CN104992001A - Rapid and accurate computation method for large-scale MIMO array antenna far-field radiation field - Google Patents

Rapid and accurate computation method for large-scale MIMO array antenna far-field radiation field Download PDF

Info

Publication number
CN104992001A
CN104992001A CN201510344233.8A CN201510344233A CN104992001A CN 104992001 A CN104992001 A CN 104992001A CN 201510344233 A CN201510344233 A CN 201510344233A CN 104992001 A CN104992001 A CN 104992001A
Authority
CN
China
Prior art keywords
mrow
field
antenna
array
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510344233.8A
Other languages
Chinese (zh)
Other versions
CN104992001B (en
Inventor
陈国虎
朱明林
陈宏伟
钟州
刘起坤
黄开枝
安娜
杨梅樾
韩乾
陈丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PLA Information Engineering University
Original Assignee
PLA Information Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLA Information Engineering University filed Critical PLA Information Engineering University
Priority to CN201510344233.8A priority Critical patent/CN104992001B/en
Publication of CN104992001A publication Critical patent/CN104992001A/en
Application granted granted Critical
Publication of CN104992001B publication Critical patent/CN104992001B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The present invention belongs to the field of electromagnetic value computing, and particularly relates to a rapid and accurate analysis method for large-scale MIMO array antenna far-field radiation. The method comprises: determining a structural parameter of an M*N-element plane array antenna; computing a relationship between an incident field and a scattered field of an element antenna; according to mutual coupling characteristics among element antennas, selecting a sub-array form and size of an extraction unit on an array environment condition; for an antenna sub-array of the extraction unit, computing a unit far-field radiation pattern of the sub-array; and according to the unit far-field radiation patterns of the array and a superposition principle, computing an array antenna far-field radiation pattern. According to the invention, by utilizing the accuracy of mutual coupling computation, the problems that the use of such methods as the moment method, the finite element method and the finite difference time domain (FDTD) method are limited by computing capacity of a single computer, and when the scale of the array antenna is too large, rapid and accurate computation of the antenna radiation field cannot be implemented with a full wave simulation method because of large consumption of memory and computing time, are effectively solved. The method provided by the invention is capable of analyzing the radiation pattern of a large and conformal array antenna, and has higher synthesizing accuracy and higher analysis speed.

Description

Accurate and rapid calculation method for far-field radiation field of large-scale MIMO array antenna
Technical Field
The invention belongs to the field of electromagnetic numerical calculation, and particularly relates to a method for accurately and quickly analyzing far-field radiation of a large-scale MIMO array antenna, which is solved by adopting an iterative scattering algorithm.
Background
Large-scale antenna array systems (i.e., Massive MIMO) are considered to be the most potential transmission technology for future 5G, which is an extension and extension of MIMO technology in existing 4G networks. The Massive MIMO system has good effects on increasing system capacity, improving communication quality and aiming at the universality of equipment in a complex environment. The antenna structure conforms to the development trend that the current radio frequency part is closer to the antenna, reduces the maintenance cost and the energy cost, further improves the network performance and the deployment flexibility, and plays an important role in a fifth generation mobile communication system. The Massive MIMO active array antenna technology or the distributed antenna technology will become one of the key technologies for 5G wireless transmission, and theoretically, the antenna technology has obvious advantages, but in practical application, many problems are faced. On one hand, because the wireless communication environment is very complex, a plurality of uncertain interference factors exist, and the influence is generated on the antenna performance; on the other hand, the performance of the Massive MIMO antenna array and the intelligent control part itself is yet to be verified in practical use. In order to comprehensively evaluate the performance of a Massive MIMO antenna, a precise and rapid analysis method for the performance of the antenna needs to be researched.
When the array size is large, the directional diagram of the array antenna can be quickly calculated through the product of the array factor and the unit directional diagram according to the classical directional diagram product theorem and neglecting the influence of coupling among the units. However, due to the mutual coupling effect between array elements, the result is often different from the real situation.
For the precise calculation of the radiation pattern of the array antenna, electromagnetic numerical algorithms such as moment method, finite element method, finite difference in time domain and the like or commercial electromagnetic simulation software based on the electromagnetic numerical algorithms are usually used for realizing the precise calculation. However, due to the limitation of the computing power of a single computer, when the size of the array antenna is too large, any full-wave simulation method, even the Hybrid MoM Solution (Hybrid MoM Solution) with high efficiency at present, cannot quickly and accurately calculate the radiation field of the antenna due to the huge consumption of memory and computing time.
Disclosure of Invention
The method aims at the prior art and is generally realized by means of electromagnetic numerical algorithms such as moment methods, finite element methods, time domain finite differences and the like or commercial electromagnetic simulation software based on the electromagnetic numerical algorithms. However, due to the limitation of the computing power of a single computer, when the size of the array antenna is too large, any full-wave simulation method, even the Hybrid MoM Solution (Hybrid MoM Solution) with high efficiency at present, cannot quickly and accurately implement the calculation of the antenna radiation field due to the huge consumption of memory and calculation time, and the like, and provides an accurate and fast analysis method for the far-field radiation of the large-scale MIMO array antenna.
The technical scheme of the invention is as follows: the method for accurately and rapidly calculating the far-field radiation field of the large-scale MIMO array antenna comprises the following steps:
the method comprises the following steps: determining array element spacing parameter d of M x N element planar array antennax,dyWherein d isxIs the array element spacing in the x-direction of the planar array antenna, dyThe array element spacing in the y direction of the planar array antenna;
step two: solving the relation between the incident field and the scattered field of the unit antenna to obtain a relation formula as follows:
step three: selecting a subarray form and a subarray scale of the extraction unit under the array environment condition according to the mutual coupling characteristic among the unit antennas, wherein the subarray scale is p × q;
step four: for the antenna subarrays of p × q units, solving a unit far-field radiation pattern in the subarrays;
step five: and calculating the far-field radiation pattern of the M multiplied by N element planar array antenna.
The method for accurately and rapidly calculating the far-field radiation field of the large-scale MIMO array antenna comprises the following specific steps:
considering plane wave incidence, the incident field of the antenna unitAnd a scattered fieldSpread according to the form of spherical vector wave, then there are
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>c</mi> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein M ismn、NmnRepresenting the function of the spherical vector wave,the spherical vector wave coefficient of the scattered field can be determined by the boundary condition of the unit antenna;
ψmnthe method represents a measurement wave function in spherical coordinates and has the following expression:
wherein,is a spherical second-class hank function,is a Legendre polynomial;
the total electric field in space can be expressed asBased on a moment method model, an antenna radiation patch is divided into a plurality of grid units, and an ideal conductor boundary condition is applied to the outer surface of each grid area, so that the coefficient relation between an incident field and a scattering field of the unit antenna can be obtained, namely, the coefficient relation is obtained
Wherein, the subscript j represents the number of the mesh after the antenna radiation patch is split.
The precise and rapid calculation method for the far-field radiation field of the large-scale MIMO array antenna comprises the following specific steps:
assuming that the number of the unit antennas is p × q, the scattered field of p × q-1 antennas (excluding the ith antenna) is taken as the incident field of the ith antenna, that is, the following relation:
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>c</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> <mrow> <mi>p</mi> <mo>&times;</mo> <mi>q</mi> </mrow> </munderover> <msubsup> <mi>E</mi> <mi>j</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> <mi>p</mi> </munderover> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>j</mi> </mrow> </munder> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
this incident field generates a new scattered field, which is expressed as follows:
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
taking the newly generated scattered field as the incident field of the next iteration, the expressions of the incident field and the scattered field of the v-th iteration are as follows:
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>c</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> <mrow> <mi>p</mi> <mo>&times;</mo> <mi>q</mi> </mrow> </munderover> <msubsup> <mi>E</mi> <mi>j</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> <mi>p</mi> </munderover> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>j</mi> </mrow> </munder> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
suppose antenna i presents an incident fieldThe other antennas have no excitation field, and according to the iterative scattering theory, the total radiation field of the elements in the array of the antenna i is the sum of all scattering fields:
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>v</mi> </munder> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
the far-field radiation pattern of the unit in the array can be obtained after the total field is normalized
The precise and rapid calculation method for the far-field radiation field of the large-scale MIMO array antenna comprises the following specific steps:
suppose that the phase difference between two adjacent array elements in each column of the M x N array isy(ii) a The phase difference between two adjacent array elements in each row isxThe far-field radiation field of the planar array antenna composed of the units can be expressed as
An,BmIs the amplitude proportionality coefficient of the excitation source of the array antenna feed port.
The invention has the beneficial effects that: the invention utilizes the accuracy of mutual coupling calculation to well solve the problems that the calculation of the antenna radiation field cannot be quickly and accurately implemented by means of a full wave simulation method due to huge consumption of memory and calculation time when the scale of the array antenna is overlarge and the like because of the limitation of the calculation capacity of a single computer in methods such as a moment method, a finite element method, a time domain finite difference and the like, has the advantages of capability of analyzing the directional diagram of a large and conformal array antenna, higher synthesis accuracy, high analysis speed and the like.
Drawings
Fig. 1 is a structural view of an mxn element planar array antenna;
fig. 2 is a schematic diagram of the substructure of p × q cells.
Detailed Description
Example 1: with reference to fig. 1-2, a method for accurately and rapidly calculating a far-field radiation field of a massive MIMO array antenna includes the following steps:
the method comprises the following steps: determining array element spacing parameter d of M x N element planar array antennax,dyWherein d isxIs the array element spacing in the x-direction of the planar array antenna, dyThe array element spacing in the y direction of the planar array antenna, and the M × N planar array antenna is shown in fig. 1.
Step two: solving the relation between the incident field and the scattered field of the unit antenna, wherein the relation is as follows:
considering plane wave incidence, the incident field of the antenna unitAnd a scattered fieldSpread according to the form of spherical vector wave, then there are
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>c</mi> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein M ismn、NmnRepresenting the function of the spherical vector wave,the spherical vector wave coefficient of the scattered field can be determined by the boundary condition of the unit antenna;
ψmnthe method represents a measurement wave function in spherical coordinates and has the following expression:
wherein,is a spherical second-class hank function,is a Legendre polynomial;
the total electric field in space can be expressed asBased on a moment method model, an antenna radiation patch is divided into a plurality of grid units, and an ideal conductor boundary condition is applied to the outer surface of each grid area, so that the coefficient relation between an incident field and a scattering field of the unit antenna can be obtained, namely, the coefficient relation is obtained
Wherein, the subscript j represents the number of the mesh after the antenna radiation patch is split.
Step three: according to the mutual coupling characteristics among the unit antennas, the subarray form and the size of the extraction unit are selected under the array environment condition, a small number of units adjacent to the extraction unit are reserved to participate in mutual coupling calculation, a large number of units without mutual coupling or with small mutual coupling and capable of being ignored are ignored, the subarray size is p × q, and the method is shown in fig. 2.
Step four: for the antenna subarrays of p × q units, solving a unit far-field radiation pattern in the subarrays;
assuming that the number of the unit antennas is p × q, the scattered field of p × q-1 antennas (excluding the ith antenna) is taken as the incident field of the ith antenna, that is, the following relation:
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>c</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> <mrow> <mi>p</mi> <mo>&times;</mo> <mi>q</mi> </mrow> </munderover> <msubsup> <mi>E</mi> <mi>j</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> <mi>p</mi> </munderover> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>j</mi> </mrow> </munder> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
this incident field generates a new scattered field, which is expressed as follows:
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
taking the newly generated scattered field as the incident field of the next iteration, the expressions of the incident field and the scattered field of the v-th iteration are as follows:
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>c</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> <mrow> <mi>p</mi> <mo>&times;</mo> <mi>q</mi> </mrow> </munderover> <msubsup> <mi>E</mi> <mi>j</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> <mi>p</mi> </munderover> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>j</mi> </mrow> </munder> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
suppose antenna i presents an incident fieldThe other antennas have no excitation field, and according to the iterative scattering theory, the total radiation field of the elements in the array of the antenna i is the sum of all scattering fields:
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>v</mi> </munder> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
the far-field radiation pattern of the unit in the array can be obtained after the total field is normalized
Step five: calculating a far-field radiation pattern of the M multiplied by N element planar array antenna;
suppose that the phase difference between two adjacent array elements in each column of the M x N array isy(ii) a The phase difference between two adjacent array elements in each row isxThe far-field radiation field of the planar array antenna composed of the units can be expressed as
An,BmIs an array antenna feed terminalAmplitude scaling factor of the mouth excitation source.
Example 2: the invention is further illustrated by the following example of an 8 x 8 planar array, in conjunction with table 1.
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64
TABLE 1
Firstly, the structural parameters of the 8 x 8 element planar array antenna are determined.
Secondly, determining the scale of the environment subarrays in the array;
consider 3 distributions in the x and y directions: the distribution in the edge, sub-edge and array, and the symmetry of the planar array antenna structure, the total number of the extracted sub-arrays is 9, as shown in table 2:
TABLE 2
Thirdly, sequentially calculating the unit far-field radiation pattern in the 9 sub-arrays;
assuming that the number of element antennas is p × q, the scattered field of p × q-1 antennas (excluding the ith antenna) is taken as the incident field of the ith antenna, that is, formula (5):
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>c</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> <mrow> <mi>p</mi> <mo>&times;</mo> <mi>q</mi> </mrow> </munderover> <msubsup> <mi>E</mi> <mi>j</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> <mi>p</mi> </munderover> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>j</mi> </mrow> </munder> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
according to equation (6):
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </math>
calculating a new scattered field, using the newly generated scattered field as an incident field of the next iteration, and then according to formula (7):
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>c</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> <mrow> <mi>p</mi> <mo>&times;</mo> <mi>q</mi> </mrow> </munderover> <msubsup> <mi>E</mi> <mi>j</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> <mi>p</mi> </munderover> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>j</mi> </mrow> </munder> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </math>
and formula (8)
<math> <mrow> <msup> <msub> <mi>E</mi> <mi>i</mi> </msub> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </math>
Calculating the incident field and the scattered field of the v iteration for 5 times, and then according to the formula (9):
<math> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>v</mi> </munder> <mrow> <msubsup> <mi>E</mi> <mi>i</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>,</mo> </mrow> </mrow> </math>
calculating the total radiation field of the unit in the array of the antenna i, and finally normalizing the total field to obtain the unit far-field radiation pattern in the array of the ith antenna, as shown in the formula (10)
As shown.
Finally, calculating a far-field radiation pattern of the array antenna;
suppose that the phase difference between two adjacent array elements in an 8 x 8 array isy(ii) a The phase difference between two adjacent array elements in each row isxAccording to the formula (11)
Calculating far-field radiation pattern of the array antenna, wherein in formula (11), An,BmIs the amplitude proportionality coefficient of the excitation source of the array antenna feed port.

Claims (4)

1. The method for accurately and rapidly calculating the far-field radiation field of the large-scale MIMO array antenna is characterized by comprising the following steps of: the calculation method comprises the following steps:
the method comprises the following steps: determining array element spacing parameter d of M x N element planar array antennax,dyWherein d isxIs the array element spacing in the x-direction of the planar array antenna, dyThe array element spacing in the y direction of the planar array antenna;
step two: solving the relation between the incident field and the scattered field of the unit antenna, wherein the relation is as follows:
step three: selecting a subarray form and a subarray scale of the extraction unit under the array environment condition according to the mutual coupling characteristic among the unit antennas, wherein the subarray scale is p × q;
step four: for the antenna subarrays of p × q units, solving a unit far-field radiation pattern in the subarrays;
step five: and calculating the far-field radiation pattern of the M multiplied by N element planar array antenna.
2. The method for accurately and rapidly calculating the far-field radiation field of the massive MIMO array antenna according to claim 1, wherein the method comprises the following steps: the specific method of the second step is as follows:
considering plane wave incidence, the incident field of the antenna unitAnd a scattered fieldSpread according to the form of spherical vector wave, then there are
Wherein M ismn、NmnRepresenting the function of the spherical vector wave,the spherical vector wave coefficient of the scattered field can be determined by the boundary condition of the unit antenna;
ψmnthe method represents a measurement wave function in spherical coordinates and has the following expression:
wherein,is a spherical second-class hank function,is a Legendre polynomial;
the total electric field in space can be expressed asBased on a moment method model, an antenna radiation patch is divided into a plurality of grid units, and an ideal conductor boundary condition is applied to the outer surface of each grid area, so that the coefficient relation between an incident field and a scattering field of the unit antenna can be obtained, namely, the coefficient relation is obtained
Wherein, the subscript j represents the number of the mesh after the antenna radiation patch is split.
3. The method for accurately and rapidly calculating the far-field radiation field of the massive MIMO array antenna according to claim 1, wherein the method comprises the following steps: the concrete method of the fourth step is as follows:
assuming that the number of the unit antennas is p × q, the scattered field of p × q-1 antennas (excluding the ith antenna) is taken as the incident field of the ith antenna, that is, the following relation:
this incident field generates a new scattered field, which is expressed as follows:
taking the newly generated scattered field as the incident field of the next iteration, the expressions of the incident field and the scattered field of the v-th iteration are as follows:
suppose antenna i presents an incident fieldThe other antennas have no excitation field, and according to the iterative scattering theory, the total radiation field of the elements in the array of the antenna i is the sum of all scattering fields:
the far-field radiation pattern of the unit in the array can be obtained after the total field is normalized
4. The method for accurately and rapidly calculating the far-field radiation field of the massive MIMO array antenna according to claim 1, wherein the method comprises the following steps: the concrete method of the fifth step is as follows:
suppose that the phase difference between two adjacent array elements in each column of the M x N array isy(ii) a The phase difference between two adjacent array elements in each row isxThe far-field radiation field of the planar array antenna composed of the units can be expressed as
An,BmIs the amplitude proportionality coefficient of the excitation source of the array antenna feed port.
CN201510344233.8A 2015-06-19 2015-06-19 The accurate quick calculation method of extensive MIMO array Antenna Far Field radiation field Active CN104992001B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510344233.8A CN104992001B (en) 2015-06-19 2015-06-19 The accurate quick calculation method of extensive MIMO array Antenna Far Field radiation field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510344233.8A CN104992001B (en) 2015-06-19 2015-06-19 The accurate quick calculation method of extensive MIMO array Antenna Far Field radiation field

Publications (2)

Publication Number Publication Date
CN104992001A true CN104992001A (en) 2015-10-21
CN104992001B CN104992001B (en) 2018-01-23

Family

ID=54303815

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510344233.8A Active CN104992001B (en) 2015-06-19 2015-06-19 The accurate quick calculation method of extensive MIMO array Antenna Far Field radiation field

Country Status (1)

Country Link
CN (1) CN104992001B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105912742A (en) * 2016-03-07 2016-08-31 中国人民解放军信息工程大学 Method of quickly calculating far-field radiation field of large-scale MIMO array based on symmetric property
CN106257465A (en) * 2016-04-29 2016-12-28 中国舰船研究设计中心 A kind of Finite Array antenna analysis method
CN106897479A (en) * 2016-12-23 2017-06-27 中国移动通信集团设计院有限公司 A kind of array antenna emulation mode and server
CN106990529A (en) * 2017-06-05 2017-07-28 南开大学 A kind of scalar diffraction theory algorithm for calculating one-dimensional reflecting grating far-field distribution
CN107271977A (en) * 2017-07-25 2017-10-20 哈尔滨工业大学 High-precision SAR echo simulation methods based on mobile driving source FDTD algorithms
CN107958106A (en) * 2017-11-13 2018-04-24 东南大学 A kind of directional diagram numerical optimization of circle bore planar array antenna
CN108896833A (en) * 2018-07-06 2018-11-27 电子科技大学 A kind of non-linear measurement method of 5G array antenna for calibration
CN109165466A (en) * 2018-09-20 2019-01-08 中国电子科技集团公司第五十四研究所 A kind of fast evaluation method of the active standing wave of large size close coupling array
CN110059422A (en) * 2019-04-23 2019-07-26 北京环境特性研究所 The Electromagnetic Scattering Characteristics emulation mode of frequency-selective surfaces curve antenna cover
CN110210177A (en) * 2019-06-26 2019-09-06 北京航空航天大学 A kind of frequency-selective surfaces structural scattering field determines method and system
CN113092884A (en) * 2021-04-20 2021-07-09 北京航空航天大学 Antenna far field prediction method based on bounce ray method, storage medium and device
CN114239268A (en) * 2021-12-16 2022-03-25 西北工业大学 Method for acquiring cross-interface radiation field of underwater double-electric-dipole array based on Romberg
CN114818513A (en) * 2022-06-06 2022-07-29 北京航空航天大学 Efficient small-batch synthesis method for antenna array radiation pattern based on deep learning network in 5G application field
CN115034075A (en) * 2022-06-22 2022-09-09 电子科技大学 Rapid and accurate prediction method for irregular antenna array vector gain directional diagram
CN116720389A (en) * 2023-08-10 2023-09-08 之江实验室 Calculation method, device and medium for radiation field of spaceborne array antenna

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157796A (en) * 2010-02-12 2011-08-17 宗鹏 Mutual coupling compensation analysis method for microstrip array antenna
US20130057438A1 (en) * 2010-05-13 2013-03-07 Panasonic Corporation Antenna device and portable wireless terminal equipped with the same
CN104038295A (en) * 2014-06-06 2014-09-10 西安电子科技大学 Deformed array antenna scattering performance analyzing method based on electromechanical coupling
CN104036078A (en) * 2014-06-06 2014-09-10 西安电子科技大学 Comprehensive design method of array antenna radiation and scattering performance based on installation height

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157796A (en) * 2010-02-12 2011-08-17 宗鹏 Mutual coupling compensation analysis method for microstrip array antenna
US20130057438A1 (en) * 2010-05-13 2013-03-07 Panasonic Corporation Antenna device and portable wireless terminal equipped with the same
CN104038295A (en) * 2014-06-06 2014-09-10 西安电子科技大学 Deformed array antenna scattering performance analyzing method based on electromechanical coupling
CN104036078A (en) * 2014-06-06 2014-09-10 西安电子科技大学 Comprehensive design method of array antenna radiation and scattering performance based on installation height

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张帅 等: "大型平面阵列天线辐射方向图的小阵外推计算和综合方法", 《计算物理》 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105912742A (en) * 2016-03-07 2016-08-31 中国人民解放军信息工程大学 Method of quickly calculating far-field radiation field of large-scale MIMO array based on symmetric property
CN105912742B (en) * 2016-03-07 2019-04-05 中国人民解放军信息工程大学 The far-field radiation field method of extensive MIMO array is quickly calculated based on symmetry characteristic
CN106257465A (en) * 2016-04-29 2016-12-28 中国舰船研究设计中心 A kind of Finite Array antenna analysis method
CN106897479A (en) * 2016-12-23 2017-06-27 中国移动通信集团设计院有限公司 A kind of array antenna emulation mode and server
CN106990529A (en) * 2017-06-05 2017-07-28 南开大学 A kind of scalar diffraction theory algorithm for calculating one-dimensional reflecting grating far-field distribution
CN106990529B (en) * 2017-06-05 2021-12-10 南开大学 Scalar diffraction theory algorithm for calculating one-dimensional reflection grating far-field distribution
CN107271977A (en) * 2017-07-25 2017-10-20 哈尔滨工业大学 High-precision SAR echo simulation methods based on mobile driving source FDTD algorithms
CN107958106B (en) * 2017-11-13 2019-07-30 东南大学 A kind of directional diagram numerical optimization of circle bore planar array antenna
CN107958106A (en) * 2017-11-13 2018-04-24 东南大学 A kind of directional diagram numerical optimization of circle bore planar array antenna
CN108896833A (en) * 2018-07-06 2018-11-27 电子科技大学 A kind of non-linear measurement method of 5G array antenna for calibration
CN109165466A (en) * 2018-09-20 2019-01-08 中国电子科技集团公司第五十四研究所 A kind of fast evaluation method of the active standing wave of large size close coupling array
CN110059422A (en) * 2019-04-23 2019-07-26 北京环境特性研究所 The Electromagnetic Scattering Characteristics emulation mode of frequency-selective surfaces curve antenna cover
CN110059422B (en) * 2019-04-23 2023-01-20 北京环境特性研究所 Electromagnetic scattering characteristic simulation method for frequency selective surface curved surface radome
CN110210177B (en) * 2019-06-26 2020-11-10 北京航空航天大学 Method and system for determining frequency selective surface structure scattered field
CN110210177A (en) * 2019-06-26 2019-09-06 北京航空航天大学 A kind of frequency-selective surfaces structural scattering field determines method and system
CN113092884A (en) * 2021-04-20 2021-07-09 北京航空航天大学 Antenna far field prediction method based on bounce ray method, storage medium and device
CN114239268A (en) * 2021-12-16 2022-03-25 西北工业大学 Method for acquiring cross-interface radiation field of underwater double-electric-dipole array based on Romberg
CN114239268B (en) * 2021-12-16 2022-10-04 西北工业大学 Method for acquiring cross-interface radiation field of underwater double-electric-dipole array based on Romberg
CN114818513A (en) * 2022-06-06 2022-07-29 北京航空航天大学 Efficient small-batch synthesis method for antenna array radiation pattern based on deep learning network in 5G application field
CN114818513B (en) * 2022-06-06 2024-06-18 北京航空航天大学 Efficient small-batch synthesis method for antenna array radiation pattern based on deep learning network in 5G application field
CN115034075A (en) * 2022-06-22 2022-09-09 电子科技大学 Rapid and accurate prediction method for irregular antenna array vector gain directional diagram
CN115034075B (en) * 2022-06-22 2023-11-24 电子科技大学 Rapid and accurate prediction method for vector gain pattern of irregular antenna array
CN116720389A (en) * 2023-08-10 2023-09-08 之江实验室 Calculation method, device and medium for radiation field of spaceborne array antenna
CN116720389B (en) * 2023-08-10 2023-12-19 之江实验室 Calculation method, device and medium for radiation field of spaceborne array antenna

Also Published As

Publication number Publication date
CN104992001B (en) 2018-01-23

Similar Documents

Publication Publication Date Title
CN104992001A (en) Rapid and accurate computation method for large-scale MIMO array antenna far-field radiation field
Bai et al. Using random shape theory to model blockage in random cellular networks
CN105912742B (en) The far-field radiation field method of extensive MIMO array is quickly calculated based on symmetry characteristic
CN104899374B (en) Based on small echo variation wind Drive Optimization algorithm collinear array Pattern Synthesis method
CN106886656A (en) A kind of cubical array antenna radiation pattern side lobe suppression method based on improvement MOPSO and convex optimized algorithm
CN107958106B (en) A kind of directional diagram numerical optimization of circle bore planar array antenna
CN104901734A (en) Array antenna beam forming method
CN107515956B (en) Large finite plane array analysis method based on HFSS unit method
CN104036078B (en) Comprehensive design method of array antenna radiation and scattering performance based on installation height
CN104485513B (en) Real-time integrating method for wideband antenna array
CN110244273A (en) It is a kind of based on the target angle estimation method for being uniformly distributed formula array
CN105024166B (en) Planar array antenna Pattern Synthesis method based on submatrix
CN110427590A (en) The efficient integrated approach of Large Scale Sparse array antenna based on adaptive probability study
CN103513225B (en) Sparse planar formation optimization method based on spatial gain
CN107333290A (en) A kind of antenna for base station unit for electrical property parameters monitoring method
CN112100701A (en) Two-dimensional distributed antenna subarray position optimization method based on genetic algorithm
CN104993881A (en) Rapid analysis method of MIMO antenna mutual-coupling characteristic
Concepcion et al. Optimizing low power near l-band capacitive resistive antenna design for in silico plant root tomography based on genetic big bang-big crunch
CN114050852A (en) Beam forming method for inhibiting antenna coupling influence of large-scale MIMO system
CN101119576A (en) Propagation environment analysis based propagation model selecting method
CN105975746A (en) Method for arranging and optimizing MIMO (Multiple Input Multiple Output) radar square array based on PSO (particle swarm optimization) algorithm
CN116205143A (en) Design method for realizing antenna pattern based on physical information neural network
CN114330112A (en) Method for optimizing non-equidistant tightly-coupled array antenna
CN106156479A (en) Quickly analyze the nested multilamellar complex point source method of metal target Electromagnetic Scattering Characteristics
Sahoo et al. Analysis of 3× 5 planar array antenna with mutual coupling and optimization using PSO

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant