CN105007955B - 适用于植入物的耐用高强度聚合物复合材料及其制品 - Google Patents

适用于植入物的耐用高强度聚合物复合材料及其制品 Download PDF

Info

Publication number
CN105007955B
CN105007955B CN201480014136.6A CN201480014136A CN105007955B CN 105007955 B CN105007955 B CN 105007955B CN 201480014136 A CN201480014136 A CN 201480014136A CN 105007955 B CN105007955 B CN 105007955B
Authority
CN
China
Prior art keywords
valve
leaflet
composite material
elastomer
support construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201480014136.6A
Other languages
English (en)
Other versions
CN105007955A (zh
Inventor
W·C·布鲁奇曼
P·D·加斯乐
C·L·哈特曼
P·J·沃尔什
C·F·怀特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates Inc
Original Assignee
WL Gore and Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/798,595 external-priority patent/US9554900B2/en
Application filed by WL Gore and Associates Inc filed Critical WL Gore and Associates Inc
Publication of CN105007955A publication Critical patent/CN105007955A/zh
Application granted granted Critical
Publication of CN105007955B publication Critical patent/CN105007955B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/48Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2415Manufacturing methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0076Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/20Materials or treatment for tissue regeneration for reconstruction of the heart, e.g. heart valves

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

批露了一种薄的、生物相容的、高强度的复合材料,该复合材料适用于调节血流方向的瓣膜。在一方面中,所述复合材料在高循环弯曲应用中能维持柔性,使得它特别适用于高弯曲植入物如假体心脏瓣膜瓣叶。所述复合材料包括多孔聚合物膜和弹性体,其中所述弹性体填充所述多孔聚合物膜的基本上所有的孔。

Description

适用于植入物的耐用高强度聚合物复合材料及其制品
相关申请的交叉参考
本申请是2011年04月01日提交的共同待审的美国专利申请号13/078,774的部分继续申请,该文的全部内容通过引用纳入本文。
领域
本发明涉及用于医疗植入物的材料。具体来说,本发明涉及生物相容材料,所述生物相容材料适用于包括人工心脏瓣膜的高循环弯曲应用。
背景技术
人工心脏瓣膜优选的应在体内坚持至少十年。为了坚持那么久,人工心脏瓣膜应展现足够的耐久性,至少能循环4亿次或以上。所述瓣膜,更具体的为心脏瓣膜瓣叶,必须抵御结构退化和不良生物学结果,前者包括形成孔、裂缝等,后者包括钙化和血栓症。
此前已有多种聚合物材料用作假体心脏瓣膜瓣叶。但这些瓣叶在植入后两年内就因发生硬化或形成孔而失效。人们尝试通过加厚瓣叶以提高瓣叶耐用性,却导致了瓣膜的不可接受的血流动力学性能,即穿过张开瓣膜的压降过高。
因此,仍需要提供一种生物相容的人工心脏瓣膜设计,所述人工心脏瓣膜能在体内坚持至少十年并且有足够的耐久性,能循环弯曲至少4亿次或更多。
概述
根据一种实施方式,提供了一种用于调节血流方向的瓣膜。在一种实施方式中,所述瓣膜包括瓣叶,该瓣叶包括具有含纤维的至少一种合成聚合物膜的复合材料,其中大多数的所述纤维的直径小于1微米,所述纤维之间的间隔限定孔,弹性体设置在基本上所有的孔中。
在另一种实施方式中,所述瓣膜包括支撑结构,以及至少一种瓣叶支撑在所述支撑结构上并可在张开和闭合位置之间移动。各瓣叶包括复合材料,该复合材料包括至少一种合成聚合物膜和弹性体。所述至少一种合成聚合物膜包括纤维,其中大多数的所述纤维的直径小于1微米。所述纤维之间的间隔限定孔。所述弹性体设置在基本上所有的孔中。
在另一种实施方式中,所述瓣膜包括支撑结构,以及至少一种瓣叶支撑在所述支撑结构上并可在张开和闭合位置之间移动。各瓣叶包括复合材料,该复合材料包括至少一种合成聚合物膜和弹性体。所述至少一种合成聚合物膜包括孔,且所述弹性体存在于基本上所有的孔中。所述复合材料包括10重量%-90重量%的合成聚合物膜。
在另一种实施方式中,所述瓣膜包括支撑结构,以及至少一种瓣叶支撑在所述支撑结构上并可在张开和闭合位置之间移动。各瓣叶包括复合材料,该复合材料包括至少一种合成聚合物膜和弹性体。所述至少一种合成聚合物膜包括孔径小于5微米的孔,且所述弹性体存在于基本上所有的孔中。
在另一种实施方式中,提供一种形成假体心脏瓣膜的瓣叶的方法。所述方法包括提供一种复合材料,该复合材料包括至少一种合成聚合物膜和弹性体,所述至少一种合成聚合物膜包括纤维,其中大多数的所述纤维的直径小于1微米,所述纤维之间的间隔限定孔,所述弹性体设置在基本上所有的孔中;使多于一层的复合材料层与其它复合材料层接触;以及将所述复合材料层粘合在一起。
在另一种实施方式中,提供一种形成包括瓣叶的假体(prosthetic)心脏瓣膜的方法。所述方法包括:提供基本上环形的支撑结构;提供一种复合材料,该复合材料包括至少一种合成聚合物膜和弹性体,所述至少一种合成聚合物膜包括纤维,其中大多数的所述纤维的直径小于1微米,所述纤维之间的间隔限定孔,所述弹性体设置在基本上所有的孔中;绕着所述支撑结构包覆所述复合材料,使多于一层的复合材料层与其它复合材料层接触;以及将所述复合材料层与其自身以及所述支撑结构粘合在一起。
在另一种实施方式中,提供一种形成假体心脏瓣膜的瓣叶的方法。所述方法包括提供一种复合材料,该复合材料包括至少一种合成聚合物膜和弹性体,所述至少一种合成聚合物膜包括纤维,所述纤维之间的间隔限定孔径小于5微米的孔,所述弹性体设置在基本上所有的孔中;使多于一层的复合材料层与其它复合材料层接触;以及将所述复合材料层粘合在一起。
在另一种实施方式中,提供一种形成包括瓣叶的假体(prosthetic)心脏瓣膜的方法。所述方法包括:提供基本上环形的支撑结构;提供一种复合材料,该复合材料包括至少一种合成聚合物膜和弹性体,所述至少一种合成聚合物膜包括纤维,所述纤维之间的间隔限定孔径小于5微米的孔,所述弹性体设置在基本上所有的孔中;绕着所述支撑结构包覆所述复合材料,使多于一层的复合材料层与其它复合材料层接触;以及将所述复合材料层与其自身以及所述支撑结构粘合在一起。
在另一种实施方式中,所述瓣膜包括基本上环形的支撑结构,该支撑结构具有第一端部以及与第一端部相反的第二端部。第二端部包括从该第二端部纵向延伸的多个杆。复合材料片材从杆延伸到杆,其中通过杆之间的复合材料限定瓣叶。在一种实施方式中,将缓冲元件偶合到杆,所述缓冲元件为杆和瓣叶之间提供缓冲,从而将瓣叶在张开和闭合位置循环时瓣叶上的应力和磨损最小化。
附图简要说明
附图用来帮助进一步理解本发明,纳入说明书中,构成说明书的一部分,附图显示了本发明的实施方式,与说明书一起用来解释本发明的原理。
图1A、1B、1C和1D分别为根据一种实施方式的形成心脏瓣膜瓣叶的工具的前视图、侧视图、俯视图和透视图;
图2A是根据一种实施方式的缓冲垫的透视图,所述缓冲垫正处于在瓣叶工具上伸展的状态;
图2B为根据一种实施方式的释放层的透视图,所述释放层正处于在如图2A所示的覆盖了缓冲垫的瓣叶工具上伸展的状态;
图3A、3B和3C分别为根据一种实施方式的、说明形成瓣膜瓣叶步骤时的俯视图、侧视图和前视图,其中,覆盖了缓冲垫和释放层(分别如图2A和2B所示)的瓣叶工具置于复合材料上,以便切割和进一步组装;
图4为根据一种实施方式的切割过量瓣叶材料前三瓣叶组件的俯视图;
图5A为根据一种实施方式的三瓣叶组件和底座工具的透视图;
图5B为根据一种实施方式的三瓣叶组件和底座工具对齐并装配形成底座工具组件的透视图;
图6A为根据一种实施方式的支架框架或支撑结构的平面展开图;
图6B为根据一种实施方式的覆盖了聚合物涂层的支撑结构的平面视图;
图7A、7B和7C是根据一种实施方式的用于形成瓣膜瓣叶的膨胀含氟聚合物膜的扫描电镜图片;
图8是根据一种实施方式的瓣膜组件的透视图;
图9A和9B分别为根据一种实施方式的如图8所示的心脏瓣膜组件示例性的处于闭合和张开位置的俯视图;
图10是从心脏流动脉冲复制器系统所测输出的图谱,所述心脏流动脉冲复制器系统用于测量根据实施方式制备的瓣膜组件的性能;
图11A和11B分别是从高速疲劳试验机所测输出的图谱和数据表,所述高速疲劳试验机用于测量根据实施方式制备的瓣膜组件的性能;
图12A和12B分别是测试根据实施方式的瓣膜组件时,所述瓣膜组件循环0次和约2.07亿次后从心脏流动脉冲复制器系统所测输出的图谱;
图13A和13B分别是测试根据实施方式制备的瓣膜组件时,所述瓣膜组件循环约0.79亿次和约1.98亿次后从心脏流动脉冲复制器系统所测输出的图谱;
图14为根据一种实施方式的用于制造心脏瓣膜组件的心轴的透视图;
图15为根据一种实施方式的用于心脏瓣膜的瓣膜框架的透视图;
图16为根据一种实施方式的如图15所示的瓣膜框架与如图14所示的心轴嵌入在一起后的透视图;
图17是根据一种实施方式的模制瓣膜的透视图;
图18为根据一种实施方式的模制瓣膜的透视图,所述模制瓣膜具有附件用以增强相邻瓣膜瓣叶和瓣膜框架上杆之间的连接;
图19是根据一种实施方式的瓣膜框架的透视图;
图20为根据一种实施方式的如图19所示的瓣膜框架的透视图,所述瓣膜框架的杆已包覆了缓冲元件;
图21是根据一种实施方式的立体光刻技术形成的心轴的透视图;
图22是根据一种实施方式的、将如图20所示的缓冲元件包覆的瓣膜框架安装至如图21所示的心轴上的透视图;和
图23是根据一种实施方式的瓣膜的透视图,所述瓣膜的瓣膜瓣叶偶合到如图20所示的包覆了缓冲的瓣膜框架,并支撑在该瓣膜框架上;
图24是根据一种实施方式的瓣膜框架的透视图;
图25是根据一种实施方式的具有缓冲层的瓣膜框架的透视图;
图26是根据一种实施方式的心轴的透视图;
图27是根据一种实施方式的瓣膜组件的透视图;
图28是根据一种实施方式的心轴的透视图;
图29是根据一种实施方式的瓣膜的透视图;
图30A是根据一种实施方式的用来形成瓣膜瓣叶的微孔聚乙烯膜的表面的扫描电子显微图象;
图30B是根据一种实施方式的如图30B所示的微孔聚乙烯膜的横截面的扫描电子显微图象;
图31A是根据一种实施方式的用来形成瓣膜瓣叶的拉伸的微孔聚乙烯膜的扫描电子显微图象;
图31B是根据一种实施方式的如图31B所示的微孔聚乙烯膜的横截面的扫描电子显微图象。
具体描述
现在将参考附图中显示的实施方式,在本文中使用特定的语言对其加以描述。但应理解,本发明的范围并不因此而受到限制;对所示方法和设备的改变和进一步的改进,以及对本发明的原理的任何进一步的应用,都在本发明的构思范围之内,与本发明相关的领域内的技术人员通常都能想到。
本文所用术语的定义在下文的附录中列出。
本发明解决了业界长期以来的需求,开发了能满足高循环弯曲植入物应用如心脏瓣膜瓣叶中的耐用性和生物相容性要求的材料。已观察到由多孔含氟聚合物或者更具体的不含弹性体的ePTFE形成的心脏瓣膜瓣叶的缺陷在于在高循环弯曲测试和动物体内植入时会硬化。
如下文所更加详细描述,在一实施方式中,通过在孔中加入相对高百分比却具有相对低强度的弹性体可以显著提高多孔聚合物心脏瓣膜瓣叶的弯曲耐用性。任选的,在复合材料层之间可以加入额外的弹性体层。令人惊讶的是,在某些实施方式中,多孔聚合物膜吸收了弹性体,该弹性体的存在增加了瓣叶的总厚度,但因添加所述弹性体而使聚合物膜变厚的厚度并没有妨害或降低弯曲耐用性。此外,当弹性体以重量计达到最低百分数后,我们发现含氟聚合物膜的性能随着弹性体百分比的升高而变好,结果是显著提高了循环寿命,可在体外循环超过4千万次,且在某些可控的实验室条件下没有显示钙化的迹象。
根据一实施方式的材料包括复合材料,所述复合材料包括膨胀含氟聚合物膜和弹性体材料。本领域的技术人员应理解,在本发明的精神范围内,多种类型的含氟聚合物膜和多种类型的弹性材料皆可组合。本领域的技术人员还应理解,在本发明的精神范围内,所述弹性材料可包括多种弹性体、多种类型的非弹性组分如无机填料、治疗剂、辐射不透明标记物等等。
在一实施方式中,所述复合材料包括由多孔ePTFE膜制成的膨胀的含氟聚合物材料,例如如美国专利号7,306,729所一般描述的。在其他实施方式中,所述复合材料包括由多孔聚乙烯膜制成的聚乙烯材料。
用于形成实施方式中所述的膨胀的含氟聚合物材料的可膨胀含氟聚合物可包括PTFE均聚物。在替代实施方式中,也可使用PTFE混合物、可膨胀的改性PTFE和/或膨胀PTFE共聚物。合适的含氟聚合物材料的非限制性例子参见例如美国专利号5,708,044(布兰卡(Branca));美国专利号6,541,589(白尔力(Baillie));美国专利号7,531,611(撒波尔(Sabol)等);美国专利申请号11/906,877(福特(Ford));以及美国专利申请号12/410,050(许(Xu)等)。
根据一些实施方式的膨胀含氟聚合物包括任何合适的微结构以获得所需的瓣叶性能。在一实施方式中,如戈尔(Gore)在美国专利号3,953,566所述,所述膨胀的含氟聚合物可包括原纤维相互连接的节点的微结构。在一实施方式中,所述膨胀的含氟聚合物膜的微结构包括原纤维相互连接的节点,如图7A的扫描电镜图片所示。原纤维从节点沿着多个方向延伸,因此所述膜基本为均匀结构。具有这种微结构的膜在两正交方向上的基质抗张强度之比小于约2,且可能小于约1.5。
在另一实施方式中,所述膨胀的含氟聚合物的微结构为基本只有原纤维,例如,图7B和7C所示,如百西诺(Bacino)在美国专利号7,306,729所一般描述的。图7C的放大倍数比图7B高,也是膨胀的含氟聚合物膜的扫描电镜图片,且更加清楚的显示了基本只含原纤维的均匀微结构。如图7B和7C所示基本只含原纤维的膨胀的含氟聚合物膜可具有高表面积,如大于约20m2/g或大于约25m2/g,并且在某些实施方式中可提供高度平衡的强度材料,在两正交方向上基质抗张强度的乘积至少为1.5x 105MPa2,和/或两正交方向上基质抗张强度之比小于约2,且可能小于约1.5。根据一些实施方式,预期膨胀的含氟聚合物膜的平均流动孔径小于约5微米、小于约1微米和小于约0.10微米。
根据一些实施方式的膨胀的含氟聚合物可定制成任何合适的厚度和重量以获得所需的瓣叶性能。在某些情况下,可能需要使用非常薄的膨胀的含氟聚合物膜,其厚度小于约1.0μm。在其他的实施方式中,可能需要使用厚度大于约0.1μm且小于约20μm的膨胀的含氟聚合物膜。所述膨胀的含氟聚合物膜的单位质量可为小于约1g/m2至大于约50g/m2
基于密度为约2.2g/cm3的PTFE时,包括根据一种实施方式的膨胀的含氟聚合物的膜的基质抗张强度范围可为约50MPa-约400MPa或者更大。
为了提高瓣叶的所需性能,可在孔中、组成膜的材料中或者膜的层与层之间结合额外的材料。根据一实施方式的复合材料,包括含氟聚合物膜且该膜的厚度范围为从约500μm至小于约0.3μm。
结合了弹性体的膨胀的含氟聚合物膜的实施方式至少在几个比较明显的方面提供用于高循环弯曲植入物应用(如心脏瓣膜瓣叶)所需的性能特征。例如,弹性体的加入提高了瓣叶的疲劳性能,消除或减少了仅用ePTFE材料时观察到的硬化现象。此外,它降低了所述材料进行永久固定变形的可能性,例如起皱或留下折痕,这些永久固定变形会损害瓣叶的性能。在某实施方式中,所述弹性体基本占据了膨胀的含氟聚合物膜的孔结构中的所有孔隙体积或者空间。在另一实施方式中,所述弹性体存在于至少一层含氟聚合物层基本上所有的孔中。因为弹性体填充了孔隙体积或存在于基本上所有孔中,所以减少了外来物质结合进入复合材料的空间,所述结合是不希望发生的。这种外来物质的例子之一是钙。如果钙结合进入所述复合材料,例如,在心脏瓣膜瓣叶中使用时,会在循环中发生机械损坏,并因此导致在瓣叶上形成孔且使其血流动力学性能下降。
在一实施方式中,与ePTFE结合的弹性体是四氟乙烯(TFE)和全氟甲基乙烯基醚(PMVE)的热塑性共聚物,如美国专利号7,462,675所述。如上文所述,所述弹性体与膨胀的含氟聚合物膜相结合,从而该弹性体占据了膨胀的含氟聚合物膜里面的基本上所有的孔隙空间或者孔。可用多种方法向膨胀的含氟聚合物膜的孔里填充弹性体。在某实施方式中,填充膨胀的含氟聚合物膜的孔的方法包括以下步骤:用合适的溶剂溶解弹性体以制备具有适当粘度和表面张力的溶液,该溶液应能部分的或全部流入膨胀的含氟聚合物膜的孔中,以及使溶剂蒸发,将填料留在孔中。
在另一实施方式中,填充膨胀的含氟聚合物膜的孔的方法包括以下步骤:通过分散来递送填料,部分或全部填充膨胀的含氟聚合物膜的孔。
另一实施方式中,填充膨胀的含氟聚合物膜的孔的方法包括以下步骤:在使弹性体流入膨胀的含氟聚合物膜的孔中的热和/或压力条件下,使多孔膨胀的含氟聚合物膜与弹性体片材接触。
另一实施方式中,填充膨胀的含氟聚合物膜的孔的方法包括以下步骤:使弹性体在膨胀的含氟聚合物膜的孔中聚合,首先在所述孔中加入弹性体的预聚物,然后至少部分的固化该弹性体。
当弹性体的重量百分数达到最小值后,由含氟聚合物材料或ePTFE构造成的瓣叶,通常随着弹性体百分数的升高而具备更好的性能,结果是显著延长了循环寿命。在一种实施方式中,所述与ePTFE结合的弹性体是四氟乙烯和全氟甲基乙烯基醚的热塑性共聚物,如美国专利7,462,675所述,以及如本领域技术人员所知晓的其他引用所述。例如,在实施例1所示的另一实施方式中,瓣叶由复合材料形成并经过了循环测试,所述复合材料中以重量计弹性体为ePTFE的53%。在大约2亿次测试循环后,观察到了硬化现象,但只对血流动力学产生了微小的影响。当弹性体的重量百分数以重量计提高至约83%时,如实施例2的实施方式所述,在约2亿次循环时没有观察到硬化现象,也没有观察到血流动力学有负面变化。相反,由非复合材料制成的瓣叶,即,全为不含弹性体的ePTFE,如比较例B所述,在4千万次测试循环时就有非常明显的严重硬化现象。如这些实施例所证明,通过在含氟聚合物膜的孔中加入相对高百分数却具有相对低强度的弹性体可以显著提高多孔含氟聚合物膜的耐用性。含氟聚合物膜的高材料强度,使得具体的构造可以非常薄。
其他可能适用于本发明的生物相容性聚合物包括但不限于以下组:氨基甲酸酯(urethane)、硅酮(有机聚硅氧烷)、聚硅氧烷-聚氨酯共聚物、苯乙烯/异丁烯共聚物、聚异丁烯、聚乙烯-共聚-聚乙酸乙烯酯、聚酯共聚物、尼龙共聚物、氟化烃聚合物和共聚物或前述聚合物的混合物。
除了膨胀的含氟聚合物以外,其它生物相容的合成聚合物也可适于用作多孔膜。如下所述,提供包括微孔聚乙烯的实施方式作为适用于特定目的的生物相容的聚合物。
微孔聚乙烯膜的一实施方式包括材料片材,该材料片材基本上全部包括直径小于约1微米的纤维。在另一种实施方式中,微孔聚乙烯膜包括无纺材料片材,该无纺材料片材基本上全部包括直径小于约1微米的纤维。在某些情况下,可能需要使用非常薄的微孔聚乙烯膜,其厚度小于约10.0μm。在其他实施方式中,可能需要使用厚度小于约0.6μm的微孔聚乙烯膜。
应理解,通过比较材料的比表面积,可将在本文所述的实施方式中批露的微孔膜与其它结构例如织物、针织物和纤维缠绕区别开。本文所述的微孔膜的实施方式的比表面积大于约4.0m2/毫升。根据本文所述的其它实施方式的微孔膜的比表面积大于约10.0m2/毫升。本文所述的实施方式表明,当用作瓣叶材料时,比表面积大于约4.0-大于约60m2/毫升的膜至少显著改善但不限于心脏瓣膜的耐久性和寿命。
应理解,或者通过比较材料的纤维直径,可将在本文所述的实施方式中批露的微孔膜与其它结构例如织物、针织物和纤维缠绕区别开。本文所述的实施方式的微孔膜包含大多数直径小于约1微米的纤维。本文所述的其它实施方式的微孔膜包含大多数直径小于约0.1微米的纤维。本文所述的实施方式意识到,当用作瓣叶材料时,包括大多数小于约1微米到超出小于约0.1微米的纤维的膜至少显著改善但不限于心脏瓣膜的耐久性和寿命。
本发明实施方式的微孔聚合物膜可包括任意合适的微观结构和聚合物来实现所需的瓣叶性能。在一些实施方式中,微孔聚合物膜是多孔聚乙烯,其具有基本上只有纤维的微观结构,例如图30A和30B所示的用于实施例4所包括的材料以及图31A和31B所示的用于实施例5所包括的材料。图30显示多孔聚乙烯膜的基本上均匀的微观结构,其基本上只具有直径小于约1微米的纤维。多孔聚乙烯膜的厚度是0.010mm,孔隙率是31.7%,质量/面积是6.42g/m2,以及比表面积为28.7m2/毫升。
图31A和31B分别是图30A和30B(分别是表面和横截面视图)所示的相同多孔聚乙烯膜的表面和横截面视图,该多孔聚乙烯膜根据如下实施例5中所述的方法进行拉伸。拉伸的聚乙烯膜保留基本上只具有直径小于约1微米的纤维的基本上均匀的微观结构。拉伸的聚乙烯膜的厚度是0.006mm,孔隙率是44.3%,质量/面积是3.14g/m2,以及比表面积为18.3m2/毫升。根据一些实施方式,预期微孔聚乙烯膜的平均流动孔径小于约5微米、小于约1微米和小于约0.10微米。
提供下面的非限制性实施例来进一步阐述各种实施方式。
实施例1
根据一种实施方式,心脏瓣膜瓣叶由复合材料形成并与金属性可膨胀球囊支架连接,所述复合材料包括膨胀的含氟聚合物膜和弹性材料,过程如下文的实施方式所述:
通过重复折叠一ePTFE层形成厚的、牺牲性工具缓冲垫或缓冲层,共形成四层。所述ePTFE层宽约为5cm(2”)、厚约为0.5mm(0.02”)且具有高度的压缩性,形成缓冲垫。参考图1和图2,所述缓冲垫200然后在瓣叶工具上伸展(图2),该瓣叶工具用100概括标注。所述瓣叶工具100具有瓣叶部分102、主体部分104和底部端部106。所述瓣叶工具100的瓣叶部分102通常有一弧形、凸面形状的端部表面103。所述缓冲垫200在瓣叶工具100瓣叶部分102的端部表面103上伸展和平滑,方法为按箭头所示的方向(图2A)压迫瓣叶工具100。所述缓冲垫200的外周边缘202则在瓣叶工具100的底部端部106上伸展,并且缠绕以把缓冲垫200固定在位(图2B)。
参考图2B,然后把释放层204在瓣叶工具100瓣叶部分102伸展,所述瓣叶部分102在前一步骤中已经被缓冲垫200覆盖。在一种实施方式中,所述释放层204由基本为非孔ePTFE制成,且沿其外部表面或侧面沉积了一层聚氟化乙烯丙烯(FEP)。所述释放层204在瓣叶工具100伸展,使得FEP层面向缓存垫200,而基本为非孔ePTFE制成的一面向外或远离缓冲垫200。所述释放层厚约为25微米,且具有足够的长度和宽度以使所述释放层204伸展时能盖住瓣叶工具100的端部106。和上一步骤拉伸缓冲垫200类似,将释放层204的外周边缘206拉向瓣叶工具100的底部端部106,并且缠绕在所述瓣叶工具100的底部端部106上以将持释放层204保持或固定在正确位置。然后,释放层204的FEP层局部熔化,并因此固定在缓冲垫200上,需要时,可以使用电烙铁。
重复步骤1)和步骤2)分别制备三个瓣叶工具,每个工具都有覆盖了释放层的缓冲垫。
根据一种实施方式,瓣叶材料由复合材料形成,该复合材料包括吸收了含氟弹性体的ePTFE膜。将一块约10cm宽的所述复合材料包裹在圆形心轴上形成管。所述复合材料包括三层:两外层ePTFE以及设置在它们之间的含氟弹性体内层。所述ePTFE膜是根据一般技术制造的,如美国专利号7,306,729所述。所述含氟弹性体是根据一般技术制造的,如美国专利号7,462,675所述。其他含氟弹性体也可能是适用,如美国专利申请公开号2004/0024448所述。
所述ePTFE膜具有以下性质:厚度=约15μm、在最高强度方向的MTS=约400MPa、正交方向上的MTS=约250MPa、密度=约0.34g/cm3、IBP=约660KPa。
该共聚物主要由以下组分组成:约65至70重量%的全氟甲基乙烯基醚、补充的约35至30重量%的四氟乙烯。
含氟弹性体相对于ePTFE的重量百分数为约53%。
所述多层复合材料具有以下性质:厚度为约40μm、密度为约1.2g/cm3、断裂力/最高强度方向宽度=约0.953kg/cm、最高强度方向的拉伸强度=约23.5MPa(3,400psi)、断裂力/正交方向宽度=约0.87kg/cm、正交方向的拉伸强度=约21.4MPa(3100psi)、IPA泡点大于约12.3MPa、格利指数(Gurley Number)大于约1,800秒、以及质量/面积=约14g/m2
下述测试方法用于表征ePTFE层和多层复合材料。
厚度是用日本造的三丰绝对卡规(Mutitoyo Snap Gage Absolute)测量的,所述三丰绝对卡规根端直径(diameter foot)为12.7mm(0.50"),型号为ID-C112E,序列号为10299。密度的测定通过重量/体积计算得出,且使用了购自美国新泽西州的梅特勒分析天平PM400(Analytical Balance Mettler PM400)。断裂力和拉伸强度是用购自美国马萨诸塞的因斯特朗5500R(Instron Model#5500R Norwood)测试的,测试条件如下:载荷传感器为50kg、标准长度=25.4cm、十字头速度=25mm/分钟(应变速率=100%每分钟)以及带有平面夹片。IPA泡点用购自美国犹他州盐湖城的IPA泡点测试仪测量的,具体为压力调节工业数据系统模型LG-APOK(Pressure Regulator Industrial Data Systems Model LG-APOK),且升压速率为1.38KPa/s(0.2psi/s),测试区域为3.14cm2。格利指数(GurleyNumber)测定的是100cm3空气在124mm水压下流经6.45cm2样品所花费的以秒为单位的时间,所用测试仪器为购自美国纽约特洛伊的#4110型格利测试仪(Gurley Tester,Model#4110)。
除非另有说明,否则这些测试方法用于产生下面实施例的数据。
将多层复合材料,所述复合材料均包括两外层ePTFE以及设置在它们之间的含氟弹性体内层,包覆至直径为约28mm(1.1”)的心轴上,从而所述膜的拉伸强度更高的方向会沿着心轴的轴向取向。在一实施方式中,将4层所述复合材料以非螺旋的、基本为圆周的方式包覆至心轴上。所述复合材料有少许粘性,使该材料可与自身相黏附。当复合材料仍在心轴上时,基本上沿心轴的长轴方向纵向切开所述复合材料,从而形成约10cm(4”)×约90mm(3.5”)的片材。
然后,将得到的瓣叶材料(或来自步骤4的复合材料)片材切割并包覆至瓣叶工具100上,所述瓣叶工具100具有覆盖了释放层204的缓冲垫200。具体来说,如图3A-3C所示,将瓣叶材料300设置到平坦的切割表面上。具有缓冲垫200和释放层204的瓣叶工具100,大约按图示位置与瓣叶材料300对齐。然后用刀片在瓣叶材料300上形成四道裂缝302、304、306和308。一对裂缝302、304从瓣叶工具100的一侧延伸出来并终止于瓣叶材料300一侧边缘300a,而且另一对裂缝306、308从瓣叶工具100的相反一侧延伸出来并终止于瓣叶材料300相反一侧边缘300b。裂缝302、304、306和308被瓣叶工具100的瓣叶部分102隔开。裂缝302、304、306和308在瓣叶工具100下方没有突出。应理解每个裂缝的宽度并不是按比例显示的。瓣叶材料300中的裂缝302、304、306和308致使形成了折叠部分310、一对绑带312和314、以及过量的瓣叶材料315。然后,折叠部分310沿着图3C中箭头316概括显示的方向折叠,并在瓣叶工具100上平滑,所述瓣叶工具100在前面的步骤中已经覆盖了缓冲垫200和释放层204。
然后,瓣叶材料315在瓣叶部分102上伸展和平滑,具体为瓣叶工具100的端部表面103。重复步骤4)和5)形成3个分开的瓣叶组件。然后,将所述3个瓣叶组件402、404和406夹在一起,形成三瓣叶组件400,如图4所示。所示的为3个分开的瓣叶组件402、404和406,每个组件都有过量的瓣叶材料315沿着径向延伸,且超出三瓣叶组件400的外周。
然后提供底座工具,所述底座工具具有啮合三瓣叶组件中瓣叶工具端部表面的空腔,并可以裁剪过量的瓣叶区域从而形成3瓣叶。参考图5A,底座工具通常概括标注为500,并从一端501至相反的底部端503沿纵向延伸。在底座工具500的端部501形成三个凹腔502、504和506。每个凹腔502、504和506的形成是为了匹配或嵌入式的放置三瓣叶组件402、404和406之一的端部表面103。三个径向延伸的元件508、510和512从底座工具500的一端向外延伸。每个元件508、510和512都排布在一对相邻的凹腔502、504和506之间。
然后,给底座工具500制备压缩式防震垫和释放层(未显示),与步骤1和2中怎样给瓣叶工具制备缓冲垫和释放层类似。如步骤1和2对每个瓣叶工具所描述的类似,所述压缩式防震垫和释放层也在底座工具500上伸展和固定,形成底座工具组件。
参考图5B,将所述底座工具组件(为了便于说明,只显示了底座工具500而忽略了压缩式防震垫和缓释层)和三瓣叶组件(概括的标注为400)沿轴向对齐,以使每个瓣叶工具100的端部表面(未显示)都置于底座工具(概括的标注为500)端部501的凹腔(未显示)之一中,形成结合的工具组件。
然后,制造金属性可膨胀球囊支架。用激光切割316不锈钢管,该管壁厚为约0.5mm(0.020”)且直径为约2.5cm(1.0”)。不锈钢管被图案化切割,以形成环状切割支架框架或支撑结构(概括的标注为600),其示例性平面展开图如图6a所示。所述支撑结构600包括多个小的闭合空间602、多个大的闭合空间604和多个瓣叶闭合空间606。应注意的是,因为是平面展开图,多个瓣叶闭合空间606中的一个在图6A中看起来像是断开的。该小的闭合空间602、大的闭合空间604和瓣叶闭合空间606基本上一排一排布置,以形成支撑结构600的环状外形。
将聚合物材料粘合至激光切割的支架框架。首先,将牺牲性压缩层ePTFE膜无重叠的包覆于直径约为2.5cm(1.0”)的心轴(未显示)上。所述牺牲性压缩层ePTFE膜厚度为约0.5mm(0.02”)且宽度为约10cm(4”),以及它是弹性的和可压缩的以提供软质的、牺牲性压缩层。
然后,将四层基本为非孔的ePTFE膜包覆在心轴上,位于压缩层膜的上面。所述基本为非孔的ePTFE膜厚度为约25μm(0.001”)且宽度为约10cm(4”),且其一侧含有FEP层。包覆所述基本为非孔的ePTFE膜时,FEP层朝着远离心轴的方向。所述基本为非孔的ePTFE膜具有前文步骤2)中所述缓释层的性质。
利用熔体挤出和拉伸方法制造类型1(美国材料测试标准D3368,ASTM D3368)FEP薄膜。将另外10层所述类型1(ASTM D3368)FEP薄膜包覆至心轴上,所述心轴在之前的步骤10中已经包覆了压缩层膜且在步骤11中包覆了四层基本为非孔的ePTFE膜。所述类型1(ASTM D3368)FEP薄膜的厚度为约40微米(0.0016”)且宽度为约7.7厘米(3”)。
然后,将包覆好的心轴置于空气对流炉中进行热处理,在约320℃下保持约5分钟并冷却。
然后,将支撑结构(图6A标注的600)放在热处理过且包覆好的心轴上。将额外的两层所述类型1(ASTM D3368)FEP薄膜(步骤12中提供)包覆至支撑结构上,所述支撑结构之前已置于包覆好的心轴上。
然后,将包覆好的心轴以及支撑在其上面的支撑结构置于空气对流炉中进行热处理,在约320℃下保持约10分钟并冷却,形成聚合物涂覆的支撑结构。
然后,用手术刀裁剪聚合物涂覆的支撑结构形成裁剪的支架框架,概括的标注为700且其示例性平面展开图如图6B所示。具体来说,在一种实施方式中,聚合物涂层被裁剪得比支撑结构(600,图6A)边缘长约2毫米(0.08”),形成各种边缘轮廓708。在另一实施方式中,使所述聚合物涂层横跨整个闭合空间,从而在每个闭合空间形成网络。在任一情况下,所述支撑结构600完全被聚合物涂层702封装,形成裁剪好的支架框架700。所述裁剪好的支架框架700包括多个瓣叶开口704,且其数量与形状基本与多个瓣叶闭合的空间606(图6A)相对应。此外,如图6B所示,在每个小的闭合空间的聚合物涂层702中形成裂缝706。具体来说,每条裂缝706都是线性的,且基本与环形支撑结构600的纵向中心轴线(未显示)平行。
然后,将裁剪好的支架框架置于步骤8)中所述的结合的工具组件上。瓣叶工具的瓣叶部分(102)与裁剪好的支架框架瓣叶开口(图6B中的704)对应。将三个过量的瓣叶材料区域(图4中的315)穿过裁剪好的支架框架瓣叶开口。将三对绑带(图3A中的312、314)中的每一条穿过裂缝之一(图6B中的706),并绑在裁剪好的支架框架周围。每一对绑带相对于另一对的捆绑方向都是相反的。然后用电烙铁将六根绑带热固定在裁剪好的支架框架上。
然后,将结合好的工具组件(步骤8)、包覆且热固定了绑带的裁剪好的支架框架组装至旋转卡盘机械。然后,给所述旋转卡盘机械施加轻度的、纵向压缩负荷。然后,用电烙铁将过量的瓣叶材料区域(图4中的315)热固定在底座工具(图5的500)上。
然后,用额外的两层类型1(ASTM D3368)FEP薄膜(来自步骤12)包覆步骤18所述的结合的工具。然后,用额外的三层复合材料(步骤4)再次包覆并固定在裁剪好的支架框架上。
为了进行最后的热处理,在步骤19所述组件的圆周方向、纵向都使用了由压缩胶带和压缩纤维组成的释放层和牺牲层。在后面的热处理中,上述压缩性胶带/纤维会同时沿着圆周方向和纵向接触并压缩所述组件。由压缩胶带组成的牺牲层以螺旋的方式包覆在步骤19所述的组件外周。所述压缩胶带具有步骤10中所述的ePTFE牺牲性压缩层的性质。然后,将ePTFE压缩纤维紧紧的包覆在压缩胶带上。将压缩纤维以间隔非常近的螺旋方式应用在胶带上,且包覆约100次。所述ePTFE压缩纤维直径约为1mm(0.04”),并在吸收足够热量时会沿纵向收缩。然后,将夹紧的组件从旋转卡盘机械上取下来。然后,将三层牺牲性压缩胶带以纵向方式包覆该组件。然后,用压缩纤维沿纵向包覆纵向的压缩胶带,且包覆约20次。
21).然后,将步骤20的组件置于空气对流炉中进行热处理,在约280℃下保持约90分钟,并用常温的水淬冷。该热处理步骤促使热塑性含氟弹性体流进ePTFE膜的孔中,所述ePTFE膜用于制备步骤4所述的瓣叶材料。
然后,除去牺牲性压缩胶带/纤维。裁剪聚合物材料,以使瓣叶与底座工具分开。然后,裁剪支架聚合物层,以移除连接着瓣叶的支架框架。然后裁剪瓣叶,形成如图8所示的瓣膜组件,且概括标注为800。
所述瓣膜组件800,根据某实施方式,包括瓣叶802,所述瓣叶802形成于复合材料,该复合材料包括具有多个孔的至少一层含氟聚合物、基本存在于所述至少一层含氟聚合物所有孔中的弹性体。每个瓣叶802都可在如图9A所示血流无法流过所述瓣膜组件的闭合位置,和如图9B所示的血流可以流经所述瓣膜组件的张开位置之间运动。因此,瓣膜组件800上的瓣叶802在闭合和张开位置循环,通常用于调节人类患者的血流方向。
每个瓣膜组件中的瓣膜瓣叶性能都在实时脉冲复制器上表征,所述实时脉冲复制器测量穿过瓣膜的典型解剖学压力和流动,产生针对某具体瓣膜组件的初始或“零疲劳”数据组。然后,将所述瓣膜组件转移到高速疲劳试验机上,并使其循环约2.07亿次。在每组约1亿次循环时,将所述瓣膜返回至实时脉冲复制器并且重新测试其性能参数。
流动性能由下述过程表征:
将瓣膜组件放入硅氧烷环形圈(支撑结构),以使该瓣膜组件接下来可在实时脉冲复制器上进行评价。所述放入过程根据脉冲复制器制造商(加拿大维多利亚维维特罗实验室公司(ViVitro Laboratories Inc.))的推荐进行。
然后,将放入的瓣膜组件置于实时左心脏流动脉冲复制器系统中。所述流动脉冲复制器系统包括由加拿大维多利亚VSI维维特罗实验室公司(VSI ViVitro LaboratoriesInc.)提供的下述组件:超级泵,伺服功率放大器零件号SPA 3891;超级泵头,零件号码SPH5891B,38.320cm2油缸面积;阀门站/固定装置;波形发生器,TriPack零件号TP 2001;传感器界面,零件号VB 2004;传感器放大组件,零件号AM 9991;以及方波电磁流测试仪,购自美国北卡罗来纳州东海岸的卡罗来纳医疗电器公司(Carolina Medical ElectronicsInc.)。
一般的,流动脉冲复制器系统使用固定的位移、活塞泵以在测试中产生所需的流经瓣膜的流体流动。
调节心脏流动脉冲复制器系统以产生所需的流动、平均压力和模拟脉冲频率。然后使测试的瓣膜循环约5至20分钟。
测试期间测量和收集压力和流动数据,包括心室压力、主动脉压、流动速率、以及泵的活塞位置。图10是来自心脏流动脉冲复制器系统的数据的图片。
用于表征瓣膜和比较后疲劳数值的参数包括压力降、有效开口面积,和反流分数,所述压力降为顺流正压部分穿过张开瓣膜的压力降。
表征以后,将瓣膜组件从流动脉冲复制器系统取下,并放入高速疲劳试验机。六位心脏瓣膜耐久性测试仪,零件号M6,由美国密苏里州的加利纳的迪纳特克公司提供(Dynatek)且由Dynatek Dalta DC 7000控制器驱动。该高速疲劳试验机使流体穿过瓣膜组件移动,且其循环速率为约780循环每分钟。在测试中,可用调谐闪光灯对瓣膜组件进行视觉检查。穿过闭合瓣膜的压力降也可以监控,如图11A和11B所示。图11A和11B所示的数组确认了所述高速疲劳试验机正产生持续的压力波形。
瓣膜组件持续的循环,并周期性的监控其视觉和压力降的变化。在大约2亿次循环后,将瓣膜组件从高速疲劳试验机取下,并返回至实时脉冲复制器。收集压力和流动数据,并将其与收集的初始数据比较。
图12A所示为屏幕截图,显示了实时心脏流动脉冲复制器系统的所测数据输出。显示的是心室压、主动脉压和流动速率。图12A示例性的显示了某具体瓣膜的初始或零疲劳数据。同一具体瓣膜循环2.07亿次后,进行了同样的测试且收集了数据。图12B示例性的显示了所述具体瓣膜循环2.07亿次后的数据。测量所述两组数据时,流动速率都为5升每分钟且循环速率为70次每分钟。比较图12A和12B,应容易理解波形基本相似,表明瓣膜瓣叶性能在循环约2.07亿次后也没有发生实质性变化。下文的表1总结了循环零次和2.07亿次后测得的压力降、有效开口面积(EOA)和反流分数。
表1
总的来说,我们观察到,根据本发明某实施方式建造的瓣膜瓣叶在循环2.07亿次后没有物理性的或机械性的退化,如裂缝、孔、永久性变形等等。因此,甚至在循环2.07亿次后,瓣膜瓣叶的闭合和张开构造也没有发生可观察到的变化或退化。
实施例2
根据下述方法的实施方式,构建了一种实施方式的心脏瓣膜,所述心脏瓣膜包括结合至刚性金属框架的聚合物瓣叶:
用PTFE制造心轴900,所述心轴900具有如图14所示的形状。所述心轴900具有第一端部902以及与第一端部902相反的第二端部904,以及在它们之间的纵向延伸件。所述心轴900的外表面910有三个(显示了两个)基本为弧形的凸面裂片912,每个裂片都用于形成成品瓣膜组件(未显示)的瓣叶(未显示)。外部表面910还包括框架座位区域920,在瓣膜框架上形成瓣叶前,用于将瓣膜框架(图15中的930)相对于凸面裂片912放置。
如图15所示,用激光切割一定长度的316不锈钢管形成瓣膜框架930,其形状如图15所示,所述不锈钢管外部直径为约25.4毫米且壁厚为约0.5毫米。在所示的实施方式中,所述瓣膜框架930沿轴向在底部端部932和相反的顶部端部之间延伸,所述顶部端部通常由多个轴向延伸件限定,该延伸件通常为螺旋形的杆934且其数量对应于所设计成品瓣膜组件(未显示)中瓣叶的数量。在所示的具体实施方式中,三根杆934形成于瓣膜框架930中。
将两层约为4μm厚的FEP膜(未显示)包覆瓣膜框架930,并在炉子中在约270℃下烘烤约30分钟并冷却。然后,将所述覆盖好的瓣膜框架(为了清楚,图示的是未覆盖的瓣膜框架且用930标注)滑入心轴900,使瓣膜框架930和心轴900上互补的特征嵌在一起,如图16所示。
然后,用吸收了含氟弹性体的ePTFE膜制备瓣叶材料。具体来说,所述ePTFE膜是根据如美国专利号7,306,729所述的一般教导制造。所述ePTFE膜根据附录所述的方法进行测试。所述ePTFE膜的质量/面积为约0.57g/m2、孔隙率为约90.4%、厚度为约2.5μm、泡点为约458KPa、纵向基质抗张强度为约339MPa以及横向为约257MPa。该膜吸收了与实施例1所述相同的含氟弹性体。将含氟弹性体溶于购自美国明尼苏达州圣保罗市3M公司的NovecHFE7500,浓度为约2.5%。将所述溶液通过迈尔棒涂(mayer bar)涂覆于ePTFE膜上(同时被聚丙烯释放膜支撑),然后在对流炉中于约145℃下干燥约30秒。两个涂覆步骤后,得到的ePTFE/含氟弹性体复合材料的质量/面积为约3.6g/m2
然后,将所述复合材料(未显示)缠绕组装好的心轴900和瓣膜框架930。在一种实施方式中,总共使用了20层ePTFE/含氟弹性体复合材料。将任何延伸至心轴900端部以外的过量复合材料缠绕,并轻轻的按向心轴900的第一端部902和第二端部904。
然后,将复合材料包覆的心轴安装至压力容器上,使心轴900底部或第二端部904的排气部分906(图14)直通大气。所述排气部分906从第二端部904穿过心轴900沿纵向延伸,并与一般为正交的、穿过心轴900外部表面910延伸的排气部分908相通。所述排气部分906、908,以及其他需要时(未显示)安装在心轴的排气部分,允许在复合材料和心轴之间俘获的气体在模制过程中逃逸。
对压力容器施加约690Kpa(100psi)的氮气压力,把ePTFE/含氟弹性体复合材料压向心轴900和瓣膜框架930。对压力容器加热,直到容器内部温度达到约300℃,约3小时以后。关闭加热器,压力容器过夜冷却到室温。这个过程使ePTFE/含氟弹性体复合材料层相互之间、及其与涂覆在瓣膜框架930上的FEP涂层之间因受热而连接。释放压力,把心轴从压力容器取出。
沿周向在两个位置裁剪所述ePTFE/含氟弹性体复合材料:第一,在瓣膜框架930的底部端部932,以及第二,接近瓣膜框架930的顶部端部沿着一个圆,所述圆一般与每个杆934接近中点的地方相交。将所得瓣膜组件940与心轴分开且滑出心轴,所述瓣膜组件940由瓣膜框架930和裁剪后的复合材料组成。如图17所示,所述模制的瓣膜组件940包括瓣膜框架930和许多由裁剪后的复合材料形成的瓣叶950。在某实施方式中,所述瓣膜组件940包括三片瓣叶。在另一实施方式中,所述瓣膜组件940的每个瓣叶950厚度为约40μm。
为了帮助控制瓣膜张开的程度,每个杆周围相邻瓣叶都连接在一起。如图18所示,相邻的瓣叶950a、950b包覆在杆934上并连接在一起形成缝954。缝954的深度956离杆934延伸至少约2毫米。为了支撑相邻瓣叶950a、950b之间的连接,把连接件952固定在相邻瓣叶950a、950b的内部表面上,因此使相邻瓣叶950a、950b之间的缝954桥接在一起。如图18所示,所述连接件952通常为矩形。当然,应理解,其他形状的连接件也可以使用。所述连接件952由用于形成瓣叶950的同种类型的复合材料形成。使用前述的含氟弹性体溶液,把连接件952固定在相邻瓣叶950a、950b的内部表面上。在瓣膜组件的其他相邻的瓣叶对之间重复这些步骤。
本实施例中瓣膜瓣叶的性能和耐久性分析方法与实施例1相同。所述瓣膜组件都首先在实施例1所述的实时脉冲复制器上表征,该实时脉冲复制器测量穿过瓣膜的典型解剖学压力和流动,产生针对某具体瓣膜组件的初始或“零疲劳”数据组。然后,与实施例1类似,将瓣膜用于加速测试。在循环约0.79亿次后,把瓣膜从高速疲劳试验机中取出,并再次表征其血流动力学性能,与实施例1类似。最终,在循环约1.98亿次后,取下瓣膜。下文的表2总结了循环约0.79亿次和约1.98亿次后测得的压力降、EOA和反流分数。
图13A和13B对相似的瓣膜显示了相似的结果。图13A为所述瓣膜组件循环约0.79亿次后心脏流动脉冲复制器系统所测数据输出的图谱。对循环约1.98亿次的类似瓣膜也进行了相同的测试,图13B示例性的显示了所测图谱。测量所述两组数据时,流动速率都为约4升每分钟且循环速率为约70循环次数每分钟。比较图13A和13B,应再次理解波形基本相似,表明瓣膜瓣叶性能在循环约1.98亿次后也没有发生实质性变化。下文的表2总结循环零次、约0.79亿次和约1.98亿次后测得的压力降、有效开口面积(EOA)、和反流分数。这些数据表明瓣膜瓣叶性能在循环约1.98亿次后没有发生实质性变化。
表2
实施例3
根据下述方法的实施方式,构建了一种实施方式的心脏瓣膜,所述心脏瓣膜包括结合至刚性金属框架的聚合物瓣叶:
用激光切割一定长度的316不锈钢管形成瓣膜支撑结构或框架960,其形状如图19所示,所述不锈钢管外部直径为约25.4毫米且壁厚为约0.5毫米。在所示的实施方式中,所述框架960沿轴向在底部端部962和相反的顶部端部之间延伸,所述顶部端部一般由多个轴向延伸件限定,该延伸件一般为螺旋形的杆964且其数量对应于所设计成品瓣膜组件(未显示)中瓣叶的数量。抛物线状顶部边缘968在相邻的杆964之间延伸。在一具体实施方式中,三根杆964和三根顶部边缘968形成了框架960的顶部端部。将框架中与瓣叶材料接触的角落用砂轮机磨圆,并手工抛光。用水冲洗框架,然后使用PT2000P等离子处理系统对框架进行等离子清洗,所述PT2000P等离子处理系统购自美国加利福尼亚州埃尔塞贡多三星技术公司(Tri-Star Technologies)。
在某实施方式中,在框架的至少一部分以及瓣叶的至少一部分之间提供了缓存元件以最小化框架和瓣叶直接接触涉及的应力。制备包括ePTFE和聚硅氧烷的复合材料纤维,首先在ePTFE膜中吸收聚硅氧烷MED-6215(美国加利福尼亚卡平特里亚的努苏尔公司,NuSil),裁成宽为约25mm的长条,且旋转成基本为圆形的纤维。所述纤维中用的ePTFE膜根据附录所述的方法进行测试。所述ePTFE膜的泡点为约217KPa、厚度为约10μm、质量/面积为约5.2g/m2、孔隙率为约78%、一方向上的基质抗张强度为约96MPa、以及在正交方向上的基质抗张强度为约55MPa。所述复合材料纤维966包覆在框架960的每个杆964上,如图20所示。
用立体光刻技术制备心轴970,所述心轴970具有如图21所示的形状。所述心轴970有第一端部972和相反的第二端部974,以及在它们之间的纵向延伸件。所述心轴970的外表面980有三个(显示了两个)基本为弧形的凸面裂片982,每个裂片都用于形成成品瓣膜组件(未显示)的瓣叶(未显示)。外部表面980还包括框架座位区域984,在瓣膜框架上形成瓣膜瓣叶前,用于将框架(图19中的960)相对于于凸面裂片982放置。
然后在心轴970上喷涂PTFE脱模剂。将四层本实施例前文所述的ePTFE膜包覆在心轴上。在ePTFE膜上涂覆MED-6215,使其润湿进入且基本填充ePTFE的孔。擦干过量的MED-6215,将框架960沿着框架座位区984放置在心轴970上,所述框架960的杆964包覆了复合材料纤维966,如图22所示。将购自美国加利福尼亚卡平特里亚的努苏尔公司(NuSil)的硅酮(silicone)MED-4720沿框架960的顶部边缘968以及框架960的杆964放置,在瓣叶(未显示)内形成应变消除器(strain relief)。将额外的八层ePTFE包覆在框架960和心轴970上。在ePTFE上涂覆额外的MED-6215,使其润湿进入且基本上填充ePTFE的孔。将另外八层ePTFE包覆在框架960和心轴970上。这些层形成吸墨纸,以吸收模制过程中任何过量的聚硅氧烷,且在聚硅氧烷固化后被移除。
预先为3瓣叶-形成特征的每一个制造硅酮橡胶模板(form)(未显示),该硅酮橡胶模板有一模制的表面,与心轴表面的逆形状精确匹配。在这些模板上喷涂PTFE脱模剂,然后配对至心轴上相匹配的特征。将ePTFE纤维(未显示)沿着硅酮模板缠绕约50次,以给瓣膜施加面向心轴的径向压力。
将这个组件随后置于炉中,在约100℃下保持约1小时以固化聚硅氧烷。冷却后,移除纤维和聚硅氧烷模板,撕掉8层吸墨纸ePTFE并扔掉,且将得到的瓣膜(未显示)滑出心轴。用钢丝钳裁剪杆,以及用剪刀小心裁剪过长的瓣叶材料、框架底部过长的材料,以形成完成的瓣膜组件,如图23所示并用990概括标注。因此,在一种实施方式中,形成的所述瓣膜组件990包括:框架960或支撑结构;支撑在框架960上的多个瓣叶992,且所述瓣叶992可在张开和闭合位置运动以调节通过瓣膜组件990的血流;以及包覆了复合材料纤维966的杆964,所述杆964位于框架960的至少一部分和每个瓣叶992的至少一部分之间,目的是最小化瓣叶中因瓣叶与支撑结构连接和/或接近产生的应力。在另一实施方式中,所述缓冲元件由复合材料形成,该复合材料包括具有多个孔的至少一层含氟聚合物和存在于基本上所有孔中的弹性体,如上文所述。
应理解,除了如图所示的支撑结构外,也可以使用其他支撑结构。另外,缓冲元件在必要时可沿支撑结构的任何位置使用,以减少瓣叶中因瓣叶与支撑结构连接和/或接近产生的应力。例如,缓冲元件可沿着抛物线状的顶部边缘与支撑结构连接。
还应理解,缓冲元件可形成为片材并包覆在沿支撑结构所需的位置,或者由具有不同截面形状和尺寸的纤维形成。
还应理解,缓冲元件可形成为管状然后套在支撑结构的端部,或者沿纵向切割然后环绕在沿支撑结构所需的位置。
经测量,完成的瓣膜组件中瓣叶的每片瓣叶中心平均厚度为约120μm。
然后,与实施例1类似,表征瓣膜组件的流动性能和进行加速测试。在每组循环约5千万次后,把瓣膜组件从高速疲劳试验机中取出,并再次表征其血流动力学性能,与实施例1类似。最终,当循环约1.5亿次后,取出瓣膜组件,所述瓣膜组件表现出可接受的性能并且没有形成孔。
比较例A
按实施例1的方法建造了6个瓣膜,除了没有结合弹性体。比较例用的ePTFE材料与实施例1所述的相同,但它没有吸收含氟弹性体共聚物,却涂覆了一层不连续的FEP共聚物作为热塑性胶黏剂。按照实施例1所述建造瓣膜,每个瓣叶由3层薄膜组成,得到的成品瓣叶厚度平均为约20μm。表征血流动力学后,将瓣膜安装在实施例1所述的迪纳特克(Dynatek)加速测试仪上。循环约4千万次后,观察到瓣叶边缘脱层且有孔形成,因此停止了测试。
比较例B
按实施例1的方法建造了两个瓣膜,但没有包括本文所述的各种实施方式的弹性体部分。使用的材料为ePTFE薄膜,所述ePTFE薄膜具备下述类似的性质:质量/面积为约2.43g/m2、孔隙率为约88%、IBP为约4.8KPa、厚度为约13.8μm、某方向上的基质抗张强度为约662MPa、以及正交方向上的基质抗张强度为约1.2MPa。所述ePTFE膜根据附录所述的方法进行测试。将10层薄膜沿着交替方向放成一堆,然后置于实施例1所述的工具上。然后,将工具暴露在空气对流烘箱中,于约350℃下保持约25分钟,然后取出并用水浴淬冷。然后,将3个工具插入支架框架,且用FEP把瓣叶与瓣膜组件连接,与实施例1类似。
每个瓣膜都用实时心脏流动脉冲复制器系统进行高速疲劳测试,如上文所述。其中一个瓣膜循环约3千万次后,另一个循环约4千万次后,可观察到诸如硬化和变形的可视退化、且性能发生可测的降低。除了性能上的可视和可测退化,下文的表3综合了瓣膜循环约4千万次后的压力降、有效开口面积(EOA)和反流分数。
表3
实施例4
根据下面方法的实施方式构建结合到金属性瓣膜框架的一种实施方式的心脏瓣膜,该心脏瓣膜具有如上所述的含复合材料的聚合物瓣叶,该复合材料包括多孔聚乙烯膜和弹性体材料:
用激光切割一定长度的无缝管MP35N来形成瓣膜框架1000,该无缝管符合标准ASTM F.562,具有全硬度回火,且外径为26毫米,壁厚是0.60毫米。将限定图案的杆1001切割进入管来形成瓣膜框架1000,如图24的透视图所示。
对瓣膜框架1000进行轻度的喷砂处理,从而圆化边缘和粗糙化表面。用水淋洗瓣膜框架1000,然后,使用本领域技术人员所公知的方法,对其进行等离子体清洁处理。
然后,用吸收了硅酮的双轴膨胀的ePTFE膜制备复合材料。具体来说,所述ePTFE膜是根据如美国专利号3953566所述的一般教导制造。所述ePTFE膜如上所述的方法进行测试。双轴膨胀的ePTFE膜被无定形地封锁,并具有下述性质:厚度=0.045mm、密度=0.499g/毫升、最强方向上基质拉伸强度=95.6MPa、在与最强方向正交的方向上的基质拉伸强度=31.1MPa、在最强方向上最大载荷下的伸长率=37%、在与最强方向正交的方向上最大载荷下的伸长率=145%。
通过首先使用0.102mm下拉棒将硅酮涂覆到PET膜上,使该ePTFE膜吸收硅酮732多目的密封剂(道康宁(Dow-Corning),密歇根州米德兰)。然后,将ePTFE膜设置在硅酮涂层顶部,使硅酮润湿进入膜。从PET膜移除20毫米宽的复合材料条带,卷成纤维并绕着图24的瓣膜框架1000的各杆1001螺旋包覆,如图25的透视图所示。这种螺旋包覆的复合材料纤维形成缓冲元件1030,其将位于一部分的瓣膜框架1000和瓣叶1102之间,从而最小化与瓣膜框架1000和瓣叶1102的直接接触相关的应力,如图25的透视图所示。
从基本上圆筒形状的铝加工心轴1200,如图26的透视图所示。心轴1200包括第一端部1202和相反的第二端部1203。
心轴具有12个直径0.5毫米的排气孔1207,该排气孔1207从外部表面1204穿透到在心轴1200的中央之内运行的中央腔室1206。这12个排气孔1207圆周地绕着心轴1200以两排设置分布,在图26的瓣膜框架中,有一排排气孔1207是不可见的。这些与中央腔室1206连通的排气孔1207在模塑时使捕集的空气排出瓣膜组件。
将两层厚度约为0.004毫米且包括ePTFE和聚酰亚胺的牺牲性复合材料绕着心轴1200包覆。
然后,用吸收了硅酮的微孔聚乙烯膜制备复合材料。微孔聚乙烯膜来自帕尔公司(Pall Corp.)(纽约华盛顿港)PE Kleen 5nm水滤芯ABD1UG53EJ,其包含疏水性高密度聚乙烯(HDPE)膜。根据如上所述的方法测试微孔聚乙烯膜,并具有下述性质:厚度=0.010mm、密度=0.642g/毫升、最强方向上基质拉伸强度=214MPa、在与最强方向正交的方向上的基质拉伸强度=174MPa、在最强方向上最大载荷下的伸长率=62%、在与最强方向正交的方向上最大载荷下的伸长率=157%,纤维直径小于约1微米,平均流动孔径是0.0919微米,比表面积是28.7m2/毫升。根据一些实施方式,预期微孔聚乙烯膜的平均流动孔径小于约5微米、小于约1微米和小于约0.10微米。
将微孔聚乙烯膜在丙酮中浸泡约72小时,并在室温下空气干燥。使用0.51mm下拉棒将732多目的密封剂涂层施涂到PET膜。然后,将微孔聚乙烯膜设置在硅酮涂层顶部,使硅酮润湿进入膜。从PET移除硅酮和聚乙烯复合材料,并绕着心轴1200和牺牲性PTFE/聚酰胺复合材料包覆总计两层。
将具有被缓冲元件1030覆盖的杆1001的瓣膜框架1000滑入心轴1200,并在该两层的顶部。在排气孔上面透过之前施涂的层刺穿孔,设置瓣膜框架1000,从而瓣膜框架1000的底座1003覆盖如图26所示的一排排气孔1207(隐藏的)。
再绕着瓣膜框架1000包覆5层硅酮/聚乙烯复合材料。
在之前的层顶部包覆在本实施例中之前所述的8层ePTFE膜,来形成牺牲性吸墨纸层来吸收任何过量的硅酮。将两层厚度约为0.004毫米且包括ePTFE和聚酰亚胺的牺牲性复合材料绕着心轴和之前施加的组件包覆。使用背后用粘合剂加固的聚酰亚胺胶带来在各端部将ePTFE/聚酰亚胺复合材料连接到心轴,和密封纵向缝隙。
然后,在压力容器中安装具有之前施加的组件的心轴1200,从而在心轴1200的第一端部1202中的与中央腔室1206连通的排气口1211直通大气。中央腔室1206从第一端部1202轴向地延伸通过心轴1200,并与之前所述的12个排气孔1207连通。
对压力容器施加约414Kpa(60psi)的氦气压力,把微孔聚乙烯和硅酮复合材料压向心轴1200和瓣膜框架1000。对压力容器加热,直到心轴内部温度达到约95℃,约28分钟以后。移除加热,使压力容器过夜冷却到室温。这个过程使硅酮/聚乙烯复合材料层相互之间、及其与瓣膜框架1000之间粘合。释放压力,把心轴1200从压力容器取出。从心轴1200滑出瓣膜组件1010,并去除外层的牺牲性ePTFE/聚酰亚胺复合材料,如图27的透视图所示。
从基本上成圆筒形状的铝加工成形的心轴1300,如图28的透视图所示。心轴1300包括第一端部1302、相反的第二端部1303以及在它们之间限定凹面特征1309的中央部分1305。
心轴1300具有3个直径0.5毫米的孔1307,其从外部表面1304穿过到在心轴1300的中央之内运行的中央腔室1306。孔1307位于最接近成形的心轴第一端部1302的凹面特征的端部,并与中央腔室1306连通。这些孔1307在模塑时使捕集的空气排出瓣膜组件1010。
将瓣膜组件1010滑入成形的心轴1300上,并使瓣膜框架1000与心轴1300的凹面特征1309对齐,见图28。将具有牺牲性层的复合材料压向心轴1300,并使用背面用粘合剂加固的聚酰亚胺胶带粘结到心轴1300的各端部。通过绕着23.9毫米心轴包覆一片复合材料,并使用背面用粘合剂加固的聚酰亚胺胶带粘结轴向缝隙,来制备包括ePTFE和聚酰亚胺的牺牲性复合材料管。将该管滑入到安装在成形的心轴上的瓣膜组件1010,并使用背面用粘合剂加固的聚酰亚胺胶带粘结到成形的心轴的各端部。
然后,在压力容器中安装具有之前施加的组件的成形的心轴1300,从而在心轴1300的第一端部1302中的与中央腔室1306连通的排气口1311直通大气。中央腔室1306从第一端部1302轴向地延伸通过心轴1300,并与之前所述的排气孔1307连通。
对压力容器施加约689Kpa(100psi)的氦气压力,把微孔聚乙烯和硅酮复合材料压向心轴1300和瓣膜框架1000。对压力容器加热,直到心轴内部温度达到约98℃,约13分钟以后。移除加热,使压力容器过夜冷却到室温。该过程迫使硅酮/聚乙烯复合材料层具有成形的心轴1300的形状,且瓣叶部分1109拉制进入一部分的凹面特征1309并具有该一部分的凹面特征1309的形状。从心轴1300滑出瓣膜组件1010,去除牺牲性ePTFE/聚酰亚胺复合材料以及牺牲性ePTFE吸墨纸材料。
裁剪微孔聚乙烯和硅酮复合材料,从而复合材料延伸超出框架的底座以及超出框架杆的尖端约2毫米(见图29)。
瓣叶1102的厚度约为139微米,且复合材料中硅酮的重量百分数是约69%。
该瓣膜组件中的瓣膜瓣叶性能都在实时脉冲复制器上表征,所述实时脉冲复制器测量穿过瓣膜的典型解剖学压力和流动,产生针对某具体瓣膜组件的初始或“零疲劳”数据组。流动性能由下述过程表征:
将瓣膜组件压入硅酮环形圈(支撑结构),以使该瓣膜组件接下来可在实时脉冲复制器上进行评价。
然后,将放入的瓣膜组件置于实时左心脏流动脉冲复制器系统中。所述流动脉冲复制器系统包括由加拿大维多利亚VSI维维特罗实验室公司(VSI ViVitro LaboratoriesInc.)提供的下述组件:超级泵,伺服功率放大器零件号SPA 3891;超级泵头,零件号码SPH5891B,38.320cm2油缸面积;阀门站/固定装置;波形发生器,TriPack零件号TP 2001;传感器界面,零件号VB 2004;传感器放大组件,零件号AM 9991;以及方波电磁流测试仪,购自美国北卡罗来纳州东海岸的卡罗来纳医疗电器公司(Carolina Medical ElectronicsInc.)。
一般的,流动脉冲复制器系统使用固定的位移、活塞泵以在测试中产生所需的流经瓣膜的流体流动。
调节心脏流动脉冲复制器系统以产生所需的流动、平均压力和模拟脉冲频率。然后使测试的瓣膜循环约5至20分钟。
测试期间测量和收集压力和流动数据,包括心室压力、主动脉压、流动速率、以及泵的活塞位置。
本实施例的瓣膜的压力降是11.3mm Hg、EOA是2.27cm2且反流分数是15.4%。
实施例5
根据下面方法的实施方式构建结合到金属性瓣膜框架的另一种实施方式的心脏瓣膜,该心脏瓣膜具有如上所述的含复合材料的聚合物瓣叶,该复合材料包括微孔聚乙烯膜和弹性体材料:
如实施例4所述制备瓣膜框架1000。
用吸收了硅酮的微孔聚乙烯膜制备复合材料。微孔聚乙烯膜来自帕尔公司(PallCorp.)(纽约华盛顿港)PE Kleen 5nm水滤芯ABD1UG53EJ,其包含疏水性高密度聚乙烯(HDPE)膜。在双轴膨胀机器上拉伸微孔聚乙烯膜。将微孔聚乙烯膜安装在膨胀机器的销钉上,且销钉在第一方向上设置成相隔70毫米,以及在与第一方向垂直的方向上设置成相隔150毫米。使微孔聚乙烯膜在加热的腔室中于双轴膨胀机器之内停留60秒,到达129℃的网络温度。然后,以0.7%/秒的速率将沿着第一方向的销钉从70毫米平移到84毫米,以10%/秒的速率将沿着与第一方向垂直方向的销钉从150毫米平移到420毫米。在被销钉限制的情况下,将膜从加热的腔室取出,并使其风冷到室温。
根据如上所述的方法测试拉伸的微孔聚乙烯膜,并具有下述性质:厚度=0.006mm、密度=0.524g/毫升、第一方向上基质拉伸强度=156MPa、在与第一方向正交的方向上的基质拉伸强度=474MPa、在第一方向上最大载荷下的伸长率=167%、在与第一方向正交的方向上最大载荷下的伸长率=19%,纤维直径小于约1微米,平均流动孔径是0.1011微米,比表面积是18.3m2/毫升。根据一些实施方式,预期微孔聚乙烯膜的平均流动孔径可小于约5微米、小于约1微米和小于约0.10微米。
通过首先使用0.25mm下拉棒将硅酮涂覆到PET膜上,使该拉伸的微孔聚乙烯膜吸收硅酮734可流动密封剂(道康宁(Dow-Corning),密歇根州米德兰)。然后,将聚乙烯膜设置在硅酮涂层顶部,使硅酮润湿进入膜。从PET膜移除20毫米宽的复合材料条带,卷/扭曲成纤维并绕着图25的瓣膜框架1000的各杆1001螺旋包覆。这种螺旋包覆的复合材料纤维形成缓冲元件1030,其将位于一部分的瓣膜框架1000和瓣叶1102之间,从而最小化与瓣膜框架1000和瓣叶1102的直接接触相关的应力,如图29所示。
获得如实施例1所述和图26所示的心轴1200。将两层厚度约为0.004毫米且包括ePTFE和聚酰亚胺的牺牲性复合材料绕着心轴1200包覆。
如本实施例之前所述制备拉伸的微孔聚乙烯膜和硅酮的复合材料。
将硅酮和微孔聚乙烯膜复合材料绕着心轴1200和牺牲性PTFE/聚酰胺复合材料圆周包覆总计两层。当包覆时,使拉伸的微孔聚乙烯膜的第一方向与心轴1300的长轴对齐。
将具有被纤维覆盖的杆1001的瓣膜框架1000滑入心轴1200,并在该两层的顶部。在排气孔上面透过之前施涂的层刺穿孔,设置瓣膜框架,从而瓣膜框架1000的底座1003覆盖如图26所示的一排排气孔1207(隐藏的)。
手动地向框架施加少量的硅酮,从而在框架和圆周包覆的复合材料之间提供额外的粘合。
再绕着瓣膜框架1000包覆4层硅酮/微孔聚乙烯膜复合材料。
在之前的层顶部包覆在实施例4中之前所述的8层ePTFE膜,来形成牺牲性吸墨纸层来吸收任何过量的硅酮。将两层厚度约为0.004毫米且包括ePTFE和聚酰亚胺的牺牲性复合材料绕着心轴和之前施加的组件包覆。使用背后用粘合剂加固的聚酰亚胺胶带来在各端部将ePTFE/聚酰亚胺复合材料连接到心轴,和密封纵向缝隙。
然后,在压力容器中安装具有之前施加的组件的心轴1200,从而在心轴1200的第一端部1202中的与中央腔室1206连通的排气口1211直通大气。中央腔室1206从第一端部1202轴向地延伸通过心轴1200,并与之前所述的12个排气孔1207连通。
对压力容器施加约414Kpa(60psi)的氦气压力,把微孔聚乙烯膜和硅酮复合材料压向心轴1200和瓣膜框架1000。对压力容器加热,直到心轴内部温度达到约66℃,约20分钟以后。移除加热,使压力容器过夜冷却到室温。这个过程使硅酮/聚乙烯复合材料层相互之间、及其与瓣膜框架1000之间粘合。释放压力,把心轴1200从压力容器取出。从心轴1200滑出瓣膜组件1010,并去除外层的牺牲性ePTFE/聚酰亚胺复合材料,如图26的透视图所示。
获得如实施例4所述和图28所示的成形的心轴1300。将瓣膜组件1010滑入成形的心轴1300上,并使瓣膜框架1000与图28所示的心轴1300的凹面特征1309对齐。将具有牺牲性层的硅酮和微孔聚乙烯膜复合材料压向心轴1300,并使用背面用粘合剂加固的聚酰亚胺胶带粘结到心轴1300的各端部。通过绕着23.9毫米心轴包覆一片复合材料,并使用背面用粘合剂加固的聚酰亚胺胶带粘结轴向缝隙,来制备包括ePTFE和聚酰亚胺的牺牲性复合材料管。将该管滑入到安装在成形的心轴上的瓣膜组件1010,并使用背面用粘合剂加固的聚酰亚胺胶带粘结到成形的心轴的各端部。
然后,在压力容器中安装具有之前施加的组件的成形的心轴1300,从而在心轴1300的第一端部1302中的排气口1311直通大气。
对压力容器施加约551Kpa(80psi)的空气压力,把微孔聚乙烯和硅酮复合材料压向心轴1300和瓣膜框架1000。对压力容器加热,直到心轴内部温度达到约95℃,约13分钟以后。移除加热,使压力容器过夜冷却到室温。该过程迫使硅酮/微孔聚乙烯膜复合材料层具有成形的心轴1300的形状,且瓣叶部分1109拉制进入一部分的凹面特征1309并具有该一部分的凹面特征1309的形状。从心轴1300滑出瓣膜组件1010,去除牺牲性ePTFE/聚酰亚胺复合材料以及牺牲性ePTFE吸墨纸材料。
裁剪聚乙烯/硅酮复合材料,从而复合材料延伸超出框架的底座以及超出框架杆的尖端约2毫米(见图29)。
瓣叶1102的厚度约为53微米,且复合材料中硅酮的重量百分数是约65%。
该瓣膜组件中的瓣膜瓣叶性能都在实时脉冲复制器上表征,所述实时脉冲复制器测量穿过瓣膜的典型解剖学压力和流动,产生针对某具体瓣膜组件的初始或“零疲劳”数据组。通过如实施例4所述的方法来表征流动性能。
本实施例的瓣膜的压力降是8.7mm Hg、EOA是2.49cm2且反流分数是16.7%。
对本领域技术人员而言显而易见的是,可以在不偏离本发明的精神或范围的情况下对本发明进行各种修改和变动。因此,本发明人意图是本发明包括本发明的修改和变化,只要这些修改和变化落在所附的权利要求和它们的等同内容的范围内。
附录
如在本文中所使用的,基质抗张强度(matrix tensile strength)指多孔含氟聚合物样品在规定条件下的拉伸强度。样品的孔隙率是这样计算的:用拉伸强度乘以聚合物密度与样品密度的比值。
如本文所使用,术语“膜”指包括单一组成例如但不限于膨胀的含氟聚合物的材料的多孔片材。
如本文所使用,术语“复合材料”指膜例如但不限于膨胀的含氟聚合物以及弹性体例如但不限于含氟弹性体的组合。弹性体可吸收在膜的多孔结构之内,涂覆在膜的一侧或两侧上,或者是涂覆在膜上以及吸收在膜之内的组合。
如本文所使用,术语“层压件”指多层的膜、复合材料或其它材料例如弹性体,及其组合。
本文所用术语“吸收”指用于使辅助材料至少部分填充孔的任何工艺。
对于孔基本填充了弹性体的多孔膜,其中的弹性体可用合适的溶剂溶解或降解、且被冲洗掉以测量所需性能。
本文所用术语“弹性体”定义了单一聚合物或聚合物的混合物,它们能拉伸至原始长度的至少1.3倍且在释放时能快速回缩至约原始长度。术语“弹性体的”旨在描述一种性质,借助该性质聚合物展现出与弹性体类似的伸展和回缩性质,但伸展和/或回缩的程度不必完全一样。
如本文所使用,术语“热塑性”定义了可熔融加工的聚合物。与热塑性聚合物相反,本文所用的“热固性”聚合物定义了一种聚合物,所述聚合物固化时会不可逆的变成固体或“固定”。
本文所用术语“原纤维”和“纤维”可以互换使用。本文所用术语“孔”和“空隙”可以互换使用。
如本文所使用,术语“合成的聚合物”指不是衍生自生物组织的聚合物。
本文在假体瓣膜背景中所用术语“瓣叶”指单向瓣膜的组件,其中瓣叶可在压差的影响下在张开和闭合位置之间移动。在张开位置时,瓣叶允许血液流过瓣膜。在闭合位置时,瓣叶基本上阻断透过瓣膜的逆运输流动。在包括多个瓣叶的实施方式中,各瓣叶与至少一个相邻的瓣叶配合来阻断血液的逆运输流动。根据本文所述的实施方式提供的瓣叶包括一层或更多层复合材料。
测试方法
应理解,虽然下文描述了某些方法和设备,但也可替代地采用本领域普通技术人员确定适用的任何方法或设备。
有效开口面积
瓣膜质量的度量之一是有效开口面积(EOA),可按下式计算:EOA(cm2)=Qrms/(51.6*(ΔP)1/2),式中Qrms为收缩/舒张流动速率均方根(cm3/s)、ΔP为平均收缩/舒张压力降(mmHg)。
单位质量的表面积
如本文所使用,单位质量的表面积,以m2/g为单位表达的,是在购自美国加利福尼亚州富勒顿贝克曼库尔特公司的库尔特SA3100气体吸附分析仪(Coulter SA3100GasAdsorption Analyzer,Beckman Coulter Inc)上通过布鲁诺—埃梅特-特勒(BET,Brunauer-Emmett-Teller)方法测量的。为了进行该测试,从膨胀含氟聚合物膜的中心切下一块样品,然后放入小样品管中。样品的质量为约0.1至0.2g。将管放入购自美国加利福尼亚州富勒顿贝克曼库尔特公司(Beckman Coulter)的库尔特SA-Prep表面积脱气仪(型号为SA-Prep、零件号为5102014),然后在约110℃下鼓入约两小时的氦气。将样品管从SA-Prep脱气仪取出并称重。然后,将样品管放入SA3100气体吸附分析仪,根据仪器说明书进行BET表面积分析,利用氦气计算自由体积以及氮气作为吸附气体。
泡点和平均流动孔径
使用型号CFP 1500AEXL,购自美国纽约伊萨卡的多孔材料公司(PorousMaterials Inc.,Ithaca,NY)的毛细管流动气孔计,根据ASTM F316-03所述的一般教导测试泡点和平均流量孔径。将样品膜放置于样品室,用表面张力为约20.1达因/厘米的SilWick硅酮流体(可从多孔材料公司购买,Porous Materials Inc.)润湿。样品室的底部夹具有直径为约2.54厘米的孔。使用异丙醇作为测试流体。使用7.73.012版的Capwin软件,按下表所示设定以下参数。如本文所使用,平均流动孔径和孔径互换使用。
弹性体在孔中的存在
本领域所属技术人员可用多种已知方法确定弹性体存在于孔中,如表面和/或截面观察,或其他分析。这些分析可在把弹性体从瓣叶除去之前或之后进行。
原纤维和纤维的直径
通过检测在适于显示许多原纤维或纤维的放大倍数下获得的扫描电子显微图象(例如图7A-C,30和31所示的扫描电子显微图象(SEM)),来估算原纤维和纤维的平均直径。在复合材料的情况下,可需要通过任意合适的方式来提取可能填充孔的弹性体或其它材料,从而暴露原纤维或纤维。
ePTFE膜的质量、厚度和密度
将膜放置于购自德国巴登-符腾堡州的凯发量表公司( MessuhrenfabrikGmbH,Villingen-Schwenningen,Germany)的Kafer FZ1000/30厚度卡规的两块平板之间对膜厚度进行测试。取三次测量的平均值。
将膜样品冲切形成约2.54厘米×约15.24厘米的矩形部分,测量确定其重量(使用梅特勒-托伦脱分析天平(Mettler-Toledo analytical balance),型号AG204)和厚度(使用Kafer FZ1000/30卡规)。使用这些数据,按照下式计算密度:ρ=m/(w*l*t),其中:ρ=密度(g/cm3);m=质量(g);w=宽度(cm);l=长度(cm);以及t=厚度(cm)。取三次测量的平均值。
ePTFE膜的基质拉伸强度(MTS)
使用配置有平面夹具(flat-faced grip)和0.445千牛负载单元的INSTRON 122拉伸测试仪测量拉伸断裂负荷。量规长度为约5.08厘米,十字头速度为约50.8厘米/分钟。样品尺寸为约2.54厘米乘约15.24厘米。最高强度测试时,样品中较长的维度沿最高强度方向取向。正交MTS测试时,样品中更长的维度与最高强度方向垂直取向。使用梅特勒-托伦脱天平,型号AG204对各样品称重,再使用Kafer FZ1000/30卡规测量样品的厚度;或者,可采用任何合适的方法测量厚度。然后将样品在抗张测试仪上分别进行测试。分别测量每个样品的三个不同部分。取测得的三次最大负荷(即,峰值力)的平均值。采用下式计算纵向和横向的基质抗张强度MTS:MTS=(最大负荷/横截面积)×(PTFE的体密度)/(多孔膜的密度),其中PTFE的体密度为约2.2g/cm3
聚乙烯膜的质量、厚度和密度
将膜样品冲切成直径为约5.0厘米的圆形部分,来测量重量(使用Sartorius分析天平,型号MC210P)和厚度(使用Starrett 3732XFL-1测微计)。使用这些数据,按照下式计算密度:ρ=m/(w*l*t),其中:ρ=密度(g/cm3);m=质量(g);w=宽度(cm);l=长度(cm);以及t=厚度(cm)。取三次测量的平均值。
聚乙烯膜的基质拉伸强度(MTS)
使用配置有平面夹具(flat-faced grip)和0.890千牛负载单元的INSTRON 5500R拉伸测试仪测量拉伸断裂负荷。量规长度为约2.54厘米,应变速率是约1000%/分钟。样品尺寸为约0.47厘米乘约3.90厘米。最高强度测试时,样品中较长的维度沿最高强度方向取向。正交MTS测试时,样品中更长的维度与最高强度方向垂直取向。使用Starrett 3732XFL-1测微计测量各样品的厚度;或者可使用用于测量厚度的任意合适的方式。然后将样品在抗张测试仪上分别进行测试。分别测量每个样品的5个不同部分。取测得的5次最大负荷(即,峰值力)的平均值。采用下式计算纵向和横向的基质抗张强度MTS:MTS=(最大负荷/横截面积)×(聚乙烯的体密度)/(多孔膜的密度),其中聚乙烯的体密度为约0.94g/cm3
根据美国材料与测试协会标准D790(ASTM D790)所列的一般步骤测量抗弯刚度。除非有可用的大测试样品,否则测试样品需缩小。测试条件如下所述。瓣叶样品是在三点弯曲测试仪上测试的,使用了尖端杆,所述尖端杆水平方向相互间距为约5.08mm。用一根直径约为1.34mm、重约80mg的钢棒产生y(向下)方向的变形,但样品的x方向没有任何约束。将所述钢棒缓慢的置于膜样品的中心点。等待约5分钟后,测量y方向的形变。按上述支撑的弹性梁的形变可用下式表示:d=F*L3/48*EI,式中F(N)为施加在梁长度中心的负荷、长度L(m),因此L=1/2悬挂杆之间的距离,以及EI为弯曲硬度(Nm)。可根据这个关系计算EI的值。当截面为长方形时:I=t3*w/12,式中I=截面转动惯量、t=样品厚度(m)、w=样品宽度(m)。根据这个关系,可以计算所测弯曲形变范围内的平均弹性模量。
表面积测量
微孔聚合物膜的单位质量的表面积(比表面积)以m2/g为单位表达,且使用购自美国加利福尼亚州富勒顿贝克曼库尔特公司的库尔特SA3100气体吸附分析仪(CoulterSA3100Gas Adsorption Analyzer,Beckman Coulter Inc)通过布鲁诺—埃梅特-特勒(BET,Brunauer-Emmett-Teller)方法测量。从微孔聚合物膜片材的中央切割样品,并放入小样品管中。样品的质量为大约0.1-0.2克。将管放入购自美国加利福尼亚州富勒顿贝克曼库尔特公司(Beckman Coulter)的Coulter SA-Prep表面积脱气仪(型号为SA-PREP、零件号为5102014),然后在110℃下鼓入两小时的氦气。将样品管从SA-Prep脱气仪取出并称重。然后,将样品管放入SA3100气体吸附分析仪,根据仪器说明书进行BET表面积分析,利用氦气计算自由体积以及氮气作为吸附气体。为各样品记录单一测量。
将以单位m2/g表示的比表面积转化成以单位m2/毫升表示的比表面积可用来比较不同密度的材料的比表面积。为此,使以m2/g表示的比表面积乘以以g/毫升表示的样品材料的密度。将PTFE的密度当作2.2g/毫升,且将聚乙烯的密度当作0.98g/毫升。

Claims (96)

1.一种瓣膜,其包括:
支撑结构;和
至少一个瓣叶,该至少一个瓣叶支撑在所述支撑结构上并可在张开和闭合位置之间移动,各瓣叶包括复合材料,该复合材料包括至少一种无纺多孔聚乙烯膜和弹性体,所述至少一种无纺多孔聚乙烯膜包括在纤维之间限定间隔的纤维,其中大多数的所述纤维直径小于1微米,所述纤维之间的间隔限定孔,所述弹性体设置在基本上所有的孔中。
2.如权利要求1所述的瓣膜,其特征在于,所述复合材料还包括弹性体层。
3.如权利要求1所述的瓣膜,其特征在于,所述弹性体是硅酮。
4.如权利要求1所述的瓣膜,其特征在于,所述弹性体是含氟弹性体。
5.如权利要求1所述的瓣膜,其特征在于,所述弹性体是氨基甲酸酯。
6.如权利要求1所述的瓣膜,其特征在于,所述弹性体是TFE/PMVE共聚物。
7.如权利要求6所述的瓣膜,其特征在于,所述TFE/PMVE共聚物主要包括40重量%-80重量%的全氟甲基乙烯基醚和补充的60重量%-20重量%的四氟乙烯。
8.如权利要求1所述的瓣膜,其特征在于,所述多孔聚乙烯膜在至少一个方向上的基质拉伸强度大于150MPa。
9.如权利要求1所述的瓣膜,其特征在于,所述瓣叶的厚度小于350微米。
10.如权利要求1所述的瓣膜,其特征在于,所述复合材料包括至少一层所述多孔聚乙烯膜。
11.如权利要求1所述的瓣膜,其特征在于,所述复合材料包括多于两层的所述多孔聚乙烯膜。
12.如权利要求11所述的瓣膜,其特征在于,所述瓣叶包括所述复合材料的重叠包覆,其中所述多孔聚乙烯膜的层由所述复合材料的多个重叠包覆限定。
13.如权利要求12所述的瓣膜,其特征在于,所述瓣叶具有瓣叶厚度与多孔聚乙烯膜的层数目之比小于20,其中所述瓣叶厚度的单位为微米。
14.如权利要求1所述的瓣膜,其特征在于,所述支撑结构是选择性地直径可调的,以用于血管内递送和在治疗区域布置,其中所述瓣膜为假体心脏瓣膜。
15.如权利要求1所述的瓣膜,其特征在于,所述孔的孔径小于5微米。
16.如权利要求1所述的瓣膜,其特征在于,所述孔的孔径小于1微米。
17.如权利要求1所述的瓣膜,其特征在于,所述孔的孔径小于0.1微米。
18.如权利要求1所述的瓣膜,其特征在于,大多数的所述纤维的直径小于0.1微米。
19.如权利要求1所述的瓣膜,其特征在于,所述至少一种多孔聚乙烯膜基本上只包括纤维。
20.如权利要求1所述的瓣膜,其特征在于,所述复合材料包括10重量%-90重量%的弹性体。
21.如权利要求12所述的瓣膜,其特征在于,所述瓣叶具有瓣叶厚度与多孔聚乙烯膜的层数目之比小于20,其中所述瓣叶厚度的单位为微米。
22.如权利要求12所述的瓣膜,其特征在于,所述瓣叶包括至少10层且所述复合材料包括小于50重量%的多孔聚乙烯膜。
23.如权利要求1所述的瓣膜,还包括:
缓冲元件,该缓冲元件位于至少一部分的所述支撑结构和至少一部分的所述瓣叶之间,其中该缓冲元件包括第二复合材料,该第二复合材料包括具有多个孔的至少一种合成聚合物膜以及存在于基本上所有的所述孔中的弹性体。
24.如权利要求23所述的瓣膜,其特征在于,所述缓冲元件包括多孔聚乙烯膜。
25.如权利要求23所述的瓣膜,其特征在于,所述缓冲元件至少部分地覆盖所述至少一部分的所述支撑结构,从而在所述至少一部分的所述支撑结构和所述瓣叶之间提供缓冲。
26.如权利要求23所述的瓣膜,其特征在于,所述缓冲元件绕着所述至少一部分的所述支撑结构包覆,从而在所述至少一部分的所述支撑结构和所述瓣叶之间提供缓冲。
27.如权利要求23所述的瓣膜,其特征在于,所述支撑结构包括第一端部和与该第一端部相反的第二端部,所述第二端部包括从该第二端部纵向延伸的多个杆,其中绕着各杆包覆所述缓冲元件,从而在所述杆和连接到至少一部分的所述杆的一部分的瓣叶之间提供缓冲。
28.如权利要求1所述的瓣膜,其特征在于,所述复合材料包括至少一层的所述多孔聚乙烯膜,其中所述弹性体是硅酮,以及其中所述瓣膜为假体心脏瓣膜。
29.一种瓣膜,其包括:
支撑结构;和
至少一个瓣叶,该至少一个瓣叶支撑在所述支撑结构上并可在张开和闭合位置之间移动,各瓣叶包括复合材料,该复合材料包括具有多个孔的至少一种无纺多孔聚乙烯膜以及存在于基本上所有的孔中的弹性体,所述复合材料包括10重量%-90重量%的弹性体。
30.如权利要求29所述的瓣膜,其特征在于,所述复合材料包括小于70重量%的多孔聚乙烯膜。
31.如权利要求29所述的瓣膜,其特征在于,所述复合材料包括小于60重量%的多孔聚乙烯膜。
32.如权利要求29所述的瓣膜,其特征在于,所述复合材料包括小于50重量%的多孔聚乙烯膜。
33.如权利要求29所述的瓣膜,其特征在于,所述复合材料还包括弹性体层。
34.如权利要求33所述的瓣膜,其特征在于,所述孔由纤维状结构限定,该纤维状结构包括平均纤维直径小于1微米的纤维。
35.如权利要求29所述的瓣膜,其特征在于,所述孔由纤维状结构限定,该纤维状结构包括平均纤维直径小于0.1微米的纤维。
36.如权利要求29所述的瓣膜,其特征在于,所述弹性体是硅酮。
37.如权利要求29所述的瓣膜,其特征在于,所述弹性体是含氟弹性体。
38.如权利要求29所述的瓣膜,其特征在于,所述弹性体是氨基甲酸酯。
39.如权利要求37所述的瓣膜,其特征在于,所述弹性体是TFE/PMVE共聚物。
40.如权利要求39所述的瓣膜,其特征在于,所述TFE/PMVE共聚物主要由40重量%-80重量%的全氟甲基乙烯基醚和补充的60重量%-20重量%的四氟乙烯组成。
41.如权利要求29所述的瓣膜,其特征在于,所述多孔聚乙烯膜在至少一个方向上的基质拉伸强度大于150MPa。
42.如权利要求29所述的瓣膜,其特征在于,所述瓣叶的厚度小于350微米。
43.如权利要求29所述的瓣膜,其特征在于,所述复合材料包括至少一层所述多孔聚乙烯膜。
44.如权利要求29所述的瓣膜,其特征在于,所述复合材料包括多于两层的所述多孔聚乙烯膜。
45.如权利要求44所述的瓣膜,其特征在于,所述瓣叶包括所述复合材料的重叠包覆,其中所述多孔聚乙烯膜的层由所述复合材料的多个重叠包覆限定。
46.如权利要求43所述的瓣膜,其特征在于,所述瓣叶具有瓣叶厚度与多孔聚乙烯膜的层数目之比小于20,其中所述瓣叶厚度的单位为微米。
47.如权利要求29所述的瓣膜,其特征在于,所述瓣叶包括至少10层多孔聚乙烯膜且所述复合材料包括小于50重量%的多孔聚乙烯膜。
48.如权利要求29所述的瓣膜,其特征在于,所述孔的孔径小于5微米。
49.如权利要求29所述的瓣膜,其特征在于,所述孔的孔径小于1微米。
50.如权利要求29所述的瓣膜,其特征在于,所述孔的孔径小于0.10微米。
51.如权利要求29所述的瓣膜,还包括:
缓冲元件,该缓冲元件位于至少一部分的所述支撑结构和至少一部分的所述瓣叶之间,其中该缓冲元件包括第二复合材料,该第二复合材料包括具有多个孔的至少一种合成聚合物膜以及存在于基本上所有的所述孔中的弹性体。
52.如权利要求51所述的瓣膜,其特征在于,所述缓冲元件包括多孔聚乙烯膜。
53.如权利要求51所述的瓣膜,其特征在于,所述缓冲元件至少部分地覆盖所述至少一部分的所述支撑结构,从而在所述至少一部分的所述支撑结构和所述瓣叶之间提供缓冲。
54.如权利要求52所述的瓣膜,其特征在于,所述缓冲元件绕着所述至少一部分的所述支撑结构基本上螺旋的包覆,从而在所述至少一部分的所述支撑结构和所述瓣叶之间提供缓冲。
55.如权利要求51所述的瓣膜,其特征在于,所述支撑结构包括第一端部和与该第一端部相反的第二端部,所述第二端部包括从该第二端部纵向延伸的多个杆,其中绕着各杆包覆所述缓冲元件,从而在所述杆和连接到至少一部分的所述杆的一部分的瓣叶之间提供缓冲。
56.如权利要求29所述的瓣膜,其特征在于,所述支撑结构是选择性地直径可调的,以用于血管内递送和在治疗区域布置。
57.如权利要求29所述的瓣膜,其特征在于,所述复合材料包括至少一层的所述多孔聚乙烯膜,以及其中所述弹性体是硅酮。
58.一种瓣膜,其包括:
支撑结构;和
至少一个瓣叶,该至少一个瓣叶支撑在所述支撑结构上并可在张开和闭合位置之间移动,各瓣叶包括复合材料,该复合材料包括至少一种无纺多孔聚乙烯膜和弹性体,所述至少一种无纺多孔聚乙烯膜包括在纤维之间限定间隔的纤维,所述纤维之间的间隔限定孔径小于5微米的孔,所述弹性体设置在基本上所有的孔中。
59.如权利要求58所述的瓣膜,其特征在于,所述复合材料还包括弹性体层。
60.如权利要求58所述的瓣膜,其特征在于,所述弹性体是硅酮。
61.如权利要求58所述的瓣膜,其特征在于,所述弹性体是含氟弹性体。
62.如权利要求58所述的瓣膜,其特征在于,所述弹性体是氨基甲酸酯。
63.如权利要求58所述的瓣膜,其特征在于,所述弹性体是TFE/PMVE共聚物。
64.如权利要求63所述的瓣膜,其特征在于,所述TFE/PMVE共聚物主要包括40重量%-80重量%的全氟甲基乙烯基醚和补充的60重量%-20重量%的四氟乙烯。
65.如权利要求58所述的瓣膜,其特征在于,所述多孔聚乙烯膜在至少一个方向上的基质拉伸强度大于150MPa。
66.如权利要求58所述的瓣膜,其特征在于,所述瓣叶的厚度小于350微米。
67.如权利要求58所述的瓣膜,其特征在于,所述复合材料包括至少一层所述多孔聚乙烯膜。
68.如权利要求58所述的瓣膜,其特征在于,所述复合材料包括多于两层的所述多孔聚乙烯膜。
69.如权利要求68所述的瓣膜,其特征在于,所述瓣叶包括所述复合材料的重叠包覆,其中所述多孔聚乙烯膜的层由所述复合材料的多个重叠包覆限定。
70.如权利要求58所述的瓣膜,其特征在于,所述瓣叶具有瓣叶厚度与多孔聚乙烯膜的层数目之比小于20,其中所述瓣叶厚度的单位为微米。
71.如权利要求58所述的瓣膜,其特征在于,所述支撑结构是选择性地直径可调的,以用于血管内递送和在治疗区域布置,其中所述瓣膜为假体心脏瓣膜。
72.如权利要求58所述的瓣膜,其特征在于,大多数的所述纤维的直径小于0.1微米。
73.如权利要求58所述的瓣膜,其特征在于,所述孔的孔径小于1微米。
74.如权利要求58所述的瓣膜,其特征在于,所述孔的孔径小于0.10微米。
75.如权利要求58所述的瓣膜,其特征在于,所述至少一种多孔聚乙烯膜基本上只包括纤维。
76.如权利要求58所述的瓣膜,其特征在于,所述复合材料包括10重量%-90重量%的弹性体。
77.如权利要求67所述的瓣膜,其特征在于,所述瓣叶具有瓣叶厚度与多孔聚乙烯膜的层数目之比小于20,其中所述瓣叶厚度的单位为微米。
78.如权利要求67所述的瓣膜,其特征在于,所述瓣叶包括至少10层多孔聚乙烯膜且所述复合材料包括小于50重量%的多孔聚乙烯膜。
79.如权利要求58所述的瓣膜,还包括:
缓冲元件,该缓冲元件位于至少一部分的所述支撑结构和至少一部分的所述瓣叶之间,其中该缓冲元件包括第二复合材料,该第二复合材料包括具有多个孔的至少一种合成聚合物膜以及存在于基本上所有的所述孔中的弹性体。
80.如权利要求79所述的瓣膜,其特征在于,所述缓冲元件包括多孔聚乙烯膜。
81.如权利要求79所述的瓣膜,其特征在于,所述缓冲元件至少部分地覆盖所述至少一部分的所述支撑结构,从而在所述至少一部分的所述支撑结构和所述瓣叶之间提供缓冲。
82.如权利要求79所述的瓣膜,其特征在于,所述缓冲元件绕着所述至少一部分的所述支撑结构包覆,从而在所述至少一部分的所述支撑结构和所述瓣叶之间提供缓冲。
83.如权利要求79所述的瓣膜,其特征在于,所述支撑结构包括第一端部和与该第一端部相反的第二端部,所述第二端部包括从该第二端部纵向延伸的多个杆,其中绕着各杆包覆所述缓冲元件,从而在所述杆和连接到至少一部分的所述杆的一部分的瓣叶之间提供缓冲。
84.如权利要求58所述的瓣膜,其特征在于,所述复合材料包括至少一层的所述多孔聚乙烯膜,其中所述弹性体是硅酮,以及其中所述瓣膜为假体心脏瓣膜。
85.一种形成假体心脏瓣膜的瓣叶的方法,所述方法包括:
提供一种复合材料,该复合材料包括至少一种无纺多孔聚乙烯膜和弹性体,所述至少一种无纺多孔聚乙烯膜包括在纤维之间限定间隔的纤维,其中大多数的所述纤维的直径小于1微米,所述纤维之间的间隔限定孔,所述弹性体设置在基本上所有的所述孔中;
使多于一层的所述复合材料与其它层的所述复合材料接触;以及
将所述复合材料的层粘合在一起。
86.如权利要求85所述的形成假体心脏瓣膜的瓣叶的方法,其特征在于,提供所述弹性体包括提供硅酮。
87.一种形成假体心脏瓣膜的方法,所述方法包括:
提供基本上环形的支撑结构;
提供一种复合材料,该复合材料包括至少一种无纺多孔聚乙烯膜和弹性体,所述至少一种无纺多孔聚乙烯膜包括在纤维之间限定间隔的纤维,其中大多数的所述纤维的直径小于1微米,所述纤维之间的间隔限定孔,所述弹性体设置在基本上所有的所述孔中;
绕着所述支撑结构包覆所述复合材料,使多于一层的所述复合材料与其它层的所述复合材料接触;以及
将所述复合材料的层粘合到其自身以及粘合到所述支撑结构,从而限定瓣叶。
88.如权利要求87所述的形成假体心脏瓣膜的方法,其特征在于,提供基本上环形的支撑结构包括提供具有第一端部和与第一端部相反的第二端部的基本上环形的支撑结构,所述第二端部包括从该第二端部纵向延伸的多个杆,
其中绕着所述支撑结构包覆所述复合材料包括从杆到杆包覆所述复合材料,其中通过在所述杆之间的所述复合材料限定瓣叶。
89.如权利要求88所述的形成假体心脏瓣膜的方法,其特征在于,所述方法还包括:
绕着各杆包覆缓冲元件,从而在所述杆和连接到至少一部分的所述杆的所述瓣叶的一部分之间提供缓冲,其中所述缓冲元件包括第二复合材料,该第二复合材料包括具有在纤维之间限定间隔的纤维的至少一种合成聚合物膜,其中大多数的所述纤维的直径小于1微米,所述纤维之间的间隔限定孔,且弹性体存在于基本上所有的所述孔中。
90.如权利要求87所述的形成假体心脏瓣膜的方法,其特征在于,提供所述弹性体包括提供硅酮。
91.一种形成假体心脏瓣膜的瓣叶的方法,所述方法包括:
提供一种复合材料,该复合材料包括至少一种无纺多孔聚乙烯膜和弹性体,所述至少一种无纺多孔聚乙烯膜包括在纤维之间限定间隔的纤维,所述纤维之间的间隔限定孔径小于5微米的孔,所述弹性体设置在基本上所有的所述孔中;
使多于一层的所述复合材料层与其它层的所述复合材料接触;以及
将所述复合材料的层粘合在一起。
92.如权利要求91所述的形成假体心脏瓣膜的瓣叶的方法,其特征在于,提供所述弹性体包括提供硅酮。
93.一种形成假体心脏瓣膜的方法,所述方法包括:
提供基本上环形的支撑结构;
提供一种复合材料,该复合材料包括至少一种无纺多孔聚乙烯膜和弹性体,所述至少一种无纺多孔聚乙烯膜包括在纤维之间限定间隔的纤维,所述纤维之间的间隔限定孔径小于5微米的孔,所述弹性体设置在基本上所有的所述孔中;
绕着所述支撑结构包覆所述复合材料,使多于一层的所述复合材料与其它层的所述复合材料接触;以及
将所述复合材料的层粘合到其自身以及粘合到所述支撑结构,从而限定瓣叶。
94.如权利要求93所述的形成假体心脏瓣膜的方法,其特征在于,提供基本上环形的支撑结构包括提供具有第一端部和与第一端部相反的第二端部的基本上环形的支撑结构,所述第二端部包括从该第二端部纵向延伸的多个杆,
其中绕着所述支撑结构包覆所述复合材料包括从杆到杆包覆所述复合材料,其中通过在所述杆之间的所述复合材料限定瓣叶。
95.如权利要求94所述的形成假体心脏瓣膜的方法,其特征在于,所述方法还包括:
绕着各杆包覆缓冲元件,从而在所述杆和连接到至少一部分的所述杆的所述瓣叶的一部分之间提供缓冲,其中所述缓冲元件包括第二复合材料,该第二复合材料包括具有在纤维之间限定间隔的纤维的至少一种合成聚合物膜,其中大多数的所述纤维的直径小于1微米,所述纤维之间的间隔限定孔,且弹性体存在于基本上所有的所述孔中。
96.如权利要求93所述的形成假体心脏瓣膜的方法,其特征在于,提供所述弹性体包括提供硅酮。
CN201480014136.6A 2013-03-13 2014-02-14 适用于植入物的耐用高强度聚合物复合材料及其制品 Expired - Fee Related CN105007955B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/798,595 2013-03-13
US13/798,595 US9554900B2 (en) 2011-04-01 2013-03-13 Durable high strength polymer composites suitable for implant and articles produced therefrom
PCT/US2014/016550 WO2014163795A1 (en) 2013-03-13 2014-02-14 Durable high strength polymer composites suitable for implant and articles produced therefrom

Publications (2)

Publication Number Publication Date
CN105007955A CN105007955A (zh) 2015-10-28
CN105007955B true CN105007955B (zh) 2018-06-22

Family

ID=50193613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480014136.6A Expired - Fee Related CN105007955B (zh) 2013-03-13 2014-02-14 适用于植入物的耐用高强度聚合物复合材料及其制品

Country Status (9)

Country Link
EP (2) EP2968674B1 (zh)
JP (2) JP6449842B2 (zh)
KR (1) KR20150127127A (zh)
CN (1) CN105007955B (zh)
AU (3) AU2014250034A1 (zh)
CA (1) CA2900656C (zh)
ES (2) ES2801328T3 (zh)
HK (1) HK1216087A1 (zh)
WO (1) WO2014163795A1 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9283072B2 (en) 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US9144492B2 (en) 2012-12-19 2015-09-29 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves, preformed valve
US9101469B2 (en) 2012-12-19 2015-08-11 W. L. Gore & Associates, Inc. Prosthetic heart valve with leaflet shelving
US9968443B2 (en) 2012-12-19 2018-05-15 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
CN107206122B (zh) * 2015-02-13 2020-11-03 W.L.戈尔及同仁股份有限公司 用于人工瓣膜的连贯单一层高强度合成聚合物复合材料
US10314696B2 (en) 2015-04-09 2019-06-11 Boston Scientific Scimed, Inc. Prosthetic heart valves having fiber reinforced leaflets
US10433952B2 (en) 2016-01-29 2019-10-08 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
US10368982B2 (en) 2016-05-19 2019-08-06 Boston Scientific Scimed, Inc. Prosthetic valves, valve leaflets and related methods
US10959841B2 (en) 2016-11-15 2021-03-30 Hancock Jaffe Laboratories, Inc. Implantable vein frame
AU2017361296B2 (en) 2016-11-21 2022-09-29 Neovasc Tiara Inc. Methods and systems for rapid retraction of a transcatheter heart valve delivery system
CN106910403B (zh) * 2017-03-29 2019-09-13 广州迈普再生医学科技股份有限公司 血管模型及其制备方法和应用
US10952842B2 (en) * 2017-06-07 2021-03-23 W. L. Gore & Associates, Inc. Prosthetic valve with improved washout
US10856984B2 (en) 2017-08-25 2020-12-08 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US10959842B2 (en) 2017-09-12 2021-03-30 W. L. Gore & Associates, Inc. Leaflet frame attachment for prosthetic valves
JP6875601B2 (ja) 2017-09-27 2021-05-26 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated リーフレットが機械的にカップリングされた人工弁
CA3072814C (en) 2017-09-27 2023-01-03 W.L. Gore & Associates, Inc. Prosthetic valve with expandable frame and associated systems and methods
JP7036912B2 (ja) 2017-10-13 2022-03-15 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 嵌込式人工弁および送達システム
AU2018362079B2 (en) 2017-10-31 2021-09-16 Edwards Lifesciences Corporation Medical valve and leaflet promoting tissue ingrowth
US11154397B2 (en) * 2017-10-31 2021-10-26 W. L. Gore & Associates, Inc. Jacket for surgical heart valve
US11767613B2 (en) * 2017-12-28 2023-09-26 Xeltis Ag Medical implant preform produced using an inside out flipping method
WO2020093172A1 (en) 2018-11-08 2020-05-14 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
CN109613146A (zh) * 2018-12-08 2019-04-12 苏州贞成分析仪器有限公司 一种吸附脱附管
JP2022518470A (ja) * 2019-01-29 2022-03-15 ゼルティス アーゲー 医療用インプラント用の電界紡糸カバー層
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
JP7430732B2 (ja) 2019-03-08 2024-02-13 ニオバスク ティアラ インコーポレイテッド 回収可能補綴物送達システム
EP3946163A4 (en) 2019-04-01 2022-12-21 Neovasc Tiara Inc. ADJUSTABLE VALVE PROSTHESIS
CN113924065A (zh) 2019-04-10 2022-01-11 内奥瓦斯克迪亚拉公司 具有自然血流的假体瓣膜
CN114025813B (zh) 2019-05-20 2024-05-14 内奥瓦斯克迪亚拉公司 具有止血机构的引入器
WO2020257643A1 (en) 2019-06-20 2020-12-24 Neovasc Tiara Inc. Low profile prosthetic mitral valve
US20210154006A1 (en) * 2019-11-26 2021-05-27 Boston Scientific Limited Composite web-polymer heart valve
CN113201222B (zh) * 2021-05-24 2022-08-19 中国科学院西北高原生物研究所 一种牦牛皮胶/pmve-ma复合材料及其制备方法和用途
US20240099834A1 (en) * 2022-09-26 2024-03-28 Medtronic Vascular, Inc. Prosthetic heart valve tissue durability structure and method
CN116251238B (zh) * 2023-02-28 2023-11-21 上海心纪元医疗科技有限公司 具有三层结构的仿生瓣膜瓣叶及其制造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE392582B (sv) 1970-05-21 1977-04-04 Gore & Ass Forfarande vid framstellning av ett porost material, genom expandering och streckning av en tetrafluoretenpolymer framstelld i ett pastabildande strengsprutningsforfarande
US4816339A (en) * 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
AU688404B2 (en) 1994-09-02 1998-03-12 W.L. Gore & Associates, Inc. Porous polytetrafluoroethylene compositions
US7049380B1 (en) 1999-01-19 2006-05-23 Gore Enterprise Holdings, Inc. Thermoplastic copolymer of tetrafluoroethylene and perfluoromethyl vinyl ether and medical devices employing the copolymer
US6440164B1 (en) * 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
CA2420049C (en) * 2000-09-21 2010-08-24 St. Jude Medical, Inc. Valved prostheses with reinforced polymer leaflets
US6541589B1 (en) 2001-10-15 2003-04-01 Gore Enterprise Holdings, Inc. Tetrafluoroethylene copolymer
US7641958B2 (en) * 2002-04-25 2010-01-05 Gore Enterprise Holdings, Inc. Membrane for use in sutured or sutureless surgical procedures
US20040024448A1 (en) 2002-08-05 2004-02-05 Chang James W. Thermoplastic fluoropolymer-coated medical devices
US7531611B2 (en) 2005-07-05 2009-05-12 Gore Enterprise Holdings, Inc. Copolymers of tetrafluoroethylene
US7306729B2 (en) 2005-07-18 2007-12-11 Gore Enterprise Holdings, Inc. Porous PTFE materials and articles produced therefrom
US7569071B2 (en) * 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
WO2007142935A1 (en) * 2006-05-30 2007-12-13 Cook Incorporated Artificial valve prosthesis
US20080220054A1 (en) * 2006-10-13 2008-09-11 Shastri V Prasad Modulation of drug release rate from electrospun fibers
US20100249922A1 (en) * 2007-09-19 2010-09-30 St Jude Medical Inc. Fiber-reinforced synthetic sheets for prosthetic heart valve leaflets
MX339572B (es) * 2009-11-27 2016-05-18 Univ Nac Autónoma De México Materiales compuestos de matriz polimerica con reforzantes de diferentes morfologias y sus procedimientos de sintesis.
US8961599B2 (en) * 2011-04-01 2015-02-24 W. L. Gore & Associates, Inc. Durable high strength polymer composite suitable for implant and articles produced therefrom
US8945212B2 (en) * 2011-04-01 2015-02-03 W. L. Gore & Associates, Inc. Durable multi-layer high strength polymer composite suitable for implant and articles produced therefrom
EP2522308B1 (de) * 2011-05-10 2015-02-25 Biotronik AG Mechanische Transkatheter-Herzklappenprothese

Also Published As

Publication number Publication date
EP3459498A1 (en) 2019-03-27
JP6449842B2 (ja) 2019-01-09
WO2014163795A1 (en) 2014-10-09
CN105007955A (zh) 2015-10-28
JP2016512065A (ja) 2016-04-25
CA2900656A1 (en) 2014-10-09
JP6826093B2 (ja) 2021-02-03
KR20150127127A (ko) 2015-11-16
AU2018201999A1 (en) 2018-04-12
EP3459498B1 (en) 2020-04-01
AU2018201999B2 (en) 2019-07-18
CA2900656C (en) 2021-05-11
EP2968674B1 (en) 2018-09-05
ES2701197T3 (es) 2019-02-21
AU2016269391A1 (en) 2016-12-22
ES2801328T3 (es) 2021-01-11
HK1216087A1 (zh) 2016-10-14
AU2014250034A1 (en) 2015-08-13
JP2019058722A (ja) 2019-04-18
EP2968674A1 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
CN105007955B (zh) 适用于植入物的耐用高强度聚合物复合材料及其制品
CN103458934B (zh) 适用于植入物的耐用高强度聚合物复合材料及其制品
CN103702636B (zh) 适用于植入物的耐用多层高强度聚合物复合材料及其制品
CN107206122A (zh) 用于人工瓣膜的连贯单一层高强度合成聚合物复合材料
US10470878B2 (en) Durable high strength polymer composites suitable for implant and articles produced therefrom
CN106659567B (zh) 带有用于假体瓣膜的一体缝合封套的框架
US20170319338A1 (en) Elastomeric leaflet for prosthetic heart valves
US20150224231A1 (en) Coherent single layer high strength synthetic polymer composites for prosthetic valves
CN105188782B (zh) 用于假体心脏瓣膜的弹性体小叶
CN105188788A (zh) 适用于植入物的耐用多层高强度聚合物复合材料及其制品

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180622

Termination date: 20220214