和风载荷传感节点工作电压,并送入数据缓冲区单元,再由ZigBee射频收发模块发送监测数据,再进入等待休眠唤醒指令状态,如果该ZigBee射频收发模块收到数据控制指令,就重复执行第一步,否则风载荷传感节点处于最低功耗休眠模式;
(二)如果判定为定时休眠模式,就配置定时休眠模式,根据数据控制指令中测量通道控制状态位,控制不同测量通道测量建筑物的风载荷压力数据和风载荷传感节点工作电压,并送入数据缓冲区单元,再由ZigBee射频收发模块发送监测数据,再进入定时休眠模式,如果定时器定时时间唤醒,就重复执行第三步中第二部分,如果该ZigBee射频收发模块收到数据控制指令,就重复执行第一步。
CN201410177859.XA 2014-04-29 2014-04-29 风载荷传感节点装置及其工作状态管控方法 Active CN105025556B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410177859.XA CN105025556B (zh) 2014-04-29 2014-04-29 风载荷传感节点装置及其工作状态管控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410177859.XA CN105025556B (zh) 2014-04-29 2014-04-29 风载荷传感节点装置及其工作状态管控方法

Publications (2)

Publication Number Publication Date
CN105025556A true CN105025556A (zh) 2015-11-04
CN105025556B CN105025556B (zh) 2019-01-08

Family

ID=54415159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410177859.XA Active CN105025556B (zh) 2014-04-29 2014-04-29 风载荷传感节点装置及其工作状态管控方法

Country Status (1)

Country Link
CN (1) CN105025556B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936530A (zh) * 2017-03-28 2017-07-07 浙江大学 一种实现多测点同步采集的无线传感风荷载监测系统
CN107959609A (zh) * 2017-12-15 2018-04-24 上汽通用五菱汽车股份有限公司 一种测试can总线等待休眠时间的方法及装置
CN111866907A (zh) * 2019-04-29 2020-10-30 苏州捷杰传感技术有限公司 基于ZigBee技术的传感器组网错时唤醒控制方法及系统
CN112066944A (zh) * 2020-08-04 2020-12-11 山西省建筑科学研究院有限公司 基于现场监测的建筑物健康监测系统及监测方法
CN112187882A (zh) * 2020-09-10 2021-01-05 青岛海尔科技有限公司 用于传感数据共享的系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202014374U (zh) * 2011-03-18 2011-10-19 陕西省环境监测中心站 一种可自由布置实时测量室内空气质量的自组网节点
CN102395183A (zh) * 2011-12-18 2012-03-28 上海集成通信设备有限公司 ZigBee无线传感器节电方法
CN202206549U (zh) * 2011-06-03 2012-04-25 上海申腾信息技术有限公司 一种无线传感网能耗控制系统
CN102869077A (zh) * 2012-08-28 2013-01-09 苏州博联科技有限公司 基于ZigBee协议的无线传感网络的数据采集传输方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202014374U (zh) * 2011-03-18 2011-10-19 陕西省环境监测中心站 一种可自由布置实时测量室内空气质量的自组网节点
CN202206549U (zh) * 2011-06-03 2012-04-25 上海申腾信息技术有限公司 一种无线传感网能耗控制系统
CN102395183A (zh) * 2011-12-18 2012-03-28 上海集成通信设备有限公司 ZigBee无线传感器节电方法
CN102869077A (zh) * 2012-08-28 2013-01-09 苏州博联科技有限公司 基于ZigBee协议的无线传感网络的数据采集传输方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106936530A (zh) * 2017-03-28 2017-07-07 浙江大学 一种实现多测点同步采集的无线传感风荷载监测系统
CN107959609A (zh) * 2017-12-15 2018-04-24 上汽通用五菱汽车股份有限公司 一种测试can总线等待休眠时间的方法及装置
CN111866907A (zh) * 2019-04-29 2020-10-30 苏州捷杰传感技术有限公司 基于ZigBee技术的传感器组网错时唤醒控制方法及系统
CN111866907B (zh) * 2019-04-29 2022-06-21 苏州捷杰传感技术有限公司 基于ZigBee技术的传感器组网错时唤醒控制方法及系统
CN112066944A (zh) * 2020-08-04 2020-12-11 山西省建筑科学研究院有限公司 基于现场监测的建筑物健康监测系统及监测方法
CN112187882A (zh) * 2020-09-10 2021-01-05 青岛海尔科技有限公司 用于传感数据共享的系统
CN112187882B (zh) * 2020-09-10 2023-02-03 青岛海尔科技有限公司 用于传感数据共享的系统

Also Published As

Publication number Publication date
CN105025556B (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
CN105025556A (zh) 风载荷传感节点装置及其工作状态管控方法
CN101959295B (zh) 无线传感器网络的节能管理方法、系统及远程管理服务器
KR101450910B1 (ko) 무선 센서 네트워크에서 에너지 소모를 줄이기 위한 타임 슬롯 할당 방법
CN102665249A (zh) 一种基于无线传感器网络的大气污染监测系统
CN106230645B (zh) 一种用于监测节点与汇聚网关之间的低功耗无线通信方法
CN105636183A (zh) 一种基于ZigBee技术的休眠唤醒的节能方法
CN204270487U (zh) 基于无线传感器的水质环境监测系统
CN105761465A (zh) 基于无线传感器的水质环境监测系统
CN102637370B (zh) 基于无线传感器网络的车位探测系统
CN102393701A (zh) 楼宇空调自动监控系统
KR101457436B1 (ko) 저전력 센서 노드
CN103634885B (zh) 一种识别卡及其运行方法
CN102547938B (zh) 路由器、无线传感网络以及监控终端节点的方法
CN208241901U (zh) 一种无线传感网络系统
CN208386945U (zh) 一种用于无线传感器节点的可采集射频能量的唤醒电路
CN103152803A (zh) 基于固定网络结构的超轻量级无线通信协议
CN102299734A (zh) 中继装置
CN104483944A (zh) 分离式物联网膜式燃气表远程控制系统
CN204314706U (zh) 分离式物联网膜式燃气表远程控制结构
CN102821147B (zh) 节能型太阳能阵列数据收集系统
CN102957710A (zh) 一种大坝安全监控的ZigBee系统
CN202976440U (zh) 新型温度检测传输装置
CN102185918A (zh) 用于远程串口控制的无线节点
CN202394097U (zh) 一种基于Zigbee的机房设备监控系统
CN202873071U (zh) 可唤醒的无线传感器网络水情汇聚节点模块

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant