CN108615736A - It is produced on the structure that optical sensor sensitivity can be improved of sensor surface - Google Patents

It is produced on the structure that optical sensor sensitivity can be improved of sensor surface Download PDF

Info

Publication number
CN108615736A
CN108615736A CN201611134820.5A CN201611134820A CN108615736A CN 108615736 A CN108615736 A CN 108615736A CN 201611134820 A CN201611134820 A CN 201611134820A CN 108615736 A CN108615736 A CN 108615736A
Authority
CN
China
Prior art keywords
metal film
sensor
produced
improved
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611134820.5A
Other languages
Chinese (zh)
Inventor
顾文华
彭力
赖森锋
吴杨慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201611134820.5A priority Critical patent/CN108615736A/en
Publication of CN108615736A publication Critical patent/CN108615736A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers

Abstract

The invention discloses the structures that optical sensor sensitivity can be improved for being produced on sensor surface.The present invention utilizes the invalid in the photosensitive pixel of cmos sensor, by making some specially designed micro-nano structures on metal film, local transmitance can be made to greatly enhance, make optical signal that the illumination of invalid effectively gathered effective photosensitive sites after metal film, to improve the sensitivity of sensor.The specially designed micro-nano structure can easily be covered in the surface of the components such as photodetector, sensor, imaging device, achieve the effect that improve its sensitivity.It is suitable for the effective light transmission efficiency of other chip/structure/devices increases.

Description

It is produced on the structure that optical sensor sensitivity can be improved of sensor surface
Technical field
The present invention relates to the anti-reflection design method of metal film and micro-nano structure based on surface plasma-wave, especially a kind of systems Make the structure that optical sensor sensitivity can be improved in sensor surface.
Background technology
How unremitting pursuit that the sensitivity of the photoelectric sensors such as CMOS be scientific worker is improved.It is currently being widely used One of the photoelectric sensors such as CMOS is the problem of being difficult to avoid that:It is to have there was only area in each physical picture element Photosensitive area is imitated, other invalids are used for preparation and the mating driving circuit of photographic department split-phase, ampere wires etc., are radiated at The energy of light on this area is not received effectively, and waste is caused.Although people have by unremitting effort in recent years Ratio shared by invalid is reduced to effect, but is limited to physical cause, it always can not be in 100% one pixel of utilization The invalid of whole physical areas, operative sensor has even accounted for 70% or so of total elemental area.This is also to limit these One key factor of photoelectric sensor sensibility.
Invention content
It is a kind of anti-reflection to incident optical signal progress part based on surface plasma-wave principle it is an object of the invention to propose Metal film micro-nano structure, to make full use of the invalid of the photoelectric sensors pixel such as CMOS, to reach raising sensitivity Effect.
Realize that the technical solution of the object of the invention is:It is a kind of be produced on sensor surface can be improved optical sensor spirit The structure of sensitivity, CMOS photoelectric sensors or optical lens surface are coated with layer of metal film, and optical lens is placed on CMOS photoelectricity On sensor, by several minor structures of array distribution on metal film, each minor structure is by center via and a series of concentric ring groups At;Each minor structure is corresponded in the physical picture element of CMOS photoelectric sensors, at this time the geometric dimension period of array structure with The physical picture element geometric dimension period of CMOS photoelectric sensors is same or similar;Minor structure includes light transmission part and opaque portion Point, effective photosensitive part of photoelectric sensor physical picture element and the light transmission part of minor structure are corresponding, original to not interfere with Photosensitive effect;Meanwhile the invalid photosensitive part of physical picture element and the lightproof part of minor structure are corresponding, and pass through minor structure Lightproof part ring structure excitating surface plasma wave, the energy part of this part light is collected and from minor structure Light transmission part transmissive, to reach antireflective effect.
It is identical as thickness of metal film that hole depth is crossed at center, and concentric ring etch depth is less than or equal to thickness of metal film half, Middle thickness of metal film is in lambda1-wavelength magnitude.
Center crosses that hole depth is identical as thickness of metal film, and the ring etch depth near center via is film thickness, wherein Thickness of metal film is in lambda1-wavelength magnitude.
The shape of peripheral period concentric ring structure is circle, triangle, square, diamond shape or other geometries.
Metal film using silver, gold, copper, aluminium or other can corresponding electromagnetic wave band excitating surface plasma wave metal or It is prepared by other materials.
Compared with prior art, the present invention its remarkable result is:1)There is the effect that enhancing is assembled to effective light transmission energy, it can So that photoelectric sensor collects fainter optical signal, its sensitivity is improved.2)Structure size is suitble to current main-stream CMOS The pixel size of equal photoelectric sensors, can make full use of the invalid photosensitive region of pixel so that the structure is more convenient to answer Device for present mainstream.3)The structure, without high request, does not need to change existing photoelectricity thus to accole in application The structure and design of sensor only need to form micro-nano structure figure when use in the chip surface plated film of existing device, or in light Plated film forms micro-nano structure figure on the subsidiary optical lens of electric transducer, or plated film forms micro-nano on transparent base material Sensor chip or camera lens surface are attached to after structure graph again, easy to use, at low cost, effect is good, and stability is high.
Description of the drawings
Fig. 1 is single hole arrangements schematic diagram.
Fig. 2 is single hole single ring architecture schematic diagram.
Fig. 3 is single hole twin nuclei schematic diagram.
Fig. 4 is single hole tricyclic structure schematic diagram.
Fig. 5 is single hole array structure schematic diagram.
Fig. 6 is single hole monocycle array structure schematic diagram.
Fig. 7 is the bicyclic array structure schematic diagram of single hole.
Fig. 8 is single hole tricyclic array structure schematic diagram.
Fig. 9 is that single hole silver structure receives energy comparison diagram with the near fields single hole SiO2.
Figure 10 is that single hole silver array of structures receives energy comparison diagram with single hole silver structure near field.
Figure 11 is that single hole monocycle silver array of structures receives energy comparison diagram with single hole monocycle silver structure near field.
Figure 12 is that the bicyclic silver-colored array of structures of single hole receives energy comparison diagram with the bicyclic silver-colored structure near field of single hole.
Figure 13 is that single hole tricyclic silver array of structures receives energy comparison diagram with single hole tricyclic silver structure near field.
Figure 14 is that array silver structure receives energy comparison diagram with independent structure far field.
Figure 15, Figure 16 are the schematic diagrames of a micro-nano structure unit.
Specific implementation mode
The present invention is based on the local anti-reflection principle of surface plasma-wave, design one kind can be in the photoelectric sensors pixel such as CMOS Originally the light energy being radiated on invalid photosensitive area, is passed through these by particulate metal film micro-nano structure of array surface attachment Micro-nano structure on film, which is effectively collected, to be transmitted at effective photosensitive area, so as to promote the sensitive of photoelectric sensor Degree.
It is identical as thickness of metal film that hole depth is crossed at center, and donut structure etch depth is less than thickness of metal film.Wherein For thickness of metal film in lambda1-wavelength magnitude, groove etching depth is film thickness half or so.Micro-nano structure can be directly in CMOS Plated film realization is carried out on the chip of equal photoelectric sensors, each structural unit in micro-nano structure is corresponded in light such as CMOS The physics photosensitive pixel of electric transducer, the at this time physics of the photoelectric sensors such as the geometric dimension period of micro-nano array structure and CMOS The pixel geometry size period is same or similar.
One micro-nano structure unit of a corresponding physical picture element is as shown in Figure 15,16, and wherein dash area is etched part Point;Micro-nano structure as shown in the figure, including the periodical convex-concave circle of central through-hole and periphery are made by etching on metal film Ring structure, it is anti-reflection at central through-hole to play the role of to excite the surface plasma-wave in corresponding electromagnetic wavelength.
The shape of peripheral periodic structure can be circle, triangle, square, diamond shape or other geometries.
The structural unit is arranged in period row-column configuration, and a pair of with the physical picture element one on the photoelectric sensors such as CMOS It answers.Using silver, gold, copper, aluminium or other can come in the metal or other materials of corresponding electromagnetic wave band excitating surface plasma wave Prepare the micro-nano structure.Can be film thickness near paracentral ring etch depth.
The application example of the present invention is made into one by taking most often applied visible light wave range and silverskin as an example below in conjunction with the accompanying drawings Step detailed description.
Effective photosensitive part of physical picture element and the light transmission part of metal film structures are corresponding, original to not interfere with Photosensitive effect;Meanwhile the invalid photosensitive part of physical picture element and the lightproof part of metal film structures are corresponding, and by gold The lightproof part for belonging to membrane structure carries out some special micro-nano structure design excitating surface plasma waves, with this part light Energy part collects and from the light transmission part transmissive of metal film structures, to reach antireflective effect, finally same Make under the conditions of sample incidence photoreceptor it is effective it is photosensitive be partially received higher light intensity, be presented as the photosensitive of photoreceptor physical picture element Sensitivity is improved.
For example, in wavelength band 850nm.Silver film thickness is 500nm, etching groove depth 250nm.Single structure is close There is apparent aggregation enhancing effect in field to light beam.There is more obviously aggregation enhancing effect to light beam in position array structure farther out. Single structure and array structure using the position that critical point is sensor distance structure about 30um.
Fig. 1 single hole arrangements schematic diagrames
Pore radius 0.92um.
Fig. 2 single hole single ring architecture schematic diagrames
Pore radius 0.92um, ring period 1.68um.
Fig. 3 single hole twin nuclei schematic diagrames
Pore radius 0.92um, ring period 0.84um.
Fig. 4 single hole tricyclic structure schematic diagrames
Pore radius 0.92um, ring period 0.56um.
Fig. 5 single hole array structure schematic diagrames
Pore radius 0.92um, array period 5.2um.
Fig. 6 single hole monocycle array structure schematic diagrames
Pore radius 0.92um, ring period 1.68um, array period 5.2um.
The bicyclic array structure schematic diagram of Fig. 7 single holes
Pore radius 0.92um, ring period 0.84um, array period 5.2um.
Fig. 8 single hole tricyclic array structure schematic diagrames
Pore radius 0.92um, ring period 0.56um, array period 5.2um.
Fig. 9 single hole silver structures receive energy comparison diagram with the near fields single hole SiO2
Abscissa is distance of the collector apart from sample, and ordinate is the energy of collector acquisition.In near field, the structure is collected To energy be significantly greater than the energy that equal area under direct illumination obtains.
Figure 10 single hole silver arrays of structures receive energy comparison diagram with single hole silver structure near field
In near field, the energy that the independent structure is collected into is significantly greater than the energy that the array structure equal area obtains.
Figure 11 single holes monocycle silver array of structures receives energy comparison diagram with single hole monocycle silver structure near field
In near field, the energy that the independent structure is collected into is significantly greater than the energy that the array structure equal area obtains.
The bicyclic silver-colored array of structures of Figure 12 single holes receives energy comparison diagram with the bicyclic silver-colored structure near field of single hole
In near field, the energy that the independent structure is collected into is significantly greater than the energy that the array structure equal area obtains.
Figure 13 single holes tricyclic silver array of structures receives energy comparison diagram with single hole tricyclic silver structure near field
In near field, the energy that the independent structure is collected into is significantly greater than the energy that the array structure equal area obtains.
Figure 14 array silver structures receive energy comparison diagram with independent structure far field
In far field, a series of energy that array structures are collected into is significantly greater than the energy of independent structure equal area acquisition.
In conclusion the present invention makes a series of specially designed micro-nano structures on metal film.Incident light irradiates herein On micro-nano structure, excitating surface plasma wave, light energy is propagated along body structure surface, and peripheral structure passes light energy at light transmission It broadcasts, is gathered at window and passes through metal film, to play the antireflective effect in part.The design be also applied for other chip/structures/ The effective light transmission efficiency of device increases.

Claims (5)

1. a kind of structure that optical sensor sensitivity can be improved being produced on sensor surface, it is characterised in that:CMOS photoelectric transfers Sensor or optical lens surface metal-plated membrane, optical lens are placed on CMOS photoelectric sensors, by array point on metal film Several minor structures of cloth, each minor structure are made of center via and a series of concentric rings;Each minor structure correspond in The physical picture element of CMOS photoelectric sensors, the at this time physical picture element in the geometric dimension period and CMOS photoelectric sensors of array structure The geometric dimension period is same or similar;Minor structure includes light transmission part and lightproof part, and photoelectric sensor physical picture element has The light transmission part for imitating photosensitive part and minor structure is corresponding;Meanwhile physical picture element invalid photosensitive part and minor structure it is impermeable Light part is corresponding, and by the ring structure excitating surface plasma wave of the lightproof part of minor structure, with this part light It collects and from the light transmission part transmissive of minor structure in energy part.
2. the structure that optical sensor sensitivity can be improved according to claim 1 for being produced on sensor surface, feature It is:It is identical as thickness of metal film that hole depth is crossed at center, and concentric ring etch depth is less than or equal to thickness of metal film half, wherein gold Belong to film thickness in lambda1-wavelength magnitude.
3. the structure that optical sensor sensitivity can be improved according to claim 1 for being produced on sensor surface, feature It is:Center crosses that hole depth is identical as thickness of metal film, and the ring etch depth near center via is film thickness, wherein metal Film thickness is in lambda1-wavelength magnitude.
4. the structure that optical sensor sensitivity can be improved for being produced on sensor surface according to claim 1-3, special Sign is:The shape of peripheral period concentric ring structure is circle, triangle, square, diamond shape or other geometries.
5. the structure that optical sensor sensitivity can be improved for being produced on sensor surface according to claim 1-3, special Sign is:Metal film using silver, gold, copper, aluminium or other can corresponding electromagnetic wave band excitating surface plasma wave metal or It is prepared by other materials.
CN201611134820.5A 2016-12-11 2016-12-11 It is produced on the structure that optical sensor sensitivity can be improved of sensor surface Pending CN108615736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611134820.5A CN108615736A (en) 2016-12-11 2016-12-11 It is produced on the structure that optical sensor sensitivity can be improved of sensor surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611134820.5A CN108615736A (en) 2016-12-11 2016-12-11 It is produced on the structure that optical sensor sensitivity can be improved of sensor surface

Publications (1)

Publication Number Publication Date
CN108615736A true CN108615736A (en) 2018-10-02

Family

ID=63643639

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611134820.5A Pending CN108615736A (en) 2016-12-11 2016-12-11 It is produced on the structure that optical sensor sensitivity can be improved of sensor surface

Country Status (1)

Country Link
CN (1) CN108615736A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725059A (en) * 2005-07-08 2006-01-25 中国科学院光电技术研究所 Realize the method for electromagnetic wave function element based on metal micro-nanostructure
CN101459185A (en) * 2007-12-11 2009-06-17 三星电子株式会社 Photodiodes, image sensing devices and image sensors
DE102008011793A1 (en) * 2008-02-29 2009-09-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. multispectral sensor
US20110063717A1 (en) * 2008-05-20 2011-03-17 Universite De Technologie De Troyes High-efficiency device for focusing light to subwavelength dimensions
US20110155891A1 (en) * 2009-12-28 2011-06-30 Sony Corporation Semiconductor device and electronic apparatus
JP2013195697A (en) * 2012-03-19 2013-09-30 Fujifilm Corp Photosensitive coloring composition, color filter, method for manufacturing color filter and liquid crystal display device
CN104950545A (en) * 2014-03-26 2015-09-30 南京理工大学 Method for motivating surface plasma waves and excimers on non-metallic material and medium interfaces

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725059A (en) * 2005-07-08 2006-01-25 中国科学院光电技术研究所 Realize the method for electromagnetic wave function element based on metal micro-nanostructure
CN101459185A (en) * 2007-12-11 2009-06-17 三星电子株式会社 Photodiodes, image sensing devices and image sensors
DE102008011793A1 (en) * 2008-02-29 2009-09-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. multispectral sensor
US20110063717A1 (en) * 2008-05-20 2011-03-17 Universite De Technologie De Troyes High-efficiency device for focusing light to subwavelength dimensions
US20110155891A1 (en) * 2009-12-28 2011-06-30 Sony Corporation Semiconductor device and electronic apparatus
JP2013195697A (en) * 2012-03-19 2013-09-30 Fujifilm Corp Photosensitive coloring composition, color filter, method for manufacturing color filter and liquid crystal display device
CN104950545A (en) * 2014-03-26 2015-09-30 南京理工大学 Method for motivating surface plasma waves and excimers on non-metallic material and medium interfaces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
庞凯: "SPR传感的金属膜系优化设计及重金属检测研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
US6433844B2 (en) Method for creating a color microlens array of a color display layer
Jung et al. Paraboloid electronic eye cameras using deformable arrays of photodetectors in hexagonal mesh layouts
CN106940296B (en) A kind of equal method for sensing from primitive index sensor based on nano-pattern
WO2016188083A1 (en) Touch substrate, display device having the same, and manufacturing method thereof
CN105008969A (en) Phase gratings with odd symmetry for high-resoultion lensless optical sensing
Kim et al. Whispering gallery modes enhance the near-infrared photoresponse of hourglass-shaped silicon nanowire photodiodes
WO2018040774A1 (en) Substrate, display panel and display device
TW201227939A (en) Imaging apparatus, electronic apparatus, photovoltaic cell, and method of manufacturing imaging apparatus
CN105890769B (en) The design method of Terahertz focal plane arrays (FPA)
CN104064610A (en) Right side illuminated Si-PIN photoelectric detector taking micro-nano structural silicone as light-sensitive layer and preparation method thereof
JP2015012128A (en) Imaging device and electronic apparatus
TW200844437A (en) Portable optical detection chip and its manufacturing method thereof
CN205621733U (en) Broad -spectrum imaging detection chip
US8193497B2 (en) Near-infrared photodetectors, image sensors employing the same, and methods of manufacturing the same
CN108615736A (en) It is produced on the structure that optical sensor sensitivity can be improved of sensor surface
Wang et al. Single-layer nanowire polarizer integrated with photodetector and its application for polarization navigation
CN108615737A (en) Make the structure that optical sensor sensitivity can be improved over the transparent substrate and application
CN110246914A (en) A kind of enhanced terahertz detector of etching based on indium antimonide and preparation method
TW202107065A (en) Imaging layer, imaging apparatus, electronic device, zone plate structure and photosensitive image element
Peltzer et al. Plasmonic micropolarizers for full Stokes vector imaging
CN107221541B (en) The preparation method of imaging sensor
TW201023386A (en) Method for forming microlens of image sensor and method for manufacturing the image sensor
CN210200734U (en) Integrated multiband filtering sensor with focusing function
CN113345925A (en) Pixel unit, image sensor and spectrometer
Nagarajan et al. Directivity of SOI photodiode with gold surface plasmon antenna

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181002

RJ01 Rejection of invention patent application after publication