CN105008312A - 用于制备活性结晶材料的方法 - Google Patents

用于制备活性结晶材料的方法 Download PDF

Info

Publication number
CN105008312A
CN105008312A CN201380071975.7A CN201380071975A CN105008312A CN 105008312 A CN105008312 A CN 105008312A CN 201380071975 A CN201380071975 A CN 201380071975A CN 105008312 A CN105008312 A CN 105008312A
Authority
CN
China
Prior art keywords
solvent
crystalline material
liquid medium
precursor component
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380071975.7A
Other languages
English (en)
Other versions
CN105008312B (zh
Inventor
R·艾哈迈德
J·库珀
I·奥迪阿塞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cpi Innovation Services Ltd
Original Assignee
Cpi Innovation Services Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cpi Innovation Services Ltd filed Critical Cpi Innovation Services Ltd
Publication of CN105008312A publication Critical patent/CN105008312A/zh
Application granted granted Critical
Publication of CN105008312B publication Critical patent/CN105008312B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/194Carboxylic acids, e.g. valproic acid having two or more carboxyl groups, e.g. succinic, maleic or phthalic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/455Nicotinic acids, e.g. niacin; Derivatives thereof, e.g. esters, amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/60Salicylic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • C07D213/82Amides; Imides in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/14Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D223/18Dibenzazepines; Hydrogenated dibenzazepines
    • C07D223/22Dibenz [b, f] azepines; Hydrogenated dibenz [b, f] azepines
    • C07D223/24Dibenz [b, f] azepines; Hydrogenated dibenz [b, f] azepines with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom
    • C07D223/26Dibenz [b, f] azepines; Hydrogenated dibenz [b, f] azepines with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom having a double bond between positions 10 and 11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/02Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
    • C07D473/04Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms
    • C07D473/06Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms with radicals containing only hydrogen and carbon atoms, attached in position 1 or 3
    • C07D473/12Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms with radicals containing only hydrogen and carbon atoms, attached in position 1 or 3 with methyl radicals in positions 1, 3, and 7, e.g. caffeine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyridine Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Thermistors And Varistors (AREA)

Abstract

本发明涉及活性结晶材料,特别是活性多组分结晶材料例如盐或共晶,其可以如下制备:在包含抗溶剂的液体介质中分散所述活性结晶材料的前体组分,保持分散体一段时间,在此期间形成所述活性结晶材料,并且在此期间,将所述分散体暴露于溶剂,所述溶剂以其小的重量比例存在于所述液体介质中。

Description

用于制备活性结晶材料的方法
技术领域
本发明涉及用于制备活性结晶材料的方法,所述材料可以是单晶或多晶的结晶材料,或者可以是多组分晶体,例如盐或共晶或盐与共晶的组合。更具体地,本发明涉及制备活性结晶材料的方法,所述材料是多组分晶体。更特别地,本发明涉及制备活性结晶材料的方法,所述材料是共结晶的(cocrystalline)。
“活性材料”是指包含对所述材料的受体生物具有作用的分子的材料或由对所述材料的受体生物具有作用的分子的材料组成,无论所述作用是有益的,例如治疗身体状况(medical condition);或有害的,例如控制植物害虫;或者涉及感觉的,例如味觉、触觉等。通常,活性材料是药物活性材料;然而,其他活性材料,例如营养活性材料和农用化学品活性材料也涵盖在所述术语的范围内。“活性结晶材料”是具有结晶形态的活性材料。在本申请中,术语“活性”和“无活性”用于这样的环境下。
技术背景
在大部分人类历史中,已经一直在使用活性材料。在现代,提取自天然来源的或合成的活性材料已取得重要的应用,用来替代所述材料的天然来源,或者产生新的活性类似物,或者产生新的活性材料。这样的活性材料可以包括多种形态,包括无定形态和结晶态,包括单晶、多晶、离子结晶和共晶形态。正如本领域公知的,有多种制备活性材料的方法,包括从溶液中沉淀、从熔体或溶液中结晶等,虽然共结晶材料的制备不一定如下文更详细地描述的那么直接。
除其他外,相同的活性材料的不同形态形式的物理化学特性可能对所述活性材料的加工性、供应能力(deliverability)和有效性产生重要影响。其结果是,识别作为活性材料的具有相应的物理化学特性和有效性的不同的形态形式的活性材料给这类材料的研究者和开发者带来沉重的成本负担,特别是在制药行业中,但这种情况并不限于制药行业中。反过来,这又将对获得活性材料的知识产权保护以确保研究和开发的成本可以在此保护期内回收产生极大的压力。无法获得新活性材料的知识产权保护可能会导致这些材料根本不被开发。
活性材料现有形态版本的知识产权保护的失效(lapse),或者无论是由于与这类活性材料早期版本的相似性还是由于其他原因造成的新活性材料或已知活性材料的新形态版本的这种保护的可能缺乏,最近已经引起开发共结晶活性材料的浓厚兴趣,由于与活性材料的相应的游离形式相比表现出新颖的分子组合以及不同的物理化学特性,其可以得到知识产权的保护。
共晶本身已经被了解和研究了多年。一般理解,共晶表现出长程有序性,并且其组分经由分子间的相互作用而进行相互作用,包括非共价相互作用,例如氢键合和/或卤素键合;π相互作用;离子相互作用以及范德华相互作用。这些分子间的相互作用以及得到的晶体结构产生与单个组分的特性不同的物理和/或化学特性,例如熔点、溶解度、化学稳定性和机械特性。尽管如此,虽然在本领域中“共晶”这个术语一般得到的理解,但是这个术语当前还没有统一的定义,如题目为“Polymorphs,Salts,andCocrystals:What’s in a Name?”(Cryst.Growth Des.,2012,12,2147-2152)的论文所例示,这篇文章是由美国食品和药物管理局(FDA)所发布的管理目的的共晶定义的指导草案(draft guidance)促成的。这篇论文的作者认为FDA的指导意见局限性太强,并提出他们自己对于“共晶”这个术语的定义,其中最广义的版本如下:
“共晶是固体,其为由一般成化学计量比的两种或更多种不同的分子和/或离子化合物组成的结晶单相材料”。
共晶的多组分性质先前已经被公认,这可以由论文证明,其题目为“TheSalt-Cocrystal Continuum:The Influence of Crystal Structure on IonisationState”,Molecular Pharmaceuticals,Vol 4,No 3,323-338。这篇论文指出盐和共晶都是多组分的,并且,取决于多种因素,除了盐和共晶之外,也可能存在同时含有离子性结晶物质和共结晶物质的连续体(continuum)。
无论最终可能采用“共晶”的何种定义,在本申请中使用的“共晶”旨在使所述术语得到广义解释,并且不被诸如FDA所提出的定义人为地限制,正如所述论文的作者认为的,FDA所提出的定义相对地有局限性。
如上所述,类似于活性材料的其他结晶形式,共晶可以用多种方法制备,但这些方法在应用于共晶制备时可能不是没有困难的。共结晶方法包括从含共晶组分的溶液中缓慢地蒸发溶剂;从组分的浆料共结晶;从熔体中共结晶;在超临界流体中共结晶;将组分一起湿式或干式研磨。在后一种情况下,对所述组分施加机械能似乎是许多方法的先决条件。这些方法的实例可以在EP 2170284、EP 2361247、US 2007/0287184、US2009/0054455、US 2010/0204204、US 7927613以及WO 2011/097372,以及“The role of mechanochemistry and supramolecular design in thedevelopment of pharmaceutical materials”,CrystEngComm,2012,14,2350-2362中找到。更具体地,例如US 2009/0054455描述了通过将阿立哌唑和富马酸溶于合适的溶剂,以形成所述组分的澄清溶液,然后加入抗溶剂以沉淀共晶,从而合成阿立哌唑/富马酸共晶;并且EP 2170284描述了使用超临界或液化气体以制备含溶解的API和溶解的助形成物(co-former)的共结晶介质,通过减压从超临界或液化气体回收共晶。
现有技术中制备共晶的方法通常在较小规模下实施,将这类方法按比例放大可能会带来较大困难。例如,基于溶剂的方法将需要大量的溶剂,导致活性结晶材料的产量降低。机械方法或压力方法将需要较高的资金投入。
显然,需要简单有效的方法来制备活性结晶材料,特别是用于制备活性多组分结晶材料,并且尤其是活性共结晶材料。
发明内容
本发明提供了制备活性结晶材料的方法。更具体而言,本发明提供了制备活性多组分结晶材料,尤其是活性共结晶材料的方法。
本发明的方法包括:在包含抗溶剂的液体介质中分散所述活性结晶材料的前体组分;保持分散体一段时间,在此期间形成所述活性结晶材料;并且在所述期间,将分散体暴露于溶剂,所述溶剂以其小的重量比例存在于所述液体介质中。
更具体地,根据本发明的一个实施方案,制备活性结晶材料的方法包括:在包含抗溶剂的液体反应介质中,分散所述活性结晶材料的前体组分;保持分散体一段时间,在此期间形成所述活性结晶材料;并且在所述期间,将分散体暴露于溶剂,所述溶剂以其小的重量比例存在于液体介质中,其中与所述溶剂相比,所述抗溶剂形成分子间相互作用的能力较弱,并且其中所述活性结晶材料比至少一种所述前体组分在溶剂中的溶解度低。
特别地,根据所选择的前体组分和活性结晶材料,与溶剂相比,抗溶剂与前体组分和活性结晶材料形成分子间相互作用的能力可能较弱。此外,虽然在中间阶段抗溶剂可能有助于分子间的相互作用,即,随着反应的进行,优选所述抗溶剂不能够与最终产物,即活性结晶材料以及任何未反应的前体组分,发生分子间的相互作用。
更具体地,根据本发明另一个实施方案,制备活性多组分结晶材料,尤其是活性共结晶材料的方法包括:在包含抗溶剂的液体反应介质中,分散所述活性多组分结晶材料的前体组分;保持分散体一段时间,在此期间形成活性多组分结晶材料;并且在所述期间,将所述分散体暴露于溶剂,所述溶剂以其小的重量比例存在于液体介质中,其中与所述溶剂相比,所述抗溶剂形成分子间相互作用的能力较弱,并且其中所述活性多组分结晶材料比至少一种所述前体组分在所述溶剂中的溶解度低。
在本文中,术语“抗溶剂”用于表示有机液体,至少一种前体组分和活性结晶材料在所述有机液体中是基本上不可溶的。这可以表示为:至少一种前体组分与活性结晶材料在所述抗溶剂中的溶解度在25℃下优选不超过1mg/g。更优选地,至少一种前体组分与活性结晶材料在所述抗溶剂中的溶解度在25℃下不超过0.1mg/g。如果前体组分中的一种在所述抗溶剂中具有溶解度的话,那么优选它在抗溶剂中只有有限的溶解度。特别地,如果前体组分中的一种在抗溶剂中具有溶解度的话,则优选在所述抗溶剂中的溶解度在25℃下不超过10mg/g,更特别是在25℃下不超过5mg/g。在本发明的优选实施方案中,所有的前体组分在抗溶剂中基本上是不可溶的。
在本文中,术语“溶剂”用于指有机液体或水,至少一种、优选所有的前体组分至少一定程度地可溶于其中。这可以表示为所述前体组分在溶剂中的溶解度在25℃下优选至少为1mg/g。更优选地,前体组分在溶剂中的溶解度在25℃下至少为5mg/g,更特别地,在25℃下至少为10mg/g。
虽然活性结晶材料在溶剂中可以具有一定的溶解度,优选所述前体组分在溶剂中具有的溶解度大于所述活性结晶材料在溶剂中的溶解度。特别地,优选所述前体组分在溶剂中具有的溶解度至少两倍于活性结晶材料在溶剂中的溶解度。更特别地,优选所述前体组分在溶剂中具有的溶解度至少三倍于活性结晶材料在溶剂中的溶解度。
在本发明的一个实施方案中,所述前体组分中的一种在所述溶剂中的溶解度大于存在的其他一种或多种前体组分的溶解度。优选地,所述一种前体组分在溶剂中的溶解度至少两倍于,更特别地至少三倍于存在的其他一种或多种前体组分的溶解度。
在其间形成活性结晶材料的保持分散体的时段典型地可以是5分钟至3小时。然而,可以理解,这个时段并不是绝对的,因此所述分散体可以维持一段时间,直到观察到已通过所述前体组分的部分或完全反应而形成活性结晶材料。
在本发明的一个实施方案中,其中分散所述前体组分的所述液体介质基本上由抗溶剂组成,所述方法包括将所述溶剂添加到所述分散体中。在本实施方案中,可以优选延长保持分散体的时间,在此期间形成所述活性结晶材料,例如30分钟到3小时。可以这样做以确保所述溶剂良好地分散在液体混合物中,并因此使反应完全。
在本发明的替代性实施方案中,其中分散所述前体组分的所述液体介质包含抗溶剂和溶剂两者的混合物。由于所述溶剂预混合到包含抗溶剂的所述液体介质内,在分散前体组分之前,其可以很好地被分散。因此,在本实施方案中,所述前体组分形成活性结晶材料的反应可以更快地完成。
优选地,所述溶剂能够通过氢(H)键合以形成分子间相互作用。更优选地,所述溶剂具有氢(H)受体和/或供体位点,使之能够形成氢(H)键。
优选地,所述前体组分具有H受体和/或供体位点,允许前体组分之间的氢键合。此外,所述前体组分的一种或多种可能能够与溶剂的H受体和/或供体位点形成氢键。
优选地,所述前体组分是固体,并将其以其固体形式直接加入所述液体反应介质。换言之,所述前体组分不需要用抗溶剂和/或溶剂预先溶解或打浆。优选地,所述前体组分是微细形式。更具体地,所述前体组分可以是在微米或亚微米的尺寸范围。
优选地,所述方法包括选择前体组分,其将形成活性多组分结晶材料,特别是活性共结晶材料。
优选地,所述方法包括选择前体组分,其将形成活性结晶材料,所述前体组分包括单独的活性前体组分或活性前体组分与无活性前体组分的组合。例如,活性结晶材料可以由至少两种活性前体组分形成,或者可以由至少一种活性前体组分和至少一种无活性前体组分形成。
如上所述,形成活性结晶材料的前体组分的选择是公知的。因此,容易明白需要哪些前体组分以获得特定的活性结晶材料。本发明涉及形成这种活性结晶材料的新方法。
优选地,每种前体组分具有至少一个官能团,其选自醚、硫醚、醇、硫醇、醛、酮、硫酮、硝酸酯、磷酸酯、硫代磷酸酯、酯、硫酯、硫酸酯、羧酸、膦酸、次膦酸、磺酸、酰胺、伯胺、仲胺、叔胺、sp2胺、硫氰酸盐、氨腈、肟、腈、重氮基、有机卤化物、硝基、S-杂环、噻吩、N-杂环、吡咯、O-杂环、呋喃、环氧化物、过氧化物、异羟肟酸(hydroxamic acid)、咪唑和吡啶。
前体组分的比例根据特定组分而改变。例如,对于活性共结晶材料,活性药物前体组分和共结晶助形成物(coformer)前体组分的比例可以是1:1、2:1、1:2、1.5:1或1:1.5。
优选地,本发明的方法包括在液体介质中分散前体组分并使用高速混合条件保持分散体。
高速混合可以通过将所述液体介质置于流动条件来实现,其中雷诺数(Reynolds Number)为至少100、更优选大于500、更特别是大于2,000。优选地,高速混合可以通过将所述液体介质置于雷诺数不超过20,000的流动条件来实现。
所述方法可以在任何合适的设备中完成,其可以在间歇基础上或连续流基础上操作。合适的设备的典型实例是:使用多种搅拌器设计中的任何一种的搅拌容器,例如桨叶、锚、倾斜叶片螺旋桨;同轴转子/定子混合器;以及不同设计的流动反应器,包括振荡挡板反应器、中位反应器。
优选地,当所述方法在非加压设备中进行时,其可在环境温度或近环境温度下完成,例如,典型地,从0℃到所述液体介质的沸点(更实际的略低于沸点)的范围内。特别地,所述方法可以在大约环境温度下进行。应当理解,环境温度根据位置不同可能会变化,因此,所述方法可以方便地在例如在5℃-45℃的温度范围内完成,更优选的温度范围是15℃-35℃,并且更特别是在15℃-30℃的温度范围内,所述范围的上限取决于在液体介质中的抗溶剂和溶剂的沸点。
优选地,所述方法可以在大气压力下进行。应当理解,大气压力根据位置不同可能会少量地变化,标准大气压定义为~100kPa。因此,所述方法可以在标准大气压±10kPa下完成,更优选地在标准大气压下±5kPa下完成。
可替代地,在封闭的压力系统中,所述方法可以在0.5kPa-1,000kPa的压力下进行,更优选地在10kPa-600kPa下进行。
优选地,本发明的方法进一步包括分离所述活性结晶材料。所述活性结晶材料是固体,并且可以通过任何已知的技术分离,例如通过重力或抽吸过滤、倾析、离心等。然后,还可以将分离的活性结晶材料干燥,以除去任何残留的溶剂或抗溶剂。
优选地,在本发明的方法中,所述抗溶剂构成所述液体介质的主要比例,所述溶剂构成所述液体介质的小比例。更具体地,所述溶剂构成不超过液体介质的20重量%,更特别是不超过其10重量%。在本发明的方法的特别优选的实施方案中,所述溶剂构成不超过所述液体介质的5重量%。
优选地,在本发明的方法中,所述溶剂构成所述液体反应介质的至少0.1重量%,更特别地至少0.5重量%。在本发明的方法的特别优选的实施方案中,所述溶剂构成所述液体反应介质的至少1重量%。
优选地,所述抗溶剂构成所述液体介质的至少50重量%,更优选至少75重量%,尤其是至少90重量%。在本发明的某些实施方案中,所述抗溶剂可以构成所述液体介质的95重量%-99重量%。
优选地,在本发明的方法中,所述液体介质基本上由抗溶剂和溶剂组成。
优选地,如上所述,所述抗溶剂是满足对所述抗溶剂的溶解度要求的非极性液体有机化合物。特别地,选择所述抗溶剂的基础是前体组分和活性结晶材料中的至少一种不溶于该化合物。所选择的前体组分和活性结晶材料在各种化合物中的溶解度很容易了解。
所述抗溶剂可以选自无环的和环状的脂族烃和芳族和至少部分氢化的二环芳族烃以及它们的混合物。
优选地,所述抗溶剂可从中选择的所述无环脂族烃包括C5-C16烷烃,更优选C5-C8烷烃,特别是C5-C7烷烃,以及它们的混合物。
优选地,所述抗溶剂可从中选择的环状脂族烃包括C5-C10环烷烃,更优选C5-C8环烷烃,特别是C5-C7环烷烃以及它们的混合物。
优选地,所述抗溶剂可从中选择的芳族烃包括式Ar-(R)n的芳族烃,其中Ar是苯环残基,每个R独立地为H或C1-C5的烷烃链,并且n是1-3的整数;更优选式Ar-(R)n的芳族烃,其中Ar是苯环残基,每个R独立地为H或C1-C3的烷烃链,并且n是1-3的整数;特别是式Ar-(R)n的芳族烃,其中Ar是苯环残基,每个R独立地为H或C1的烷烃链,并且n是1-3的整数;以及它们的混合物。
所述至少部分氢化的二环芳族烃可以是溶剂,例如1,2-二氢萘、1,2,3,4-四氢萘和十氢萘。
在本发明的一个实施方案中,所述抗溶剂可以是环己烷。
优选地,所述溶剂是极性非质子或极性质子液体有机化合物或水,其如上所述地满足对溶剂的溶解度要求。视所选择的前体组分和活性结晶材料而定,哪些溶剂满足溶解度的要求是公知的。
所述极性非质子溶剂可以选自羧酸的官能衍生物、碳酸酯、醛、酮、醚、杂环化合物、腈、亚砜、酯和胺以及它们的混合物。
优选地,所述极性非质子溶剂可从中选择的羧酸的官能衍生物可以包括酰胺或酯,更优选衍生自C1-C12羧酸的酰胺或酯,尤其是衍生自C2-C8羧酸的酰胺或酯,以及它们的混合物。
优选地,所述碳酸酯是碳酸二甲酯或碳酸二乙酯或它们的混合物。
优选地,所述极性非质子溶剂可从中选择的醛和酮包括C1-C8醛和C2-C9酮,更优选C1-C5醛和C2-C6酮,更特别是C2-C4酮,以及它们的混合物。
优选地,所述溶剂可从中选择的醚包括二乙醚、1,4-二噁烷和四氢呋喃及其混合物。
优选地,所述极性非质子溶剂可从中选择的杂环化合物包括:含有一个或两个选自氧、氮和硫的杂原子的C4-C7杂环化合物,更优选含有一个选自氧、氮和硫或它们的混合物的杂原子,更优选含有一个选自氧和氮或其混合物的杂原子的C5或C6杂环化合物,特别是含有一个氧原子的C5或C6杂环化合物,以及它们的混合物。
优选地,所述极性非质子溶剂可以从中选择的腈包括C2-C4腈,尤其是C2或C3腈,以及它们的混合物。
优选地,所述极性非质子溶剂可以从中选择的亚砜包括C2-C6亚砜,特别是C2-C4的亚砜,以及它们的混合物。
所述极性质子溶剂可以选自水、羧酸、脂族醇、苯基醇、酯和胺,以及它们的混合物。
优选地,所述极性质子溶剂可以从中选择的羧酸包括C1-C12羧酸,更优选C1-C8羧酸,特别是C2-C5的羧酸,以及它们的混合物。
优选地,所述极性质子溶剂可以从中选择的脂族醇包括C1至C12脂族醇,更优选C1-C8脂族醇,特别是C2-C5的脂族醇,以及它们的混合物。
优选地,所述极性质子溶剂可以从中选择的苯基醇包括式Ph-R的苯基醇,其中Ph是苯基,R是(CH2)mOH,其中m是1-3的整数,更优选式Ph-R的苯基醇,其中Ph是苯基,R是(CH2)mOH,其中m是整数1或2,以及它们的混合物。
在本发明的一个实施方案中,所述溶剂可以是极性质子溶剂,更优选甲醇或乙醇,特别是甲醇。
附图说明
仅作为说明,现在将通过参考下列实施例和附图进一步描述本发明,其中:
图1是说明本发明的方法的流程图;
图2是咖啡因:草酸共晶的固态NMR光谱;
图3是水杨酸:2-氨基嘧啶1:1盐的实验室样品的粉末X射线分析;
图4是来自剑桥结构数据库的1:1的水杨酸:2-氨基嘧啶的粉末X射线光谱;
图5是实验室样品和剑桥结构数据库的粉末X射线光谱的比较。
具体实施方案
如前所述,本发明提供了制备活性结晶材料的方法,特别是制备活性多组分结晶材料的方法,尤其是活性共结晶材料。实施例参考制备活性共结晶材料说明本发明的方法。
本发明的方法包括:在包含抗溶剂的液体介质中分散活性结晶材料的前体组分;保持分散体一段时间,在此期间形成活性结晶材料;并且在所述期间,将分散体暴露于溶剂,所述溶剂以其小的重量比例存在于所述液体介质中。在本发明的优选实施方案中,与溶剂相比,所述抗溶剂形成分子间相互作用的能力较弱,并且其中所述活性结晶材料在溶剂中的溶解度低于所述前体组分。
在本发明的一个实施方案中,如图1所示,将抗溶剂和溶剂引入到例如混合器中以制备液体介质,将液体介质暴露于高速混合条件。然后,将活性结晶材料的固体颗粒前体组分引入所述混合器,以分散在所述液体介质中。运行所述混合器足以使活性结晶材料形成的一段时间,随后将液体介质从混合器中排出,以使所述活性结晶材料和任何残留前体组分从所述液体介质中分离。然后,活性共结晶材料可以通过已知的技术进一步纯化和/或干燥,以制得最终产物。
实施例
实施例1
咖啡因和草酸的共结晶
将抗溶剂(33.4g/97.8重量%的无水环己烷)和溶剂(0.75g/2.2重量%的无水甲醇)倒入混合器(振荡挡板反应器),以形成用于活性共结晶材料的前体组分共结晶的液体介质。运行运动发生器(motion generator),为所述液体介质提供振荡运动(行程幅度=12.5mm;频率1.5Hz),然后将活性前体组分和共结晶助形成物前体组分(分别是2.05g咖啡因和0.51g草酸(化学计量比2:1))引入所述混合器中。反应在环境温度和压力下发生,这些在反应过程中没有具体地测量,但对实验室而言,典型的范围是17-22℃和96.6-104.28kPa。30分钟后,停止运动发生器,将液体介质、活性共结晶材料和残留前体组分的浆料从流动混合器中除去,并进行过滤处理。使任何剩余的溶剂从残留物中蒸发。用固态NMR分析残留物(2.4g)(见图2),证实含有1:2的咖啡因:草酸共晶(共结晶产率=98.3%,咖啡因=0%且草酸=1.72%)。
实施例2
卡马西平和烟酰胺的共结晶
将抗溶剂(33.4g/97.5重量%的无水环己烷)和溶剂(0.75g/2.5重量%的无水甲醇)倒入流动混合器,以形成用于活性共结晶材料的前体组分共结晶的液体介质。运行运动发生器,给所述液体介质提供振荡运动(行程幅度=10mm;频率1.5Hz),然后将活性前体组分和共结晶助形成物前体组分(分别是8.31g卡马西平和4.3g烟酰胺(化学计量比1:1))引入所述流动混合器中。如实施例1中所述,反应在环境温度和压力下发生。3小时后,停止运动发生器,将液体介质、活性共结晶材料和残留前体组分的浆料从流动混合器中除去,并进行过滤处理。使任何剩余的溶剂从残留物中蒸发。残留物(11.1g)用粉末X射线衍射光谱分析,证实含有1:1的卡马西平:烟酰胺(niotinamide)共晶。
实施例3
咖啡因和草酸的共结晶
将抗溶剂(33.4g/96.1重量%的己烷)和溶剂(1.34g/3.9重量%的无水甲醇)倒入混合器(设置有具有顶置式马达的PTFE桨叶式搅拌器的圆底烧瓶(180rpm)),以形成用于活性共结晶材料的前体组分共结晶的液体介质。运行桨叶式混合器(paddle mixer),搅拌液体介质,然后将活性前体组分和共结晶助形成物前体组分(分别是2.05g咖啡因和0.51g草酸(化学计量比2:1))引入所述混合器中。如实施例1中所述,反应在环境温度和压力下发生。30分钟后,停止桨叶式搅拌器,将液体介质、活性共结晶材料和残留前体组分的浆料从圆底烧瓶中除去,并进行过滤处理。使任何剩余的溶剂从残留物中蒸发。用固态NMR分析残留物(2.5g),证实含有1:2的咖啡因:草酸共晶(共结晶产率=81.8%,咖啡因=15.8%且草酸=2.4%)。
实施例4
2-氨基嘧啶和水杨酸盐的形成
将抗溶剂(33.4g/97.8重量%的无水环己烷)和溶剂(0.75g/2.2重量%的无水甲醇)倒入混合器(振荡挡板反应器),以形成用于所述前体组分成盐的液体介质。运行运动发生器,给所述液体介质提供振荡运动(行程幅度=12.5mm;频率1.5Hz),然后将盐前体组分(分别为1.38g水杨酸与0.95g 2-氨基嘧啶(化学计量比1:1))引入所述混合器中。反应在16℃下进行,但在反应过程中没有具体地测量压力,但对实验室而言,典型的范围是96.6-104.28kPa。30分钟后,停止运动发生器,将液体介质、盐和残留前体组分的浆料从流动混合器中除去,并进行过滤处理。使任何剩余的溶剂从残留物中蒸发。用粉末X射线衍射仪分析残留物(2.11g)(见图3),通过比较图3的光谱和剑桥结构数据库中所述盐(条目名称LEWROU)的光谱(示于图4),证实含有1:1的2-氨基嘧啶:水杨酸盐,这两种光谱的比较示于图5中。
实施例5
咖啡因和草酸的共结晶
分别称出抗溶剂(33.4g/96.1重量%的己烷)和溶剂(1.34g/3.9重量%的无水甲醇)。将一半己烷倒入混合器(设置有具有顶置式马达的PTFE桨叶式搅拌器的圆底烧瓶(180rpm))。运行桨叶式混合器,搅拌液体介质,然后将活性前体组分和共结晶助形成物前体组分(分别是2.05g咖啡因和0.51g草酸(化学计量比2:1))引入所述混合器中。加入剩余的己烷,以帮助洗涤烧瓶侧面上的固体,使其进入液体介质。搅拌1分钟后,将甲醇加入到反应中。如实施例1中所述,反应在环境温度和压力下发生。30分钟后,停止桨叶式混合器,将液体介质、活性共结晶材料和残留前体组分的浆料从圆底烧瓶中除去,并进行过滤处理。使任何剩余的溶剂从残留物中蒸发。用粉末X射线衍射仪分析残留物(2.56g),证实含有1:2的咖啡因:草酸共晶。
还用无水环己烷(33.4g/97.8重量%)作为抗溶剂和无水甲醇(0.75g/2.2重量%)作为溶剂,重复上面的实验。再次使用粉末X射线衍射仪对残留物进行分析,证实含有1:2的咖啡因:草酸共晶。

Claims (13)

1.制备活性结晶材料的方法,其包括:在包含抗溶剂的液体介质中分散所述活性结晶材料的前体组分;保持分散体一段时间,在此期间形成所述活性结晶材料;并且在所述期间,将分散体暴露于溶剂,所述溶剂以其小的重量比例存在于所述液体介质中。
2.如权利要求1所述的方法,其中与所述溶剂相比,所述抗溶剂形成分子间相互作用的能力较弱,并且其中所述活性结晶材料比至少一种所述前体组分在所述溶剂中的溶解度低。
3.如权利要求1或2所述的方法,其中所述活性结晶材料是活性多组分结晶材料,特别是活性共结晶材料。
4.如前述权利要求中任一项所述的方法,其中将所述前体组分分散在包含抗溶剂和溶剂两者的液体介质中。
5.如前述权利要求中任一项所述的方法,其中所述前体组分是固体,并将其直接加入所述液体介质中。
6.如前述权利要求中任一项所述的方法,其包括将所述前体组分分散在所述液体介质中并使用高速混合条件保持分散体。
7.如前述权利要求中任一项所述的方法,其包括分离所述活性结晶材料或活性共结晶材料。
8.如前述权利要求中任一项所述的方法,其中所述抗溶剂构成所述液体介质的主要比例,所述溶剂构成所述液体介质的小比例。
9.如权利要求8所述的方法,其中所述溶剂构成不超过所述液体介质的10重量%。
10.如前述权利要求中任一项所述的方法,其中所述抗溶剂是选自无环的和环状的脂族烃和芳族烃以及它们的混合物的非极性液体有机化合物。
11.如前述权利要求中任一项所述的方法,其中所述溶剂是极性非质子或极性质子液体有机化合物或水。
12.如权利要求11所述的方法,其中所述溶剂是极性非质子液体有机化合物,其选自羧酸的官能衍生物、碳酸酯、醛、酮、醚、杂环化合物、腈、亚砜、酯和胺以及它们的混合物。
13.如权利要求11所述的方法,其中所述溶剂是极性质子液体有机化合物,其选自水、羧酸、脂族醇、苯基醇以及它们的混合物。
CN201380071975.7A 2012-12-11 2013-12-11 用于制备活性结晶材料的方法 Expired - Fee Related CN105008312B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1222287.3 2012-12-11
GBGB1222287.3A GB201222287D0 (en) 2012-12-11 2012-12-11 Methods for making active crystalline materials
PCT/GB2013/053255 WO2014091226A1 (en) 2012-12-11 2013-12-11 Methods for making active crystalline materials

Publications (2)

Publication Number Publication Date
CN105008312A true CN105008312A (zh) 2015-10-28
CN105008312B CN105008312B (zh) 2019-02-15

Family

ID=47602405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380071975.7A Expired - Fee Related CN105008312B (zh) 2012-12-11 2013-12-11 用于制备活性结晶材料的方法

Country Status (8)

Country Link
US (2) US9439914B2 (zh)
EP (1) EP2931682A1 (zh)
JP (1) JP6215958B2 (zh)
CN (1) CN105008312B (zh)
AU (1) AU2013357015B2 (zh)
BR (1) BR112015013777A2 (zh)
GB (1) GB201222287D0 (zh)
WO (1) WO2014091226A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201222287D0 (en) 2012-12-11 2013-01-23 Ct For Process Innovation Ltd Methods for making active crystalline materials
FR3023177B1 (fr) * 2014-07-04 2016-08-12 Centre Nat De La Rech Scient (C N R S) Procede de preparation de co-cristaux par evaporation flash

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012623A1 (en) * 1997-09-06 1999-03-18 Reuter Chemische Apparatebau Kg Separation process
WO2008143500A1 (en) * 2007-05-22 2008-11-27 Ultimorphix Technologies B.V. Tenofovir disoproxil hemi-fumaric acid co-crystal
EP2199274A1 (en) * 2008-12-16 2010-06-23 Laboratorios Del. Dr. Esteve, S.A. Co-crystals of tramadol and paracetamol
CN102186465A (zh) * 2008-10-17 2011-09-14 埃斯蒂文博士实验室股份有限公司 反胺苯环醇与nsaid的共晶
US8318943B1 (en) * 2010-04-16 2012-11-27 Takeda Pharmaceuticals U.S.A., Inc. Sorbitol/dexlansoprazole co-crystals and method for making same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1436295A4 (en) * 2001-09-07 2007-07-11 Teva Pharma CRISTALLINE FORMS OF VALACYCLOVIR HYDROCHLORIDE
US7927613B2 (en) 2002-02-15 2011-04-19 University Of South Florida Pharmaceutical co-crystal compositions
CA2548281C (en) 2003-12-09 2013-11-12 Medcrystalforms, Llc Method of preparation of mixed phase co-crystals with active agents
FI20045381A0 (fi) 2004-10-12 2004-10-12 Oulun Yliopisto Huokosominaisuuden määritysmenetelmä, näyteyksikön valmistusmenetelmä ja näyteyksikkö
ITMI20050551A1 (it) * 2005-04-01 2006-10-02 Dipharma Spa Forma cristallina alfa di losartan potassio
US7169920B2 (en) 2005-04-22 2007-01-30 Xerox Corporation Photoreceptors
EP1988899A4 (en) 2006-02-03 2009-12-30 Reddys Lab Ltd Dr ARIPIPRAZOLE-CO-CRYSTALS
TW200901889A (en) * 2007-02-09 2009-01-16 Basf Se Crystalline complexes of agriculturally active organic compounds
WO2008153945A2 (en) 2007-06-06 2008-12-18 University Of South Florida Nutraceutical co-crystal compositions
US20100184744A1 (en) 2007-07-18 2010-07-22 Feyecon Development & Implementation B.V. Method of preparing a pharmaceutical co-crystal composition
AU2009279604A1 (en) 2008-08-06 2010-02-11 Bionevia Pharmaceuticals, Inc. Flupirtine hydrochloride maleic acid cocrystal
JP5511828B2 (ja) * 2008-10-14 2014-06-04 ビーエーエスエフ ソシエタス・ヨーロピア ペンジメタリンとメタザクロルの結晶複合体
US8415507B2 (en) 2010-02-03 2013-04-09 Laurus Labs Private Limited Pterostilbene cocrystals
TW201317203A (zh) 2011-10-25 2013-05-01 Univ Nat Central 共晶化合物及其製備方法以及氣體產生器推進劑之氧化劑
GB201222287D0 (en) * 2012-12-11 2013-01-23 Ct For Process Innovation Ltd Methods for making active crystalline materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012623A1 (en) * 1997-09-06 1999-03-18 Reuter Chemische Apparatebau Kg Separation process
WO2008143500A1 (en) * 2007-05-22 2008-11-27 Ultimorphix Technologies B.V. Tenofovir disoproxil hemi-fumaric acid co-crystal
CN102186465A (zh) * 2008-10-17 2011-09-14 埃斯蒂文博士实验室股份有限公司 反胺苯环醇与nsaid的共晶
EP2199274A1 (en) * 2008-12-16 2010-06-23 Laboratorios Del. Dr. Esteve, S.A. Co-crystals of tramadol and paracetamol
US8318943B1 (en) * 2010-04-16 2012-11-27 Takeda Pharmaceuticals U.S.A., Inc. Sorbitol/dexlansoprazole co-crystals and method for making same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴俊森主编: "《大学基础化学实验》", 31 August 2006, 化学工业出版社教材出版中心 *
夏玉宇主编: "《化学实验室手册》", 30 June 2004, 化学工业出版社化学与应用化学出版中心 *

Also Published As

Publication number Publication date
US20150313920A1 (en) 2015-11-05
CN105008312B (zh) 2019-02-15
US20160347680A1 (en) 2016-12-01
JP2016505569A (ja) 2016-02-25
EP2931682A1 (en) 2015-10-21
AU2013357015A1 (en) 2015-07-02
BR112015013777A2 (pt) 2017-07-11
JP6215958B2 (ja) 2017-10-18
US9439914B2 (en) 2016-09-13
US10280124B2 (en) 2019-05-07
AU2013357015B2 (en) 2017-07-20
GB201222287D0 (en) 2013-01-23
WO2014091226A1 (en) 2014-06-19

Similar Documents

Publication Publication Date Title
Belenguer et al. Understanding the influence of surface solvation and structure on polymorph stability: a combined mechanochemical and theoretical approach
Feng et al. Efficient kinetic macrocyclization
Solares-Briones et al. Mechanochemistry: A green approach in the preparation of pharmaceutical cocrystals
Bucar et al. Preparation and reactivity of nanocrystalline cocrystals formed via sonocrystallization
Cinčić et al. Solvent-free polymorphism control in a covalent mechanochemical reaction
Hussin et al. Synthesis and characterization of green menthol-based low transition temperature mixture with tunable thermophysical properties as hydrophobic low viscosity solvent
Brittain Vibrational spectroscopic studies of cocrystals and salts. 1. The Benzamide− Benzoic acid system
Patil et al. Engineering Void Space Enclosed within Resorcin [4] arene-Based Supramolecular Frameworks
Gnutzmann et al. Solvent-triggered crystallization of polymorphs studied in situ
CN105008312A (zh) 用于制备活性结晶材料的方法
Buanz et al. Formation of highly metastable β glycine by confinement in inkjet printed droplets
Wang et al. Green mechanochemical strategy for the discovery and selective preparation of polymorphs of active pharmaceutical ingredient γ-aminobutyric acid (GABA)
PT107166B (pt) Síntese e engenharia de partículas de cocristais
Rathi et al. A review on co-crystals of Herbal Bioactives for solubility enhancement: preparation methods and characterization techniques
Wang et al. Surprising Effect of Carbon Chain Length on Inducing Ability of Additives: Elusive Form-II of γ-Aminobutyric Acid (GABA) Induced by Sodium Carboxylate Additives
Cao et al. Preparation, stabilization, and dissolution enhancement of vortioxetine hydrobromide metastable polymorphs in silica nanopores
Kuzmicz et al. X-ray diffraction, FT-IR, and 13C CP/MAS NMR structural studies of solvated and desolvated C-Methylcalix [4] resorcinarene
CN107417708B (zh) 一种水溶性铜(ii)配合物及其合成方法和应用
Wang et al. Structural diversity of diosgenin hydrates: Effect of initial concentration, water volume fraction, and solvent on crystallization
Mattsson et al. Phase-selective low molecular weight organogelators derived from allylated d-mannose
Horin et al. Diffusion NMR Reveals the Structures of the Molecular Aggregates of Resorcin [4] arenes and Pyrogallol [4] arenes in Aromatic and Chlorinated Solvents
Li et al. Recent research progress on crystallization strategies for difficult-to-crystallize organic molecules
Huang et al. Mechanistic study on metastable and stable liquid–liquid phase separation explored by molecular simulation and thermodynamic analysis
Kang et al. One-pot solvent-free reductive amination with a solid ammonium carbamate salt from CO 2 and amine
Alshammari Extraction of Natural Products using Deep Eutectic Solvents

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190215