CN105006494B - 具有多聚氨基酸复合氧化铟锡纳米结构的宽光谱光探测器 - Google Patents

具有多聚氨基酸复合氧化铟锡纳米结构的宽光谱光探测器 Download PDF

Info

Publication number
CN105006494B
CN105006494B CN201510349607.5A CN201510349607A CN105006494B CN 105006494 B CN105006494 B CN 105006494B CN 201510349607 A CN201510349607 A CN 201510349607A CN 105006494 B CN105006494 B CN 105006494B
Authority
CN
China
Prior art keywords
indium
light detector
spectral light
wide spectral
nanostructured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510349607.5A
Other languages
English (en)
Other versions
CN105006494A (zh
Inventor
赵嵩卿
施宏杰
张际蕊
杨立敏
杨睿
赵昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum Beijing
Original Assignee
China University of Petroleum Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum Beijing filed Critical China University of Petroleum Beijing
Priority to CN201510349607.5A priority Critical patent/CN105006494B/zh
Publication of CN105006494A publication Critical patent/CN105006494A/zh
Application granted granted Critical
Publication of CN105006494B publication Critical patent/CN105006494B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供了一种具有多聚氨基酸复合氧化铟锡纳米结构的宽光谱光探测器。该光探测器包括:基底;氧化铟锡薄膜,设于所述基底的表面;氧化铟锡纳米结构,设于所述氧化铟锡薄膜的表面;两个电极,分别置于氧化铟锡薄膜两端;多聚氨基酸薄膜,与所述氧化铟锡纳米结构接触。本发明提供的宽光谱光探测器具有多聚氨基酸与氧化铟锡纳米结构相复合的结构,氧化铟锡光学性质优越,导电性能良好,无环境污染,通过采用氧化铟锡纳米结构合并一些氨基酸有机聚合物对氧化铟锡纳米结构上的光生伏特效应有大幅的增强效应。该宽光谱光探测器具有结构简单、制备成本低廉、探测光谱范围广、响应时间短等特点,具有很大的发展潜力。

Description

具有多聚氨基酸复合氧化铟锡纳米结构的宽光谱光探测器
技术领域
本发明涉及一种具有多聚氨基酸复合氧化铟锡纳米结构的宽光谱光探测器,属于光探测技术领域。
背景技术
氧化铟锡薄膜材料一直以来最主要的用途是做透明导电玻璃,用作显示和太阳能电池的透明电极材料。而纳米氧化铟材料由于尺寸效应,一直是研究的热点,通常用作气体探测和光电探测领域。如文献Q.Wan,P.Feng,and T.H.Wang,Appl.Phys.Lett.89,123102,2006.和X.Y.Xue,Y.J.Chen,Y.G.Liu,S.L.Shi,Y.G.Wang,and T.H.Wang,Appl.Phys.Lett.88,201907,2006。
发明内容
本发明的目的在于提供一种宽光谱光探测器,该探测器采用多聚氨基酸复合氧化铟锡纳米结构,具有结构简单、制备成本低廉、探测光谱范围广、响应时间短等特点。
为达到上述目的,本发明提供了一种具有多聚氨基酸复合氧化铟锡纳米结构的宽光谱光探测器,其包括:
基底;
氧化铟锡薄膜,设于所述基底的表面;
氧化铟锡纳米结构,设于所述氧化铟锡薄膜的表面;
两个电极,分别置于氧化铟锡薄膜两端;
多聚氨基酸薄膜,与所述氧化铟锡纳米结构接触。
在上述宽光谱光探测器中,氧化铟锡薄膜的厚度没有特殊要求,一般5nm以上即可。
在上述宽光谱光探测器中,优选地,所述基底的材料为硅、二氧化硅或者玻璃。
在上述宽光谱光探测器中,氧化铟锡纳米结构在氧化铟锡薄膜的整个表面随机分布或者有规律地分布均可。优选地,所述氧化铟锡纳米结构为氧化铟锡纳米线和/或氧化铟锡纳米颗粒。其中,所述氧化铟锡纳米线可以垂直或者平行于所述基底的表面,即氧化铟锡纳米线的排列方式可以是垂直于基底方向,也可以是平行于基底方向。上述氧化铟锡纳米结构可以是通过脉冲激光沉积法、磁控溅射法或物理气相沉积法直接生长的,或者,将水热法或模板法生长的氧化铟锡纳米线烧结在所述氧化铟锡薄膜上。
在上述宽光谱光探测器中,优选地,所述多聚氨基酸薄膜的材料为精氨酸(Arg)、组氨酸(His)、天冬氨酸(Asp)或者谷氨酸(Glu)。多聚氨基酸薄膜附着在氧化铟锡纳米结构上,包裹住氧化铟锡纳米结构,并且和氧化铟锡薄膜、基底也接触。
在上述宽光谱光探测器中,两个电极设置在氧化铟锡薄膜两端,两根电极引线连接在电极上,两个电极引线的末端连接电压测试设备,优选地,所述电极的材料为金、银、铂、铟和铝中的一种或几种的组合。电极可以是采用真空镀膜法、磁控溅射法或激光沉积法制备的金薄膜、银薄膜或铝薄膜。
本发明提供的宽光谱光探测器是通过以下步骤制备的:
通过脉冲激光沉积法、磁控溅射法或物理气相沉积法在基底表面形成氧化铟锡薄膜;
通过脉冲激光沉积法、磁控溅射法或物理气相沉积法在氧化铟锡薄膜的表面直接生长得到氧化铟锡纳米结构,或者,将水热法或模板法生长的氧化铟锡纳米线烧结在所述氧化铟锡薄膜上;
将电极焊接在氧化铟锡薄膜两端;
将纯度为95-99.99%的多聚氨基酸溶于水制成浓度为0.1%-20%的溶液,滴加在氧化铟锡薄膜的表面,然后蒸发干燥形成多聚氨基酸薄膜,使得氨基酸的膜层厚度在5-1000纳米之间,得到宽光谱探测器。
本发明提供的宽光谱光探测器具有多聚氨基酸与氧化铟锡纳米结构相复合的结构,氧化铟锡光学性质优越,导电性能良好,无环境污染,通过采用氧化铟锡纳米结构合并一些氨基酸有机聚合物对氧化铟锡纳米结构上的光生伏特效应有大幅的增强效应。该宽光谱光探测器具有结构简单、制备成本低廉、探测光谱范围广、响应时间短等特点,具有很大的发展潜力。
附图说明
图1为实施例1提供的宽光谱光探测器的俯视示意图;
图2为实施例1提供的宽光谱光探测器的剖面示意图;
图3为利用实施例1提供的宽光谱光探测器进行检测的检测结果图。
主要附图标号说明:
基底 1 氧化铟锡薄膜 2 氧化铟锡纳米颗粒/线 3 电极 4、5多聚氨基酸薄膜 6
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供了一种宽光谱光探测器,其俯视示意图和剖面示意图如图1、图2所示。该宽光谱光探测器包括:
基底1;
氧化铟锡薄膜2,设于基底1的表面;
氧化铟锡纳米颗粒/线3,设于氧化铟锡薄膜2的表面;
两个电极4、5,设于氧化铟锡薄膜2的两端,分别通过电极引线连接至外部检测设备;
多聚氨基酸薄膜6,置于氧化铟锡纳米结构2上。
该宽光谱光探测器是通过以下步骤制备的:
选用硅作为基底1的材料;
用磁控溅射的方法在厚度为0.5毫米的基底1上镀一层厚度约200nm、面积为15×15毫米的氧化铟锡薄膜2,用真空蒸发的方法在表面两端蒸镀2mm宽的方形电极4、5,选用一根0.1mm的铜丝做电极引线。
在氧化铟锡薄膜2的表面利用物理气相沉积生长出氧化铟锡纳米颗粒3;
将多聚氨基酸溶于水制成浓度为10wt%的溶液,取10毫升滴加在氧化铟锡薄膜的表面,然后蒸发干燥形成多聚氨基酸薄膜。
对含有多聚氨基酸薄膜的宽光谱光探测器和不含有多聚氨基酸薄膜的光谱光探测器进行测试,具体按照以下步骤进行:光伏效应测试采用波长为532nm的绿色激光器照射在光电探测器的多聚氨基酸薄膜上。光电探测器的两个电极连接示波器,从光电探测器的一端开始用绿光开始照射,每个1mm向前移动一个点。
检测结果如图3所示。由图3可以看出,含有多聚氨基酸薄膜的宽光谱光探测器的光生伏特效相对于不含有多聚氨基酸薄膜的光谱光探测器有大幅的增强。
实施例2
本实施例提供了一种宽光谱光探测器,按实施例1的结构制作,区别在于选用二氧化硅做基底材料。
实施例3
本实施例提供了一种宽光谱光探测器,按实施例1的结构制作,区别在于用磁控溅射的方法在氧化铟锡薄膜2的边缘蒸镀金电极4、5。
实施例4
本实施例提供了一种宽光谱光探测器,按实施例1的结构制作,区别在于用真空蒸发的方法在氧化铟锡薄膜2边缘蒸镀铝电极4、5。
实施例5
本实施例提供了一种宽光谱光探测器,按实施例1的结构制作,区别在于用物理气相沉积的方法在氧化铟锡薄膜2上生长氧化铟锡纳米线,以替代氧化铟锡纳颗粒3。
实施例6
本实施例提供了一种宽光谱光探测器,按实施例1的结构制作,区别在于用磁控溅射的方法在氧化铟锡薄膜2上生长氧化铟锡纳米颗粒3。
实施例7
本实施例提供了一种宽光谱光探测器,按实施例1的结构制作,区别在于用磁控溅射的方法在氧化铟锡薄膜2上生长氧化铟锡纳米线3。
实施例8
本实施例提供了一种宽光谱光探测器,按实施例1的结构制作,区别在于用水热法的方法生长出氧化铟锡纳米线,之后将氧化铟锡纳米线烧结在氧化铟锡薄膜2上。
实施例9
本实施例提供了一种宽光谱光探测器,按实施例1的结构制作,区别在于选用多聚谷氨酸氨酸作为多聚氨基酸材料。

Claims (12)

1.一种具有多聚氨基酸复合氧化铟锡纳米结构的宽光谱光探测器,其包括:
基底;
氧化铟锡薄膜,设于所述基底的表面;
氧化铟锡纳米结构,设于所述氧化铟锡薄膜的表面;
两个电极,分别置于氧化铟锡薄膜两端;
多聚氨基酸薄膜,与所述氧化铟锡纳米结构接触。
2.根据权利要求1所述的宽光谱光探测器,其中,所述基底的材料为硅、二氧化硅或者玻璃。
3.根据权利要求1所述的宽光谱光探测器,其中,所述氧化铟锡纳米结构为氧化铟锡纳米线和/或氧化铟锡纳米颗粒。
4.根据权利要求3所述的宽光谱光探测器,其中,所述氧化铟锡纳米线垂直或者平行于所述基底的表面。
5.根据权利要求3所述的宽光谱光探测器,其中,所述氧化铟锡纳米结构是通过物理气相沉积法直接生长的,或者,将水热法或模板法生长的氧化铟锡纳米线烧结在所述氧化铟锡薄膜上。
6.根据权利要求5所述的宽光谱光探测器,其中,所述物理气相沉积法包括脉冲激光沉积法或磁控溅射法。
7.根据权利要求1所述的宽光谱光探测器,其中,所述多聚氨基酸薄膜的材料为精氨酸、组氨酸、天冬氨酸或者谷氨酸。
8.根据权利要求1所述的宽光谱光探测器,其中,所述电极的材料为金、银、铂、铟和铝中的一种或几种的组合。
9.根据权利要求1所述的宽光谱光探测器,其中,所述电极是采用真空镀膜法、磁控溅射法或激光沉积法制备的金薄膜、银薄膜或铝薄膜。
10.根据权利要求1所述的宽光谱光探测器,其中,所述基底为透明基底。
11.制备权利要求1-10任一项所述的宽光谱光探测器的方法,其包括以下步骤:
通过物理气相沉积法在基底表面形成氧化铟锡薄膜;
通过物理气相沉积法在氧化铟锡薄膜的表面直接生长得到氧化铟锡纳米结构,或者,将水热法或模板法生长的氧化铟锡纳米线烧结在所述氧化铟锡薄膜上;
将电极焊接在氧化铟锡薄膜两端;
将纯度为95-99.99%的多聚氨基酸溶于水制成浓度为0.1wt%-20wt%的溶液,滴加在氧化铟锡薄膜的表面,然后蒸发干燥形成多聚氨基酸薄膜,使得氨基酸的膜层厚度为5-1000纳米,得到所述宽光谱光探测器。
12.根据权利要求11所述的方法,其中,所述物理气相沉积法包括脉冲激光沉积法或磁控溅射法。
CN201510349607.5A 2015-06-23 2015-06-23 具有多聚氨基酸复合氧化铟锡纳米结构的宽光谱光探测器 Expired - Fee Related CN105006494B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510349607.5A CN105006494B (zh) 2015-06-23 2015-06-23 具有多聚氨基酸复合氧化铟锡纳米结构的宽光谱光探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510349607.5A CN105006494B (zh) 2015-06-23 2015-06-23 具有多聚氨基酸复合氧化铟锡纳米结构的宽光谱光探测器

Publications (2)

Publication Number Publication Date
CN105006494A CN105006494A (zh) 2015-10-28
CN105006494B true CN105006494B (zh) 2017-01-04

Family

ID=54379091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510349607.5A Expired - Fee Related CN105006494B (zh) 2015-06-23 2015-06-23 具有多聚氨基酸复合氧化铟锡纳米结构的宽光谱光探测器

Country Status (1)

Country Link
CN (1) CN105006494B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107598186B (zh) * 2017-08-30 2019-08-20 苏州工业园区格云环保新材料有限公司 一种纳米银及其熏蒸液的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006127712A2 (en) * 2005-05-23 2006-11-30 Brown University Compositions and methods for inducing, stimulating and directing neuronal growth
KR101109195B1 (ko) * 2005-12-19 2012-01-30 삼성전자주식회사 3차원 구조의 발광소자 및 그의 제조방법
CN103630571B (zh) * 2013-09-12 2015-08-19 中国科学院电子学研究所 一种微纳阵列传感器及其制备方法

Also Published As

Publication number Publication date
CN105006494A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
Kakavelakis et al. Solution processed CH3NH3PbI3–x Cl x perovskite based self-powered ozone sensing element operated at room temperature
Rana et al. Enhancement in performance of transparent p‐NiO/n‐ZnO heterojunction ultrafast self‐powered photodetector via pyro‐phototronic effect
Rao et al. In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband‐photodetectors
Kim et al. Efficient carrier separation and intriguing switching of bound charges in inorganic–organic lead halide solar cells
US9109296B2 (en) Method for etching conductive metal oxide layer using microelectrode
Guo et al. Ferro-pyro-phototronic effect in monocrystalline 2D ferroelectric perovskite for high-sensitive, self-powered, and stable ultraviolet photodetector
Liu et al. Scalable integration of indium zinc oxide/photosensitive-nanowire composite thin-film transistors for transparent multicolor photodetectors array
Patel et al. High-performing flexible and transparent photodetector by using silver nanowire-networks
Lee et al. Vacuum‐processed small molecule organic photodetectors with low dark current density and strong response to near‐infrared wavelength
Al-Hardan et al. UV photodetector behavior of 2D ZnO plates prepared by electrochemical deposition
JP6955915B2 (ja) 太陽電池モジュールおよびその製造方法
Cifci et al. Perovskite/p-Si photodiode with ultra-thin metal cathode
Xu et al. High-performance BiOBr ultraviolet photodetector fabricated by a green and facile interfacial self-assembly strategy
Sharma et al. Electronic and chemical properties of ZnO in inverted organic photovoltaic devices
JP7029639B2 (ja) ペロブスカイト型化合物を含む光電変換層を備える光センサ及びそれを用いた光検出装置
Li et al. Molecular engineering for sensitive, fast and stable quasi-two-dimensional perovskite photodetectors
CN105006494B (zh) 具有多聚氨基酸复合氧化铟锡纳米结构的宽光谱光探测器
WO2010110475A1 (ja) ショットキー型接合素子とこれを用いた光電変換素子及び太陽電池
Chen et al. Femtosecond Laser-Processed Perovskite Thin Films with Reduced Nonradiative Recombination and Improved Photodetecting Performance
RU2452924C1 (ru) Способ определения знака циркулярной поляризации лазерного излучения
Kim et al. Ultralow Optical and Electrical Losses via Metal‐Assisted Chemical Etching of Antireflective Nanograss in Conductive Mesh Electrodes
Kumar et al. Boosting Self‐Powered Ultraviolet Photoresponse of TiO2‐Based Heterostructure by Flexo‐Phototronic Effects
CN106098804A (zh) 石墨烯/氧化锌单晶基片肖特基结紫外光电探测器及其制备方法
Valluzzi et al. Optical and electrical properties of TiO2/Co/TiO2 multilayer films grown by DC magnetron sputtering
FathAllah et al. An automated experiment for determination of thin film semiconductor transport parameters

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170104

Termination date: 20170623