CN104950545A - Method for motivating surface plasma waves and excimers on non-metallic material and medium interfaces - Google Patents
Method for motivating surface plasma waves and excimers on non-metallic material and medium interfaces Download PDFInfo
- Publication number
- CN104950545A CN104950545A CN201410115117.4A CN201410115117A CN104950545A CN 104950545 A CN104950545 A CN 104950545A CN 201410115117 A CN201410115117 A CN 201410115117A CN 104950545 A CN104950545 A CN 104950545A
- Authority
- CN
- China
- Prior art keywords
- metallic material
- medium
- interface
- electromagnetic wave
- periodic structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007769 metal material Substances 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000000737 periodic effect Effects 0.000 claims abstract description 45
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims abstract description 17
- 230000005284 excitation Effects 0.000 claims abstract description 12
- 239000004065 semiconductor Substances 0.000 claims description 10
- 229910052755 nonmetal Inorganic materials 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 13
- 239000010408 film Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000005684 electric field Effects 0.000 description 7
- 244000309464 bull Species 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 3
- 239000003574 free electron Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/008—Surface plasmon devices
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明提供一种在非金属材料与介质界面激发表面等离子波的方法,包括以下步骤:利用一预定的非金属材料例如砷化镓来选择介质和作为电磁激励源的入射电磁波,非金属材料、介质和入射电磁波的波长满足下述条件:Re(εm)<0且|εm|>εd,εm表示非金属材料的相对介电常数,Re(εm)表示非金属材料的相对介电常数的实部,εd表示介质的相对介电常数,|εm|表示εm的绝对值;以及以所述选择的入射电磁波对所述预定的非金属材料进行激励,在非金属材料与介质的界面上激发表面等离子波。本发明还涉及一种非金属材料与介质界面上激发表面等离子激元的方法,通过在非金属材料表面形成周期性结构然后再进行电磁波激发,产生表面等离子激元。
The invention provides a method for exciting surface plasmon waves at the interface between a non-metal material and a medium, comprising the following steps: using a predetermined non-metal material such as gallium arsenide to select the medium and the incident electromagnetic wave as an electromagnetic excitation source, the non-metal material, The medium and the wavelength of the incident electromagnetic wave meet the following conditions: Re(ε m )<0 and |ε m |>ε d , ε m represents the relative permittivity of non-metallic materials, and Re(ε m ) represents the relative permittivity of non-metallic materials The real part of the dielectric constant, ε d represents the relative permittivity of the medium, |ε m | represents the absolute value of ε m ; and the predetermined non-metallic material is excited with the selected incident electromagnetic wave, in the non-metallic Surface plasmon waves are excited at the interface between the material and the medium. The invention also relates to a method for exciting surface plasmon on the interface between non-metallic material and medium. The surface plasmon is generated by forming a periodic structure on the surface of the non-metallic material and then exciting it with electromagnetic waves.
Description
技术领域technical field
本发明涉及电磁场与物质相互作用领域,具体而言涉及一种在非金属材料与介质界面上激发表面等离子波以及激发等离子激元的方法。The invention relates to the field of interaction between electromagnetic fields and matter, in particular to a method for exciting surface plasmon waves and exciting plasmons on the interface between non-metallic materials and media.
背景技术Background technique
表面等离子激元(SPP)效应是一种发生在满足特定要求的导电材料在空气或其他介质中受到电磁场激发后,在其表面产生的一种特殊的光子和自由电子所形成的等离子波的集体共振,其原理如附图1所示。现有技术中,SPP效应通常是由光和金属表面的自由电子相互作用而形成的一种电磁波模式,如图1所示,其中材料1是表面包含有自由电子并且能够被激发出表面等离子波的导电材料,可以称为SPP材料(即图中的SPP material);材料2是介质材料(即图中的dieletric),通常为空气。The surface plasmon polariton (SPP) effect is a collective of plasmonic waves formed by a special photon and free electrons generated on the surface of a conductive material that meets specific requirements after it is excited by an electromagnetic field in air or other media. Resonance, its principle is shown in Figure 1. In the prior art, the SPP effect is usually an electromagnetic wave mode formed by the interaction between light and free electrons on the metal surface, as shown in Figure 1, where material 1 contains free electrons on the surface and can be excited to generate surface plasmon waves The conductive material can be called SPP material (that is, SPP material in the figure); material 2 is a dielectric material (that is, dieletric in the figure), usually air.
目前,表面等离子激元在光束形成、亚波长结构与等离子设备的制备、生物化学感知等方面具有广泛应用。但对于表面等离子激元的激发局限在金属材料上,而多数金属只能在一定的波长范围内产生较强的SPP效应(通常为可见光波段)。At present, surface plasmons have been widely used in beam formation, subwavelength structure and plasmonic device preparation, biochemical sensing, etc. However, the excitation of surface plasmons is limited to metal materials, and most metals can only produce strong SPP effects in a certain wavelength range (usually the visible light band).
在半导体技术中,为了利用SPP效应尤其是其局部电场增强功能,现有的一些办法是在非金属的半导体材料表面上再镀一层金属膜,比如银质膜,然后在这层银膜上刻蚀出能激发SPP效应的周期性结构。这种方法的弊端在于:(1)工艺复杂,可重复性差,且增加了工序和成本;(2)电磁场增强效应本身仍然是在金属膜表面发生,再传导到半导体材料例如砷化镓层上,其效果减弱;(3)金属膜的存在限制了砷化镓器件的本身的性能。In semiconductor technology, in order to use the SPP effect, especially its local electric field enhancement function, some existing methods are to coat a layer of metal film on the surface of non-metallic semiconductor materials, such as silver film, and then coat the silver film on this layer A periodic structure that can stimulate the SPP effect is etched out. The disadvantages of this method are: (1) the process is complicated, the repeatability is poor, and the process and cost are increased; (2) the electromagnetic field enhancement effect itself still occurs on the surface of the metal film, and then conducts to the semiconductor material such as gallium arsenide layer , its effect is weakened; (3) the existence of the metal film limits the performance of the GaAs device itself.
发明内容Contents of the invention
鉴于现有技术中存在的上述缺陷,本发明目的在于提供一种在非金属材料与介质界面激发表面等离子波的方法。In view of the above-mentioned defects in the prior art, the purpose of the present invention is to provide a method for exciting surface plasmon waves at the interface between a non-metallic material and a medium.
本发明的另一目的还在于提供一种在非金属材料与介质界面激发表面等离子激元的方法。Another object of the present invention is to provide a method for exciting surface plasmons at the interface between a non-metallic material and a medium.
为达成上述目的,本发明所采用的技术方案如下:In order to achieve the above object, the technical scheme adopted in the present invention is as follows:
一种在非金属材料与介质界面激发表面等离子波的方法,包括以下步骤:A method for exciting surface plasmon waves at an interface between a non-metallic material and a medium, comprising the following steps:
利用一预定的非金属材料选择介质和作为电磁激励源的入射电磁波,非金属材料、介质和入射电磁波的波长满足下述条件:Using a predetermined non-metallic material to select the medium and the incident electromagnetic wave as the electromagnetic excitation source, the non-metallic material, the medium and the wavelength of the incident electromagnetic wave meet the following conditions:
Re(εm)<0且|εm|>εd,Re(ε m )<0 and |ε m |>ε d ,
式中,εm表示非金属材料的相对介电常数,Re(εm)表示非金属材料的相对介电常数的实部,εd表示介质的相对介电常数,|εm|表示εm的绝对值;以及In the formula, ε m represents the relative permittivity of non-metallic materials, Re(ε m ) represents the real part of the relative permittivity of non-metallic materials, ε d represents the relative permittivity of the medium, |ε m | represents ε m the absolute value of ; and
以所述选择的入射电磁波对所述预定的非金属材料进行激励,在非金属材料与介质的界面上激发表面等离子波。The predetermined non-metallic material is excited by the selected incident electromagnetic wave, and a surface plasmon wave is excited on the interface between the non-metallic material and the medium.
进一步的实施例中,所述预定的非金属材料为半导体材料。In a further embodiment, the predetermined non-metallic material is a semiconductor material.
进一步的实施例中,所述预定的非金属材料为砷化镓。In a further embodiment, the predetermined non-metal material is gallium arsenide.
进一步的实施例中,所述介质为空气,所述入射电磁波采用124.6nm~262.1nm波长范围内的紫外线。In a further embodiment, the medium is air, and the incident electromagnetic wave adopts ultraviolet rays within a wavelength range of 124.6nm-262.1nm.
根据本发明的改进,本发明的另一方面还在于提出一种在非金属材料与介质界面上激发表面等离子激元的方法,包括以下步骤:According to the improvement of the present invention, another aspect of the present invention is to propose a method for exciting surface plasmons on the interface between a non-metallic material and a medium, comprising the following steps:
利用一预定的非金属材料选择介质和作为电磁激励源的入射电磁波,非金属材料、介质和入射电磁波的波长满足下述条件:Using a predetermined non-metallic material to select the medium and the incident electromagnetic wave as the electromagnetic excitation source, the non-metallic material, the medium and the wavelength of the incident electromagnetic wave meet the following conditions:
Re(εm)<0且|εm|>εd,Re(ε m )<0 and |ε m |>ε d ,
式中,εm表示非金属材料的相对介电常数,Re(εm)表示非金属材料的相对介电常数的实部,εd表示介质的相对介电常数,|εm|表示εm的绝对值;In the formula, ε m represents the relative permittivity of non-metallic materials, Re(ε m ) represents the real part of the relative permittivity of non-metallic materials, ε d represents the relative permittivity of the medium, |ε m | represents ε m the absolute value of
在所述预定非金属材料表面形成周期性结构;forming a periodic structure on the surface of the predetermined non-metallic material;
以所述选择的入射电磁波对所述非金属材料上的周期性结构进行激励,在非金属材料与介质的界面上激发表面等离子激元。The periodic structure on the non-metallic material is excited by the selected incident electromagnetic wave, and surface plasmons are excited on the interface between the non-metallic material and the medium.
进一步的实施例中,所述周期性结构的周期长度按照下述公式计算:In a further embodiment, the period length of the periodic structure is calculated according to the following formula:
式中,λSP表示周期性结构的周期长度,λ0表示入射电磁波在真空中的波长。In the formula, λ SP represents the period length of the periodic structure, and λ 0 represents the wavelength of the incident electromagnetic wave in vacuum.
进一步的实施例中,在所述预定非金属材料的一个表面或两个表面上形成周期性结构。In a further embodiment, a periodic structure is formed on one or both surfaces of the predetermined non-metallic material.
进一步的实施例中,所述预定的非金属材料为半导体材料。In a further embodiment, the predetermined non-metallic material is a semiconductor material.
进一步的实施例中,所述预定的非金属材料为砷化镓。In a further embodiment, the predetermined non-metal material is gallium arsenide.
进一步的实施例中,所述介质为空气,所述入射电磁波采用124.6nm~262.1nm波长范围内的紫外线。In a further embodiment, the medium is air, and the incident electromagnetic wave adopts ultraviolet rays within a wavelength range of 124.6nm-262.1nm.
进一步的实施例中,所述周期性结构为同心环形周期性结构和条纹状周期结构中的一种。In a further embodiment, the periodic structure is one of a concentric ring periodic structure and a striped periodic structure.
由以上本发明的技术方案可知,本发明所提出的在非金属材料与介质界面上激发表面等离子波和等离子激元的方法,与现有技术相比,其显著效果在于:From the above technical solutions of the present invention, it can be seen that the method for exciting surface plasmon waves and plasmons on the interface between non-metallic materials and media proposed by the present invention, compared with the prior art, has significant effects in that:
1)采用非金属材料用于激发表面等离子波和表面等离子激元现象,突破了以往必须采用金属激发表面等离子波和表面等离子激元的局限性,使得表面等离子波的应用扩大到几乎所有材料;1) Non-metallic materials are used to excite surface plasmon waves and surface plasmon polaritons, which breaks through the limitations of using metals to excite surface plasmon waves and surface plasmon polaritons, and expands the application of surface plasmon waves to almost all materials;
2)利用非金属材料能够激发表面等离子激元现象,大大简化了以往需要在非金属材料表面镀金属薄膜后再进行蚀刻的工艺,实现了只需要在非金属材料中不借助金属薄膜直接实现表面等离子激元效应;2) The use of non-metallic materials can excite the surface plasmon phenomenon, which greatly simplifies the previous process of etching metal films on the surface of non-metallic materials, and realizes that only non-metallic materials need to be directly realized without metal films. Plasmon effect;
3)采用非金属材料实现表面等离子激元,可以利用现阶段已经十分成熟的半导体工艺技术来处理非金属材料,显著提高产品加工精度以及加工优品率;3) The use of non-metallic materials to realize surface plasmons can use the mature semiconductor process technology at this stage to process non-metallic materials, significantly improving product processing accuracy and processing quality rate;
4)利用本发明的方法,结合现阶段的负折射率材料,可以实现在大范围波段上激发表面等离子激元现象,使得该技术可以投入到多数产品工艺中,大大扩展了表面等离子激元的应用范围;4) By using the method of the present invention, combined with the negative refractive index materials at the present stage, the surface plasmon phenomenon can be excited in a wide range of wavelengths, so that this technology can be put into most product processes, greatly expanding the surface plasmon scope of application;
5)利用非金属材料实现表面等离子激元现象,大大弥补了金属材料所激发的表面等离子激元在波长范围限制上的不足(当前常用金属材料所激发的表面等离子波一般局限在可见光波段),扩展了表面等离子激元应用的波长范围,从而对于深紫外波段等波长范围的应用做了很好的补充。5) The use of non-metallic materials to realize the surface plasmon phenomenon greatly compensates for the limitation of the wavelength range of the surface plasmon excited by the metal material (the surface plasmon waves excited by the commonly used metal materials are generally limited to the visible light band), The wavelength range of the surface plasmon polariton application is expanded, thus making a good supplement for the application of the deep ultraviolet band and other wavelength ranges.
附图说明Description of drawings
图1为本发明表面等离子波产生的原理示意图。Fig. 1 is a schematic diagram of the principle of surface plasmon wave generation in the present invention.
图2为一个半导体材料砷化镓的介电常数绝对值以及介电常数实部示意图。FIG. 2 is a schematic diagram of the absolute value of the dielectric constant and the real part of the dielectric constant of a semiconductor material gallium arsenide.
图3为本发明一实施方式中所用周期性结构的一个示例图,其中图(a)为俯视图,图(b)为侧视图。Fig. 3 is an example diagram of a periodic structure used in an embodiment of the present invention, wherein diagram (a) is a top view, and diagram (b) is a side view.
图4为与图3所示周期性结构进行对比的参照结构示意图,其中图(a)为俯视图,图(b)为侧视图。Fig. 4 is a schematic diagram of a reference structure for comparison with the periodic structure shown in Fig. 3, in which (a) is a top view and (b) is a side view.
图5为利用图3的周期性结构在248nm激励下所得电场在远场处的角度分布图。Fig. 5 is an angle distribution diagram of the electric field at the far field obtained by using the periodic structure in Fig. 3 under 248nm excitation.
图6为利用图4的参照结构在248nm激励下所得电场在远场处的角度分布图。Fig. 6 is a diagram of the angular distribution of the electric field at the far field obtained by using the reference structure of Fig. 4 under the excitation of 248nm.
图7为本发明一实施方式中所用周期性结构的另一个示例图,其中图(a)为俯视图,图(b)为侧视图。Fig. 7 is another example diagram of the periodic structure used in an embodiment of the present invention, wherein (a) is a top view, and (b) is a side view.
具体实施方式Detailed ways
为了更了解本发明的技术内容,特举具体实施例并配合所附图式说明如下。In order to better understand the technical content of the present invention, specific embodiments are given together with the attached drawings for description as follows.
如图1所示,根据本发明的较优实施例,一种在非金属材料与介质界面激发表面等离子波的方法,包括以下步骤:As shown in Figure 1, according to a preferred embodiment of the present invention, a method for exciting surface plasmon waves at the interface between a non-metallic material and a medium comprises the following steps:
利用一预定的非金属材料选择介质和作为电磁激励源的入射电磁波,非金属材料、介质和入射电磁波的波长满足下述条件:Using a predetermined non-metallic material to select the medium and the incident electromagnetic wave as the electromagnetic excitation source, the non-metallic material, the medium and the wavelength of the incident electromagnetic wave meet the following conditions:
Re(εm)<0(公式1)Re(ε m )<0 (Formula 1)
且|εm|>εd(公式2),And |ε m |>ε d (Equation 2),
式中,εm表示非金属材料的相对介电常数,Re(εm)表示非金属材料的相对介电常数的实部,εd表示介质的相对介电常数,|εm|表示εm的绝对值;以及In the formula, ε m represents the relative permittivity of non-metallic materials, Re(ε m ) represents the real part of the relative permittivity of non-metallic materials, ε d represents the relative permittivity of the medium, |ε m | represents ε m the absolute value of ; and
以所述选择的入射电磁波对所述预定的非金属材料进行激励,在非金属材料与介质的界面上激发表面等离子波。The predetermined non-metallic material is excited by the selected incident electromagnetic wave, and a surface plasmon wave is excited on the interface between the non-metallic material and the medium.
作为可选的实施方式,所述介质可选择负介电常数的材料或正介电常数的材料中的一种,例如空气、水等。As an optional implementation manner, the medium may be selected from one of materials with a negative dielectric constant or a material with a positive dielectric constant, such as air, water, and the like.
较为优选地,所述预定的非金属材料为半导体材料。本实施例中,以砷化镓(GaAs)为例,详细说明上述实施例方法的实现。More preferably, the predetermined non-metallic material is a semiconductor material. In this embodiment, gallium arsenide (GaAs) is taken as an example to describe the implementation of the method in the foregoing embodiments in detail.
如图2所示为一种半导体材料砷化镓的介电常数实部以及介电常数绝对值示意图,其中实线表示砷化镓的介电常数的实部曲线,根据前述公式(1),A、B两点为砷化镓介电常数的实部等于0的两个点,其中A点坐标为(111.7,0),B点坐标为(262.1,0),则由上图可以明显看出,当波长介于111.7nm和262.1nm之间时,砷化镓的介电常数的实部小于0,此时的砷化镓的介电常数满足公式(1)。As shown in Figure 2, it is a schematic diagram of the real part of the dielectric constant and the absolute value of the dielectric constant of a semiconductor material gallium arsenide, wherein the solid line represents the real part curve of the dielectric constant of gallium arsenide, according to the aforementioned formula (1), The two points A and B are two points where the real part of the dielectric constant of gallium arsenide is equal to 0, where the coordinates of point A are (111.7, 0), and the coordinates of point B are (262.1, 0), it can be clearly seen from the above figure It is shown that when the wavelength is between 111.7nm and 262.1nm, the real part of the dielectric constant of gallium arsenide is less than 0, and the dielectric constant of gallium arsenide at this time satisfies the formula (1).
图2中,点画线表示砷化镓的介电常数的绝对值曲线,根据公式(2),此处,选取空气作为与砷化镓接触的介质,则空气的介电常数为1,C点为砷化镓的介电常数的绝对值等于1的点,此处C点坐标为(124.6,1),则根据上图,当波长大于124.6nm时,砷化镓的介电常数的绝对值大于1,此时,砷化镓的介电常数满足公式(2)。In Figure 2, the dotted line represents the absolute value curve of the dielectric constant of gallium arsenide. According to formula (2), here, air is selected as the medium in contact with gallium arsenide, and the dielectric constant of air is 1. Point C It is the point where the absolute value of the dielectric constant of gallium arsenide is equal to 1, where the coordinate of point C is (124.6, 1), then according to the above figure, when the wavelength is greater than 124.6nm, the absolute value of the dielectric constant of gallium arsenide is greater than 1, at this time, the dielectric constant of gallium arsenide satisfies the formula (2).
因此,当波长同时满足上述两个范围的时候,砷化镓的介电常数满足产生表面等离子波的条件,也即作为电磁激励源的入射电磁波的波长范围为[124.6,262.1],即124.6~262.1nm。Therefore, when the wavelength satisfies the above two ranges at the same time, the dielectric constant of gallium arsenide meets the conditions for generating surface plasmon waves, that is, the wavelength range of the incident electromagnetic wave as the electromagnetic excitation source is [124.6, 262.1], that is, 124.6~ 262.1nm.
在另选的实施例中,为便于进行计算机的仿真验证,可将波长范围选取为[125,260],即125~260nm来进行后续的计算机仿真,该波段为紫外线波段的电磁波。In an alternative embodiment, for the convenience of computer simulation verification, the wavelength range can be selected as [125, 260], that is, 125-260nm for subsequent computer simulation, and this waveband is electromagnetic waves in the ultraviolet waveband.
作为本发明的另一方面,还涉及一种在非金属材料与介质界面上激发表面等离子激元的方法,相较于上述在非金属材料与介质界面激发表面等离子波的方法,产生表面等离子激元需要在非金属材料表面形成周期性结构,然后利用前述选择的电磁波,对所述非金属材料上的周期性结构进行激励,在非金属材料与介质的界面上激发表面等离子激元。As another aspect of the present invention, it also relates to a method for exciting surface plasmons at the interface between a non-metallic material and a medium. The element needs to form a periodic structure on the surface of the non-metallic material, and then use the aforementioned selected electromagnetic wave to excite the periodic structure on the non-metallic material, and excite surface plasmons on the interface between the non-metallic material and the medium.
周期性结构是指在围绕结构中心并在外围形成周期性的多重结构,例如同心环状、条纹状、状、U状、状等。A periodic structure refers to a periodic multiple structure formed around the center of the structure and at the periphery, such as concentric rings, stripes, shape, U shape, status etc.
作为可选的实施方式,周期性结构的中心位置可以设计一个过孔,例如圆形过孔。As an optional implementation manner, a via hole, such as a circular via hole, may be designed at the center of the periodic structure.
作为可选的实施方式,可以在非金属材料的一个表面上形成前述周期性结构,也可以在两个表面上都形成周期性结构。As an optional embodiment, the aforementioned periodic structure may be formed on one surface of the non-metallic material, or the periodic structure may be formed on both surfaces.
在一些实施例中,为了增强表面等离子激元的产生,前述周期性结构的周期长度按照下述公式来计算和限定:In some embodiments, in order to enhance the generation of surface plasmons, the period length of the aforementioned periodic structure is calculated and defined according to the following formula:
式中,λSP表示周期性结构的周期长度,λ0表示入射电磁波在真空中的波长。In the formula, λ SP represents the period length of the periodic structure, and λ 0 represents the wavelength of the incident electromagnetic wave in vacuum.
图3所示为在砷化镓表面形成周期性结构的一个示例,其中,砷化镓采用薄膜形态,在其表面形成一个中心圆形过孔,在圆形过孔的外围形成周期性的多重同心环。Figure 3 shows an example of forming a periodic structure on the surface of GaAs, in which GaAs is in the form of a thin film, a central circular via is formed on the surface, and periodic multiple layers are formed on the periphery of the circular via. concentric rings.
作为一个实施方式,图3中,砷化镓薄膜厚度为120nm,中心的圆形过孔半径为60nm,在距离中心圆形过孔第一个同心圆环的外圆半径为300nm,内圆半径为180nm,在薄膜上的腐蚀深度为24nm,第二个圆环距离第一个圆环的距离为240nm,然后依次按照前述公式3计算其外围圆环的外圆半径以及内圆半径,从而形成一周期性结构。采用该方式可在砷化镓薄膜的一个表面形成周期性结构。As an embodiment, in Fig. 3, the gallium arsenide film thickness is 120nm, the radius of the circular via hole in the center is 60nm, the radius of the outer circle of the first concentric ring away from the central circular via hole is 300nm, and the radius of the inner circle is 300nm. is 180nm, the etching depth on the film is 24nm, the distance between the second ring and the first ring is 240nm, and then the outer circle radius and inner circle radius of the outer circle are calculated according to the above formula 3, thus forming a periodic structure. In this manner, a periodic structure can be formed on one surface of the gallium arsenide thin film.
砷化镓薄膜的下层蚀刻的周期性结构与上层结构完全对称,如图3所示,该同心环状周期性结构为一个类似的牛眼结构。The etched periodic structure of the lower layer of the gallium arsenide thin film is completely symmetrical to the upper layer structure. As shown in FIG. 3 , the concentric ring periodic structure is a similar bull's-eye structure.
如图4所示为与图3所示周期性结构进行对比的参照结构示意图,该参照结构中,砷化镓薄膜表面仅有一中心圆形过孔。FIG. 4 is a schematic diagram of a reference structure for comparison with the periodic structure shown in FIG. 3 . In this reference structure, there is only one central circular via hole on the surface of the gallium arsenide film.
图3、图4中,下方的箭头线表示入射电磁波方向,上方的箭头线表示通过薄膜后的出射电磁波方向。In Fig. 3 and Fig. 4, the arrow line below indicates the direction of the incident electromagnetic wave, and the arrow line above indicates the direction of the outgoing electromagnetic wave after passing through the film.
图5所示为利用图3的周期性牛眼结构在248nm紫外线电磁波的激励下所得电场在远场处的角度分布图(仿真效果图),显示出在砷化镓表面通过该周期性结构(牛眼结构)产生的SPP效应,在砷化镓表面直接激发出表面等离子激元,电场强度在薄膜中心得到极大增强。Figure 5 shows the angle distribution diagram (simulation effect diagram) of the electric field in the far field obtained by using the periodic bull's-eye structure in Figure 3 under the excitation of 248nm ultraviolet electromagnetic waves, which shows that the periodic structure passes through the surface of gallium arsenide ( The SPP effect generated by the bull's-eye structure) directly excites surface plasmons on the surface of GaAs, and the electric field intensity is greatly enhanced in the center of the film.
图6所示为利用图4的参照结构在248nm紫外线电磁波激励下所得电场在远场处的角度分布图(仿真效果图),显示没有周期性结构则SPP效应未被激发,电场分布明显分散。Figure 6 shows the angle distribution diagram (simulation effect diagram) of the electric field at the far field obtained by using the reference structure in Figure 4 under the excitation of 248nm ultraviolet electromagnetic waves. It shows that without a periodic structure, the SPP effect is not excited, and the electric field distribution is obviously dispersed.
图7所示为周期性结构的另一实施方式的示意图,该周期性结构为条纹状周期结构,周期性结构的周期长度优选地按照上述公式3计算。FIG. 7 is a schematic diagram of another embodiment of a periodic structure, the periodic structure is a striped periodic structure, and the period length of the periodic structure is preferably calculated according to the above formula 3.
同理,该图中,下方的箭头线表示入射电磁波方向,上方的箭头线表示通过薄膜后的出射电磁波方向。Similarly, in the figure, the arrow line below indicates the direction of the incident electromagnetic wave, and the arrow line above indicates the direction of the outgoing electromagnetic wave after passing through the film.
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410115117.4A CN104950545B (en) | 2014-03-26 | 2014-03-26 | In the method for nonmetallic materials and medium interface excitating surface plasma wave and excimer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410115117.4A CN104950545B (en) | 2014-03-26 | 2014-03-26 | In the method for nonmetallic materials and medium interface excitating surface plasma wave and excimer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104950545A true CN104950545A (en) | 2015-09-30 |
CN104950545B CN104950545B (en) | 2018-10-12 |
Family
ID=54165310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410115117.4A Expired - Fee Related CN104950545B (en) | 2014-03-26 | 2014-03-26 | In the method for nonmetallic materials and medium interface excitating surface plasma wave and excimer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104950545B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108615736A (en) * | 2016-12-11 | 2018-10-02 | 南京理工大学 | It is produced on the structure that optical sensor sensitivity can be improved of sensor surface |
CN108615737A (en) * | 2016-12-11 | 2018-10-02 | 南京理工大学 | Make the structure that optical sensor sensitivity can be improved over the transparent substrate and application |
CN108732122A (en) * | 2017-04-13 | 2018-11-02 | 南京理工大学 | A kind of terahertz imaging accurate positioning method based on surface plasmons |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102096269A (en) * | 2011-01-18 | 2011-06-15 | 南京邮电大学 | Terahertz surface plasma wave optical modulator and modulation method thereof |
CN102176521A (en) * | 2010-12-08 | 2011-09-07 | 南京邮电大学 | Terahertz surface plasma wave temperature control switch and control method thereof |
-
2014
- 2014-03-26 CN CN201410115117.4A patent/CN104950545B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102176521A (en) * | 2010-12-08 | 2011-09-07 | 南京邮电大学 | Terahertz surface plasma wave temperature control switch and control method thereof |
CN102096269A (en) * | 2011-01-18 | 2011-06-15 | 南京邮电大学 | Terahertz surface plasma wave optical modulator and modulation method thereof |
Non-Patent Citations (3)
Title |
---|
ABUL K. AZAD 等: "Ultrafast Optical Control of Terahertz Surface Plasmons in Subwavelength Hole-Arrays at Room Temperature", 《PROC. OF SPIE》 * |
J. GÓMEZ RIVAS 等: "Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces", 《PHYSICAL REVIEW B》 * |
WEILI ZHANG 等: "Direct Observation of a Transition of a Surface Plasmon Resonance from a Photonic Crystal Effect", 《PHYSICAL REVIEW LETTERS》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108615736A (en) * | 2016-12-11 | 2018-10-02 | 南京理工大学 | It is produced on the structure that optical sensor sensitivity can be improved of sensor surface |
CN108615737A (en) * | 2016-12-11 | 2018-10-02 | 南京理工大学 | Make the structure that optical sensor sensitivity can be improved over the transparent substrate and application |
CN108732122A (en) * | 2017-04-13 | 2018-11-02 | 南京理工大学 | A kind of terahertz imaging accurate positioning method based on surface plasmons |
Also Published As
Publication number | Publication date |
---|---|
CN104950545B (en) | 2018-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jin et al. | Gradient index phononic crystals and metamaterials | |
Zheng et al. | Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering | |
Albella et al. | Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate | |
Liang et al. | Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography | |
Li et al. | 300 mm Wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates | |
Tserkezis et al. | Molecular fluorescence enhancement in plasmonic environments: exploring the role of nonlocal effects | |
Chen et al. | Tunable nanoantennas for surface enhanced infrared absorption spectroscopy by colloidal lithography and post-fabrication etching | |
Chang et al. | A large-scale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor | |
Hwang et al. | Ultrasensitive molecule detection based on infrared metamaterial absorber with vertical nanogap | |
Zheng et al. | Chemically tuning the localized surface plasmon resonances of gold nanostructure arrays | |
Jeon et al. | Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high‐fidelity sensing platform | |
CN109270031B (en) | A Circular-Rectangular Composite Nanohole Array Surface Plasmonic Fiber Sensor | |
CN106773101B (en) | Optical chip for realizing non-diffraction light beam based on coupling excitation of BSW by grating pair | |
Bhalla et al. | Dewetting metal nanofilms—Effect of substrate on refractive index sensitivity of nanoplasmonic gold | |
CN104950545B (en) | In the method for nonmetallic materials and medium interface excitating surface plasma wave and excimer | |
Thilsted et al. | Lithography‐Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR‐Based Sensing | |
CN103236643A (en) | One-way exciter with surface plasmons for wideband | |
CN105334573A (en) | Surface plasmon waveguide | |
CN110707409B (en) | A High Quality Factor Hybrid Plasmon Resonator | |
US20100165473A1 (en) | Planar lens | |
Kravets et al. | Nanoparticle arrays: From magnetic response to coupled plasmon resonances | |
CN105866086A (en) | Optical chip, manufacturing method and fluorescent imaging system | |
CN104157960B (en) | The optical micro/nano antenna and its method for designing of a kind of disc core shell structure | |
Zhan et al. | Effective approach to strengthen plasmon resonance localized on top surfaces of Ag nanoparticles and application in surface-enhanced Raman spectroscopy | |
KR101211532B1 (en) | Large-scale randomly distributed plasmonic nanowells array and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181012 Termination date: 20210326 |
|
CF01 | Termination of patent right due to non-payment of annual fee |