CN104971748B - 一种基于3D石墨烯/BiOI的分子印迹光催化复合材料的制备方法 - Google Patents

一种基于3D石墨烯/BiOI的分子印迹光催化复合材料的制备方法 Download PDF

Info

Publication number
CN104971748B
CN104971748B CN201510416375.0A CN201510416375A CN104971748B CN 104971748 B CN104971748 B CN 104971748B CN 201510416375 A CN201510416375 A CN 201510416375A CN 104971748 B CN104971748 B CN 104971748B
Authority
CN
China
Prior art keywords
bioi
graphenes
solution
molecular engram
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510416375.0A
Other languages
English (en)
Other versions
CN104971748A (zh
Inventor
蒋华麟
陈萍华
厉梦琳
张为波
田磊
白培培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN201510416375.0A priority Critical patent/CN104971748B/zh
Publication of CN104971748A publication Critical patent/CN104971748A/zh
Application granted granted Critical
Publication of CN104971748B publication Critical patent/CN104971748B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开一种基于3D石墨烯/BiOI的分子印迹光催化复合材料的制备方法,其方法在于:先制备BiOI纳米小球,然后在其表面修饰具有底物分子印迹空穴的聚吡咯分子层,再将其与石墨烯复合构建3D石墨烯/BiOI分子印迹复合光催化剂。本方法获得的光催化材料对底物分子具有高效的选择性降解性能,在治理有机污染物废水领域有广阔的应用前景。

Description

一种基于3D石墨烯/BiOI的分子印迹光催化复合材料的制备 方法
技术领域
本发明属于光催化材料领域,尤其涉及一种基于3D石墨烯/BiOI的分子印迹光催化复合材料的制备方法。
技术背景
随着全球性的环境污染及生态破坏的加剧,许多有毒有害的有机污染物进入环境。它们存在时间长,分布范围广,具有生物累积性,对人类健康危害巨大。光催化技术是治理这类污染物的有效手段之一。光催化能将难降解的有机污染物氧化、分解、直至转化为H2O、CO2和无机盐等,使有机物部分或完全矿化,从而达到污染物无害化处理的要求。
然而目前也有一个重要的问题制约着光催化技术的实用性能。在处理实际废水时,实际废水复杂的组分会对光催化剂的效率造成很大影响。这是因为,废水中的其他组分,比如高浓度的无毒或低毒性其他有机物会与目标污染物在光催化剂表面产生竞争吸附,它们会因在量上的优势而迅速在光催化剂表面达到饱和吸附而被优先降解,而亟待治理的目标污染物却因为竞争吸附不占优势而得不到有效降解。
分子印迹技术为上述问题提供了一个有效的解决方向。它利用印迹技术在光催化剂表面形成能契合底物的空穴,从而对底物具有高效的选择性。分子印迹技术在光催化剂领域有了一定的发展,如:张延霖等人制备了一种基于TiO2的对塑化剂的分子印迹光催化剂[专利号:201210299645.0];逯子扬等人制备了一种基于TiO2@SiO2@Fe3O4的分子印迹光催化剂,对盐酸恩诺沙星具有较好的选择降解性能[专利号:201310113117.6];霍鹏伟等人制备了一种基于TiO2/漂珠复合光催化剂,对环丙沙星具有较好的选择降解性能[专利号:201110197608.4]。近期一些分子印迹光催化剂相关的专利申请及授权,表明这一领域的研究正在受到重视,新颖组分的分子印迹光催化材料正在蓬勃发展。但目前的研究主要集中于基于TiO2的材料,开发新材料是目前该领域的重点发展方向。
卤氧化铋是一类不同于TiO2的光催化材料,在光催化领域很有应用前景,这源于它独特的分层结构和狭窄的禁带宽度,通常更偏向于光生电子-空穴对的分离,这保证他们在有机污染物的吸附上有一个相对较高的光催化效果。其中 BiOI 具有最小的禁带宽度,并在可见光区有强吸收。石墨烯是具有蜂窝状晶格结构的平面2D层状材料。3D石墨烯是由2D石墨烯片整合而成,具有特定的3D微/纳米结构。3D结构可以赋予石墨烯组装体独特的性质,如柔韧性、多孔性、高活性比表面积、优质的传质性能等。
在此技术背景下,我们发展一种基于3D石墨烯/BiOI的分子印迹光催化复合材料的制备方法,利用3D石墨烯立体构型构建大的比表面,负载BiOI这一新类型的半导体材料,构建新型的光催化剂,并在其表面制造分子印迹空穴,以对硝基苯酚这一重要常见的有机污染物为模板分子,合成分子印迹光催化材料,所得材料具有对模板分子很高的选择降解性能,在修复对硝基苯酚污染的复杂组分废水方面有很好的应用前景。本发明所涉及方法未见报道。
发明内容
本发明的目的在于提供一种制备高效分子印迹光催化剂的方法,本发明采用如下手段实现:
(1)以Bi(NO3)3、KI、PVP-K30为主要原料通过直接沉淀法制备BiOI纳米微球;
(2)将对硝基苯酚和吡咯溶解在甲醇:蒸馏水(1:1,V/V)的混和液中,该混和体系在暗处搅拌30 min以制备预自组装溶液;
(3)在脱氧的情况下,以FeCl3作为催化剂,使(2)的预自组装溶液在BiOI表面聚合,然后用NaOH溶液洗脱模板分子,以形成印迹空穴;
(4)将(3)所得产品与氧化石墨烯(GO)复合,其与氧化石墨烯(GO)的质量比为从100:5至100:100,构建3D石墨烯/BiOI分子印迹光催化材料。
本发明的优点是对模板分子的特异选择性降解能力强,在治理对硝基苯酚污染的复杂组分废水领域有很好的应用前景。
附图说明
图1为实施例1所得产品在可见光照射下对对硝基苯酚的降解效果,印迹材料效果明显强于非印迹材料;
图2为实施例2所得产品在可见光照射下对对硝基苯酚的降解效果,印迹材料效果明显强于非印迹材料;
图3为实施例3所得产品在紫外可见光照射下对对硝基苯酚的降解效果,印迹材料效果明显强于非印迹材料;
具体实施方式
以下对本发明的实施例作进一步详细描述,但本实施例并不用于限制本发明,凡是采用本发明的相似结构及其相似变化,均应列入本发明的保护范围。
实施例1
(1)将1.51g Bi(NO3)3·5H2O,0.4 g PVP-K30和5ml HNO3(1.0 M)加入到50 ml蒸馏水形成溶液A;0.5 g KI,0.40 g PVP-K30加入到60 ml蒸馏水中形成溶液B。然后在磁力搅拌下,将溶液B逐滴加至溶液A中。所得混和液在空气中搅拌2h。然后,通过离心收集形成的黄色沉淀,交替用蒸馏水和纯乙醇洗涤,80℃下3 h烘干,得到BiIO;
(3)0.05g 对硝基苯酚和17.3 ul吡咯溶解至5.0 ml的甲醇:蒸馏水(1:1,V/V)的混和液中,该混和体系在暗处搅拌30 min以制备预自组装溶液;
(4)将0.5g BiIO悬浮在100 ml的HCl溶液中(pH=2),进行脱氧处理后超声30 min得到均匀分散的溶液,再在0℃下待续搅拌下,将制备好的预自组装溶液加入到该溶液中。然后,将2 ml 含0.27 g FeCl3的溶液(pH=2)逐滴加至上述冷的溶液中。所得混和溶液在0℃下反应4h。然后,将反应体系过滤,所得固体用100 ml NaOH水溶液(pH=9)洗涤5次。接着,所得产品用蒸馏水彻底清洗以除去多余的氨水。最后,将产品在70℃下干燥至恒重;
(5)GO水溶液分散液根据改进的Hummers方法制备。GO水溶液分散液(1 mg/mL)的pH值调节至8.0。向2.5 mL 上述GO分散液中加入第3步制备的产品(其质量比与GO的质量比分别为100:5),再加入10 ml乙醇,15 ml蒸馏水。混和体系持续搅拌直至生成深桔黄色沉淀,再加入聚乙烯亚胺,搅拌约1h,再超声约1min,然后静置于25℃下24h,以形成水凝胶。将所得水凝胶彻底清洗,再真空冻干,得到分子印迹光催化材料;
(6)另外做一份对照组,除了第(3)步中不加对硝基苯酚,其他同上,得到相应的非印迹光催化材料。
实施例2
(1)将1.51g Bi(NO3)3·5H2O,0.4g PVP-K30和5ml HNO3(1.0 M)加入到50 ml蒸馏水形成溶液A;0.5 g KI,0.40 g PVP-K30加入到60 ml蒸馏水中形成溶液B。然后在磁力搅拌下,将溶液B逐滴加至溶液A中。所得混和液在空气中搅拌2h。然后,通过离心收集形成的黄色沉淀,交替用蒸馏水和纯乙醇洗涤,80℃下3 h烘干,得到BiIO;
(3)0.05g 对硝基苯酚和17.3 ul吡咯溶解至5.0 ml的甲醇:蒸馏水(1:1,V/V)的混和液中,该混和体系在暗处搅拌30 min以制备预自组装溶液;
(4)将0.5g BiIO悬浮在100 ml的HCl溶液中(pH=2),进行脱氧处理后超声30 min得到均匀分散的溶液,再在0℃下待续搅拌下,将制备好的预自组装溶液加入到该溶液中。然后,将2 ml 含0.27 g FeCl3的溶液(pH=2)逐滴加至上述冷的溶液中。所得混和溶液在0℃下反应4h。然后,将反应体系过滤,所得固体用100 ml NaOH水溶液(pH=9)洗涤5次。接着,所得产品用蒸馏水彻底清洗以除去多余的氨水。最后,将产品在70℃下干燥至恒重;
(5)GO水溶液分散液根据改进的Hummers方法制备。GO水溶液分散液(1 mg/mL)的pH值调节至8.0。向2.5 mL 上述GO分散液中加入第3步制备的产品(其质量比与GO的质量比分别为100:10),再加入10 ml乙醇,15 ml蒸馏水。混和体系持续搅拌直至生成深桔黄色沉淀,再加入聚乙烯亚胺,搅拌约1h,再超声约1min,然后静置于25℃下24h,以形成水凝胶。将所得水凝胶彻底清洗,再真空冻干,得到分子印迹光催化材料;
(6)另外做一份对照组,除了第(3)步中不加对硝基苯酚,其他同上,得到相应的非印迹光催化材料。
实施例3
(1)将1.51g Bi(NO3)3·5H2O,0.4g PVP-K30和5ml HNO3(1.0 M)加入到50 ml蒸馏水形成溶液A;0.5 g KI,0.40 g PVP-K30加入到60 ml蒸馏水中形成溶液B。然后在磁力搅拌下,将溶液B逐滴加至溶液A中。所得混和液在空气中搅拌2h。然后,通过离心收集形成的黄色沉淀,交替用蒸馏水和纯乙醇洗涤,80℃下3 h烘干,得到BiIO;
(3)0.05g 对硝基苯酚和17.3 ul吡咯溶解至5.0 ml的甲醇:蒸馏水(1:1,V/V)的混和液中,该混和体系在暗处搅拌30 min以制备预自组装溶液;
(4)将0.5g BiIO悬浮在100 ml的HCl溶液中(pH=2),进行脱氧处理后超声30 min得到均匀分散的溶液,再在0℃下待续搅拌下,将制备好的预自组装溶液加入到该溶液中。然后,将2 ml 含0.27 g FeCl3的溶液(pH=2)逐滴加至上述冷的溶液中。所得混和溶液在0℃下反应4h。然后,将反应体系过滤,所得固体用100 ml NaOH水溶液(pH=9)洗涤5次。接着,所得产品用蒸馏水彻底清洗以除去多余的氨水。最后,将产品在70℃下干燥至恒重;
(5)GO水溶液分散液根据改进的Hummers方法制备。GO水溶液分散液(1 mg/mL)的pH值调节至8.0。向2.5 mL 上述GO分散液中加入第3步制备的产品(其质量比与GO的质量比分别为100:100),再加入10 ml乙醇,15 ml蒸馏水。混和体系持续搅拌直至生成深桔黄色沉淀,再加入聚乙烯亚胺,搅拌约1h,再超声约1min,然后静置于25℃下24h,以形成水凝胶。将所得水凝胶彻底清洗,再真空冻干,得到分子印迹光催化材料;
(6)另外做一份对照组,除了第(3)步中不加对硝基苯酚,其他同上,得到相应的非印迹光催化材料。

Claims (1)

1.一种基于3D石墨烯/BiOI的分子印迹光催化复合材料的制备方法,其特征在于:
(1)以Bi(NO3)3、KI、PVP-K30为主要原料通过直接沉淀法制备BiOI纳米微球;
(2)将对硝基苯酚和吡咯溶解在体积比为1;1的甲醇:蒸馏水的混和液中,该混和体系在暗处搅拌30 min以制备预自组装溶液;
(3)在脱氧的情况下,以FeCl3作为催化剂,使(2)的预自组装溶液在BiOI表面聚合,然后用NaOH溶液洗脱模板分子,以形成印迹空穴;
(4)将(3)所得产品与氧化石墨烯复合,其与氧化石墨烯的质量比为从100:5至100:100,构建3D石墨烯/BiOI分子印迹光催化材料。
CN201510416375.0A 2015-07-16 2015-07-16 一种基于3D石墨烯/BiOI的分子印迹光催化复合材料的制备方法 Expired - Fee Related CN104971748B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510416375.0A CN104971748B (zh) 2015-07-16 2015-07-16 一种基于3D石墨烯/BiOI的分子印迹光催化复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510416375.0A CN104971748B (zh) 2015-07-16 2015-07-16 一种基于3D石墨烯/BiOI的分子印迹光催化复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN104971748A CN104971748A (zh) 2015-10-14
CN104971748B true CN104971748B (zh) 2017-06-27

Family

ID=54269039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510416375.0A Expired - Fee Related CN104971748B (zh) 2015-07-16 2015-07-16 一种基于3D石墨烯/BiOI的分子印迹光催化复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN104971748B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159098A (zh) * 2016-07-15 2016-11-23 辽宁大学 一种BiIO敏化的BiIO/TiO2复合电极材料及其制备方法和应用
CN109060911A (zh) * 2018-09-12 2018-12-21 南昌航空大学 一种可检测4-硝基苯酚的电极修饰材料铬酸银/氧化石墨烯的制备方法
CN110105511B (zh) * 2019-05-21 2021-07-23 合肥工业大学 一种三维石墨烯银杏内酯b分子印迹聚合物的制备方法及其应用
CN111234295B (zh) * 2019-12-05 2022-06-03 太原理工大学 一种分子印迹光催化材料及其制备方法和应用
CN111013654B (zh) * 2019-12-05 2022-06-03 太原理工大学 一种氧化石墨烯/分子印迹复合材料及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234329A (zh) * 2008-01-09 2008-08-06 华中科技大学 一种SiO2颗粒表面分子印迹吸附剂及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234329A (zh) * 2008-01-09 2008-08-06 华中科技大学 一种SiO2颗粒表面分子印迹吸附剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3D BiOI-GO composite with enhanced photocatalytic performance for phenol degradation under visible-light", Rongan He et al., Ceramics International;Rongan He et al.;《Ceramics International》;20141111;第41卷;第3511-3517页 *

Also Published As

Publication number Publication date
CN104971748A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
CN104971748B (zh) 一种基于3D石墨烯/BiOI的分子印迹光催化复合材料的制备方法
Li et al. Rapid in situ microwave synthesis of Fe3O4@ MIL-100 (Fe) for aqueous diclofenac sodium removal through integrated adsorption and photodegradation
Liu et al. Enhanced visible light photo-Fenton-like degradation of tetracyclines by expanded perlite supported FeMo3Ox/g-C3N4 floating Z-scheme catalyst
Hemmati et al. Green fabrication of reduced graphene oxide decorated with Ag nanoparticles (rGO/Ag NPs) nanocomposite: A reusable catalyst for the degradation of environmental pollutants in aqueous medium
Mortazavi-Derazkola et al. Fabrication and characterization of Fe3O4@ SiO2@ TiO2@ Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution
Boruah et al. Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation
Liu et al. Lead bismuth oxybromide/graphene oxide: synthesis, characterization, and photocatalytic activity for removal of carbon dioxide, crystal violet dye, and 2-hydroxybenzoic acid
Bagheri et al. Removal of reactive blue 203 dye photocatalytic using ZnO nanoparticles stabilized on functionalized MWCNTs
Karami et al. A novel nanohybrid based on metal–organic framework MIL101− Cr/PANI/Ag for the adsorption of cationic methylene blue dye from aqueous solution
Zhu et al. Insight into the influence of morphology of Bi2WO6 for photocatalytic degradation of VOCs under visible light
Yuan et al. Removal of organic dye by air and macroporous ZnO/MoO3/SiO2 hybrid under room conditions
Sun et al. Synthesis of stable and easily recycled ferric oxides assisted by Rhodamine B for efficient degradation of organic pollutants in heterogeneous photo-Fenton system
CN108525702A (zh) 一种用于污水处理的负载型氯氧化铋光催化剂及制备方法
Wang et al. Bi25VO40 microcube with step surface for visible light photocatalytic reduction of Cr (VI): Enhanced activity and ultrasound assisted regeneration
Son et al. Fly ash-, foundry sand-, clay-, and pumice-based metal oxide nanocomposites as green photocatalysts
Saleh et al. Photooxidation/adsorption of arsenic (III) in aqueous solution over bentonite/chitosan/TiO2 heterostructured catalyst
Wang et al. Preparation and photocatalytic application of magnetic Fe2O3/SBA-15 nanomaterials
Fang et al. Enhanced photocatalytic activity of molecular imprinted nano α-Fe2O3 by hydrothermal synthesis using methylene blue as structure-directing agent
Zhang et al. The synergistic effect of attapulgite in the highly enhanced photoreduction of Cr (VI) by oxalic acid in aqueous solution
CN105566400A (zh) 非均相钴金属-有机骨架及制备与在废水处理领域中的应用
Paswan et al. Spinel ferrite magnetic nanoparticles: an alternative for wastewater treatment
Hariani et al. High Efficient Photocatalytic Degradation of Methyl Orange Dye in an Aqueous Solution by CoFe_2O_4-SiO_2-TiO_2 Magnetic Catalyst
Xu et al. Electric-field-enhanced photocatalytic removal of Cr (VI) under sunlight of TiO2 nanograss mesh with nondestructive regeneration and feasible collection for Cr (III)
Duan et al. Efficient and stable monolithic microreactor with Ag/AgCl photocatalysts coated on polydopamine modified melamine sponge for photocatalytic water purification
Chishti et al. Preparation of novel magnetic noble metals supramolecular composite for the reduction of organic dyes and nitro aromatics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170627