CN104950306A - Method for realizing angular super-resolution imaging of forward-looking sea surface targets in sea clutter background - Google Patents

Method for realizing angular super-resolution imaging of forward-looking sea surface targets in sea clutter background Download PDF

Info

Publication number
CN104950306A
CN104950306A CN201510357512.8A CN201510357512A CN104950306A CN 104950306 A CN104950306 A CN 104950306A CN 201510357512 A CN201510357512 A CN 201510357512A CN 104950306 A CN104950306 A CN 104950306A
Authority
CN
China
Prior art keywords
mrow
msub
msup
mfrac
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510357512.8A
Other languages
Chinese (zh)
Other versions
CN104950306B (en
Inventor
张寅�
王月
黄钰林
查月波
杨建宇
武俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201510357512.8A priority Critical patent/CN104950306B/en
Publication of CN104950306A publication Critical patent/CN104950306A/en
Application granted granted Critical
Publication of CN104950306B publication Critical patent/CN104950306B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention discloses a method for realizing angular super-resolution imaging of forward-looking sea surface targets in a sea clutter background. According to the convolution characteristic of azimuth dimension echoes of scanning radar, echo signals of the scanning radar are rearranged into a form of the product of an azimuth dimension target vector and a convolution measurement matrix in the distance dimension order. Then a maximum posterior target function for solving original scene distribution is constructed on the basis of the Bayes formula according to characteristics that sea clutter obeys Rayleigh distribution and the sea surface targets obey Laplace, original sea surface target distribution is inverted by the aid of an acquired maximum posterior deconstruction iterative equation, and angular super-resolution imaging is realized. According to the method, the Rayleigh distribution is used for representing sea clutter characteristics, the Laplace distribution is used for representing the target characteristics, an iteration expression of the convolution inversion problem is derived in the Bayes principle, reconstruction of original imaging scenes is realized, and azimuth high-definition pictures of the forward-looking sea surface targets are acquired.

Description

Forward-looking sea surface target angle super-resolution imaging method under sea clutter background
Technical Field
The invention belongs to the technical field of radar imaging, and particularly relates to a design of a forward-looking sea surface target angle super-resolution imaging method under a sea clutter background.
Background
The high-resolution imaging of the forward-looking sea area of the airborne platform has great application requirements in the fields of sea detection and imaging, sea surface target search and rescue, ship formation identification, ship attack and the like. However, due to the fact that the doppler bandwidth generated by the movement of the target and the airborne platform in the forward-looking area is too narrow, the high-resolution imaging of the target position in the forward-looking area cannot be achieved by utilizing the synthetic aperture radar technology (SAR) and the doppler beam sharpening method (DBS). Therefore, airborne radars usually use a scanning sampling method to obtain real beam echo signals in the front view area. Since the radar transmission signal is a chirp modulated signal (LFM), a high resolution in the range dimension is obtained using a pulse compression technique. For the azimuth dimension of the echo signal, due to the limitation of the antenna size, it is difficult to obtain the azimuth resolution matched with the target range resolution, and the application of the radar working mode is seriously influenced. Therefore, the azimuth radar angular resolution must be significantly improved by means of signal processing.
Because the scanning radar azimuth signal can be regarded as convolution of an antenna directional diagram and a target scattering coefficient, reconstruction of a target scene can be achieved through a deconvolution method, and the purpose of super-resolution of a real beam azimuth angle is achieved. In the document "B.Clark.Anefficient implementation of the algorithm 'clean', Astronomy and Astrophysics, vol.89, p.377, 1980", a clean algorithm is proposed that can improve both the distance and azimuth dimensional resolution. However, this method cannot suppress side lobe enhancement, and when a plurality of targets are present in the same beam, super-resolution performance is significantly degraded.
In the literature, "Jinchen Guan, Jianyu Yang and Yulin Huang, maximum a spatial-based angular super resolution for Scanning Radar imaging. ieee transport optics ON iterative ELECTRONIC system vol.50, No.3july 2014", an angular super-resolution method based ON the maximum posterior criterion is proposed, which assumes that both noise and target in echo signals follow independent poisson distribution, but these assumptions are not suitable for target angular super-resolution imaging under sea clutter background, and applying the method to airborne sea surface target angular super-resolution imaging causes the occurrence of target dislocation and noise amplification, and seriously affects imaging quality.
Disclosure of Invention
The invention aims to solve the problems of target dislocation, noise amplification and the like in the existing airborne forward-looking sea surface target angle super-resolution imaging technology, and provides a forward-looking sea surface target angle super-resolution imaging method under a sea clutter background.
The technical scheme of the invention is as follows: a forward-looking sea surface target angle super-resolution imaging method under a sea clutter background comprises the following steps:
s1, establishing a motion geometric model of a forward-looking scanning radar echo signal according to the geometric relation between the airborne radar and the target;
s2, performing distance-direction pulse compression on the echo signals;
s3, performing distance walking correction on the echo signal after pulse compression;
s4, rearranging the echo signals after the distance walk correction into a product form of an orientation target vector and a convolution measurement matrix according to the distance dimension according to the orientation echo characteristics to construct an orientation convolution model;
s5, according to the orientation convolution model, by using the statistical characteristics of noise and target distribution, establishing a maximum posterior target function under a Bayes framework and deducing an iterative expression to realize convolution inversion;
s6, calculating clutter statistic parameters and regularization parameters;
and S7, substituting the clutter statistical parameters and the regularization parameters into the iterative expression in the step S5, restoring the original imaging scene, and realizing super-resolution imaging of the sea surface target angle by the forward-looking radar.
Further, step S1 is specifically:
setting the moving speed of the platform of the carrier as v, scanning the scene clockwise by the antenna, and setting the initial time at the distance unit R0Is located at the distribution target Pn(ii) a At time t, the platform and scene are at PnDistance of object at point, denoted as Rn(t); at this time, the history of the target-to-radar slope is approximately expressed as:
Rn(t)≈R0-vt (1)
setting the transmitted signal to be a chirp signalWherein rect (-) denotes a rectangular signal, which is defined asTau is the distance-direction time variable, T is the pulse time width, c is the speed of light, lambda is the wavelength, KrIs the frequency modulation slope;
the received echo is subjected to discrete processing, and the number of azimuth discretization sampling points of a single distance unit is set asWhere φ is the scan range, θbIf the antenna beam width is, γ is the scanning speed, and PRI is the pulse repetition period, then the discretized echo analysis expression is:
<math> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&sigma;</mi> <mi>n</mi> </msub> <mo>&CenterDot;</mo> <mi>&omega;</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>c</mi> </mfrac> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>4</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <msub> <mi>R</mi> <mi>n</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>j&pi;K</mi> <mi>r</mi> </msub> <msup> <mrow> <mo>&lsqb;</mo> <mi>&tau;</mi> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>c</mi> </mfrac> <mo>&rsqb;</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
where t is the azimuthal time variable, σnIs the scattering function of the target at the nth sampling point in azimuth, thetanAn antenna pointing angle corresponding to the nth target; ω is a window function in the slow time domain, representing the modulation of the antenna pattern function in the azimuth direction.
Further, step S2 is specifically:
constructing a range-wise pulse compression reference signalWherein, taurefRepresenting a distance to a reference time;
will srefPerforming maximum autocorrelation operation on the echo signal data s (t, τ) to obtain a pulse-compressed echo signal:
<math> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&sigma;</mi> <mi>n</mi> </msub> <mo>.</mo> <mi>&omega;</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>4</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>}</mo> <mo>&times;</mo> <mi>sin</mi> <mi>c</mi> <mo>{</mo> <mi>B</mi> <mo>&lsqb;</mo> <mi>&tau;</mi> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mo>&CenterDot;</mo> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> <mi>c</mi> </mfrac> <mo>&rsqb;</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
where B is the transmit signal bandwidth.
Further, step S3 is specifically:
distance walk correction function construction according to echo distance courseWherein f isrIs the range frequency;
the distance walk correction function is related to s1(t, τ) to obtain the echo signal after the distance walk correction as:
<math> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&sigma;</mi> <mi>n</mi> </msub> <mo>.</mo> <mi>&omega;</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>4</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>}</mo> <mo>&times;</mo> <mi>sin</mi> <mi>c</mi> <mo>{</mo> <mi>B</mi> <mo>&lsqb;</mo> <mi>&tau;</mi> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mo>&CenterDot;</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> </mrow> <mi>c</mi> </mfrac> <mo>&rsqb;</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
further, step S4 is specifically:
two-dimensional echo signal s in formula (4)2(t, τ) rearranging according to the distance dimension order to obtain the following matrix vector product form:
where, s ═ s (1,1) … s (1,2), …, s (1, N), …, s (L, N)]TRearranging the measured values in all distance dimensions in the azimuth direction to obtain LN multiplied by 1-dimensional vectors, wherein the superscript T represents transposition operation, and L is the number of sampling points in the echo distance dimension of the scene; x ═ x (1,1), x (1,2), …, x (1, M), …, x (L, M)]TIs an LM x 1 dimensional vector obtained by rearranging the amplitudes of targets in each direction in an imaging scene according to the distance dimension sequence,the azimuth sample points for a single range cell,is the number of sample points for a single beam; n ═ N [ N (1,1), N (1,2), …, N (1, N), …, N (L, N)]TIs LN multiplied by 1 dimensional vector representing sea clutter amplitude characteristic, obeying Rayleigh distribution; a is a measurement matrix A formed by convolutionN×MA matrix of LNxLM dimensions formed, wherein AN×M=[a1,a2,…aN]Convolution measurement matrix for real beam scanning antenna, AN×MExpressed as:
wherein,weighting coefficients for the antenna pattern;
as can be seen from equation (6), if the doppler additional phases of the rows are the same, the nth element of the echo vector s is represented as:
<math> <mrow> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mrow> <mn>4</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mi>v</mi> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>P</mi> <mi>R</mi> <mi>I</mi> </mrow> </msup> <mo>.</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>M</mi> </mrow> </munderover> <msub> <mi>h</mi> <mrow> <mi>n</mi> <mi>i</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein h isniA weighted amplitude value representing the (n, i) th element of the convolution matrix a;
since the purpose of radar imaging is to recover target amplitude and position information within the imaged scene, the echo signal is expressed as:
|s|=|A|x+n (8)
wherein, | · | is a modulo operation;
therefore, the real beam scanning radar front view super-resolution imaging is converted into: given s and A in equation (8), the inverse problem of x is solved.
Further, step S5 is specifically:
according to the Bayesian formula, the posterior probability of the echo data is expressed as:
p ( x / s ) = p ( s / x ) p ( x ) p ( s ) - - - ( 9 )
wherein p (-) represents a probability density function;
the maximum a posteriori is to find the most suitable x satisfying the following formula:
<math> <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>x</mi> </munder> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>|</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>x</mi> </munder> <mo>&lsqb;</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>|</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,maximum posterior solution for the target information; p (x/s), p (s/x) and p (x) respectively represent a posterior probability function, a likelihood probability function and target prior information;
the negative natural logarithm operation is performed on equation (10), converting the maximum a posteriori problem to:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>arg</mi> <munder> <mi>min</mi> <mi>x</mi> </munder> <mo>&lsqb;</mo> <mo>-</mo> <mi>ln</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>(</mo> <mrow> <mi>x</mi> <mo>|</mo> <mi>s</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>arg</mi> <munder> <mi>min</mi> <mi>x</mi> </munder> <mo>&lsqb;</mo> <mo>-</mo> <mi>ln</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>(</mo> <mrow> <mi>s</mi> <mo>|</mo> <mi>x</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mi>ln</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
assuming that clutter statistics in each discrete echo sampling point are independent, the likelihood probability function is:
<math> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&Pi;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>N</mi> </mrow> </munderover> <mfrac> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <msup> <mi>e</mi> <msup> <mrow></mrow> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </msup> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein n is each pixel point of the discrete echo signal,σ2is a clutter statistical parameter of the rayleigh distribution;
because the foresight sea imaging is often applied to the localization and tracking of a small number of sea surface targets in a large imaging scene, the sea surface targets have sparse characteristics relative to an imaging area, and the target distribution is expressed as follows by adopting the laplace distribution:
<math> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&Proportional;</mo> <munderover> <mo>&Pi;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>M</mi> </mrow> </munderover> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&mu;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <msup> <mrow></mrow> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mi>m</mi> </msub> <mo>|</mo> </mrow> <mi>&mu;</mi> </mfrac> <mo>)</mo> </mrow> </msup> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein μ > 0 is a scale parameter of the Laplace distribution;
substituting equations (12) and (13) into equation (10) yields the maximum a posteriori probability function:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mi>max</mi> <mi>x</mi> </munder> <mo>&lsqb;</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munderover> <mo>&Pi;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>M</mi> </mrow> </munderover> <mrow> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&mu;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mi>m</mi> </msub> <mo>|</mo> </mrow> <mi>&mu;</mi> </mfrac> <mo>)</mo> </mrow> </msup> <mo>&CenterDot;</mo> <munderover> <mo>&Pi;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>M</mi> </mrow> </munderover> <mrow> <mfrac> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </msup> </mrow> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
taking the natural logarithm of equation (14) yields:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>ln</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&lambda;</mi> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>|</mo> <msub> <mo>|</mo> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>M</mi> </mrow> </munderover> <mo>&lsqb;</mo> <mo>-</mo> <mi>ln</mi> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>LNln&sigma;</mi> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
λ ═ 1/μ is a regularization parameter, and is used for balancing sparsity and imaging quality of a target information restoration result;
to overcome l in the objective function1The problem that the norm is not differentiable at zero, using a technique of smooth estimation, equation (15) is approximated as:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&ap;</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>N</mi> </mrow> </munderover> <mo>&lsqb;</mo> <mo>-</mo> <mi>ln</mi> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>LNln&sigma;</mi> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>&lambda;</mi> <munderover> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>N</mi> </mrow> </munderover> <msqrt> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mi>m</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <mi>&epsiv;</mi> </mrow> </msqrt> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein a non-negative constant approximating zero is taken;
performing gradient operation on equation (16) to obtain:
<math> <mrow> <mo>&dtri;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>-</mo> <mi>A</mi> <mi>x</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mn>1</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <msup> <mi>A</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>s</mi> <mo>-</mo> <mi>A</mi> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&lambda;</mi> <mi>W</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>x</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, <math> <mrow> <mi>W</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>{</mo> <msup> <mrow> <mo>(</mo> <mo>|</mo> <msub> <mi>x</mi> <mi>m</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mo>}</mo> <mo>;</mo> </mrow> </math>
since equation (17) is a non-linear function with respect to x, it cannot be directly orderedObtaining an optimal solution to the objective function, here using an iterative method, by first obtaining a solution to the objective functionOne simple solution of (a) is:
<math> <mrow> <mi>x</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mi>A</mi> <mo>+</mo> <mi>&lambda;</mi> <mi>W</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mi>s</mi> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <msup> <mi>A</mi> <mi>T</mi> </msup> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>-</mo> <mi>A</mi> <mi>x</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, the iteration initial value is selected as x ═ ATA)-1ATs is the least square solution of formula (8), and the initial iteration value of w (x) is also formed by the initial value of x, and the iteration expression is expressed as:
<math> <mrow> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mi>A</mi> <mo>+</mo> <mi>&lambda;</mi> <mi>W</mi> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mi>s</mi> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <msup> <mi>A</mi> <mi>T</mi> </msup> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>Ax</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein k +1 and k are iteration times,equation (19) is an expression form of the maximum a posteriori algorithm.
Further, step S6 is specifically:
taking a single distance unit signal without target distribution in a two-dimensional echo signal, and setting a sea clutter amplitude sampling sequence f with the dimension of N1,…,fNAfter the rayleigh distribution is subjected to logarithmic operation, the following expression is obtained:
<math> <mrow> <mi>&gamma;</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mi>&sigma;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>Nln&sigma;</mi> <mn>2</mn> </msup> <mo>-</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>+</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
the gradient of equation (20) with respect to σ is found to be:
<math> <mrow> <mfrac> <mrow> <mo>&part;</mo> <mrow> <mo>(</mo> <mi>&gamma;</mi> <mo>(</mo> <mrow> <mi>f</mi> <mo>,</mo> <mi>&sigma;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&part;</mo> <mi>&sigma;</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>N</mi> </mrow> <mi>&sigma;</mi> </mfrac> <mo>-</mo> <mfrac> <mn>1</mn> <msup> <mi>&sigma;</mi> <mn>3</mn> </msup> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
the clutter statistic parameter σ is obtained from the formula (21)2The maximum likelihood solution of (c) is:
<math> <mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
then, a discrepanacy principle is adopted to select lambda, namely, the method selects the (| | y-Ax (lambda) | torrid cells2≈E[||n||2]λ when is the regularization parameter.
The invention has the beneficial effects that: according to the convolution characteristic of the azimuth dimension echo of the scanning radar, the echo signals of the scanning radar are rearranged into a product form of an azimuth dimension target vector and a convolution measurement matrix according to a distance dimension sequence. And constructing a maximum posterior target function for solving the original scene distribution on the basis of a Bayes formula according to the characteristics that the sea clutter obeys Rayleigh distribution and the sea surface target obeys Laplace, constructing an iterative equation by using the obtained maximum posterior solution, and performing reverse work on the original sea surface target distribution to realize angle super-resolution imaging. The method uses Rayleigh distribution to represent sea clutter characteristics, uses Laplace distribution to represent target characteristics, and deduces an iterative expression of a convolution inversion problem under Bayes criterion, so as to realize reconstruction of an original imaging scene and obtain an azimuth high-resolution image of a forward-looking sea surface target.
Drawings
Fig. 1 is a flow chart of a forward-looking sea surface target angle super-resolution imaging method under a sea clutter background provided by the invention.
Fig. 2 is a scene diagram of an original sea surface target under a simulated sea clutter background.
FIG. 3 is an azimuth dimension real beam map after pulse compression and range walk correction.
Fig. 4 is a scanning radar antenna pattern.
FIG. 5 is a schematic diagram of a sea surface target angle super-resolution imaging result processed by the method of the present invention.
Detailed Description
The embodiments of the present invention will be further described with reference to the accompanying drawings.
For the convenience of describing the contents of the present invention, the following terms are first explained:
(1) radar angle super resolution
The radar angle super-resolution means that the radar breaks through the inherent resolution limit of an imaging system by a signal processing method to achieve high resolution capability in the direction.
(2) Real beam scanning radar
A real beam scanning radar is a radar which transmits antenna beams in a mechanical rotation mode, so that the beams uniformly or non-uniformly scan scene targets in the direction.
(3) Sea clutter
In the field of radar, the echo signals reflected from the sea surface are referred to as sea clutter, which is determined by the waves, the wind speed, the direction and duration of the waves relative to the radar beam, and the presence of peaks, ebb tides and pollution that affect surface tension.
(4) Rayleigh distribution
The rayleigh distribution probability density function is:
<math> <mrow> <msub> <mi>f</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mi>v</mi> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mi>v</mi> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </math>
wherein σ2V is more than or equal to 0 as a statistical parameter.
The invention provides a forward-looking sea surface target angle super-resolution imaging method under a sea clutter background, which comprises the following steps as shown in figure 1:
and S1, establishing a motion geometric model of the forward-looking scanning radar echo signal according to the geometric relation between the airborne radar and the target.
The embodiment of the invention adopts a forward-looking scanning radar imaging motion geometric mode, and the imaging parameters of the scanning radar are shown in the following table:
parameter(s) Symbol Numerical value
Carrier frequency fc 10GHz
Pulse width of transmitted signal T 10μs
Bandwidth of transmitted signal B 30MHz
Pulse sampling frequency PRF 1000Hz
Scanning speed of antenna γ 30°/s
Antenna beam width θb 2.5°
Scanning range φ -3°~3°
Speed of movement of the platform v 100m/s
Scanning radar range R0 3km
The moving speed v of the platform of the carrier is 100m/s, the antenna scans the scene clockwise, and the initial time is in a distance unit R0Distribute the target P3 km awayn(ii) a At time t, the platform and scene are at PnDistance of object at point, denoted as Rn(t) the history of the target-to-radar slope is expressed asFor slope history Rn(t) expansion by Taylor series at t-0 givesIn practical application, the slant distance history can be simplified to R due to long action distance, small imaging sector and high scanning speedn(t)≈R0-vtcosθn. And because the azimuth angle of the radar forward-looking imaging is usually less than 10 degrees, cos thetan1. Thus, the slope history between a target to a radar can be approximated as:
Rn(t)≈R0-vt (1)
setting the transmitted signal to be a chirp signalWherein rect (-) denotes a rectangular signal, which is defined asTau is the distance variable, T is the pulse time width, in the embodiment of the invention, T is 10 mus, c is the speed of light, lambda is the wavelength,Kris the chirp rate.
In order to ensure that the theory is consistent with the actual verification condition, the received wave is subjected to discrete processing, and the number of the azimuth discretization sampling points of a single distance unit is set asWhere φ is the scan range, θbIs the antenna beam width, gamma is the scanning speed, PRI is the pulse repetition period, in the embodiment of the invention, phi is-3 to 3 degrees, thetab=2.5°,γ=30°/s,PRI=10-3s。
Then the discretized echo analytic expression is:
<math> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&sigma;</mi> <mi>n</mi> </msub> <mo>&CenterDot;</mo> <mi>&omega;</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>c</mi> </mfrac> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>4</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <msub> <mi>R</mi> <mi>n</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>j&pi;K</mi> <mi>r</mi> </msub> <msup> <mrow> <mo>&lsqb;</mo> <mi>&tau;</mi> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>c</mi> </mfrac> <mo>&rsqb;</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
where t is the azimuthal time variable, σnIs the scattering function of the target at the nth sampling point in azimuth, thetanAn antenna pointing angle corresponding to the nth target; ω is a window function in the slow time domain, representing the modulation of the antenna pattern function in the azimuth direction.
The original imaging scene under the sea clutter background adopted in the step is shown in fig. 2, and for simulating a real sea surface scene, sea clutter with a signal-to-clutter ratio of 15dB is added into data s (t, τ).
And S2, performing distance direction pulse compression on the echo signals.
Constructing a range-wise pulse compression reference signalWherein, taurefIndicating the distance to the reference time.
Will srefPerforming maximum autocorrelation operation on the echo signal data s (t, τ) to obtain a pulse-compressed echo signal:
<math> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&sigma;</mi> <mi>n</mi> </msub> <mo>.</mo> <mi>&omega;</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>4</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>}</mo> <mo>&times;</mo> <mi>sin</mi> <mi>c</mi> <mo>{</mo> <mi>B</mi> <mo>&lsqb;</mo> <mi>&tau;</mi> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mo>&CenterDot;</mo> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>c</mi> </mfrac> <mo>&rsqb;</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
where B is a transmission signal bandwidth, in the embodiment of the present invention, B is 30 MHz.
And S3, performing distance walking correction on the echo signals after pulse compression.
From the analysis in the first step, the slope distance history between the point (x, y) in the imaging area omega and the airborne radar platform is approximate to Rn(t)≈R0Vt, thus constructing a range walk correction function from the echo range historyWherein f isrIs the range frequency.
The distance walk correction function is related to s1(t, τ) to obtain the echo signal after the distance walk correction as:
<math> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&sigma;</mi> <mi>n</mi> </msub> <mo>.</mo> <mi>&omega;</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>4</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>}</mo> <mo>&times;</mo> <mi>sin</mi> <mi>c</mi> <mo>{</mo> <mi>B</mi> <mo>&lsqb;</mo> <mi>&tau;</mi> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mo>&CenterDot;</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> </mrow> <mi>c</mi> </mfrac> <mo>&rsqb;</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
the pulse-compressed and range walk corrected azimuth-dimensional real beam image is shown in fig. 3.
And S4, rearranging the echo signals after the distance walk correction into a product form of an orientation target vector and a convolution measurement matrix according to the distance dimension according to the orientation echo characteristics, and constructing an orientation convolution model.
Because the distance dimension high resolution is realized by the pulse compression technology and the method of the invention carries out super resolution processing on the azimuth dimension signal, the two-dimensional echo signal s in the formula (4) is processed2(t, τ) rearranging according to the distance dimension order to obtain the following matrix vector product form:
where, s ═ s (1,1) … s (1,2), …, s (1, N), …, s (L, N)]TThe method is a vector of LN multiplied by 1 dimension after rearranging the measured values in all the distance dimensions in the azimuth direction, the superscript T represents transposition operation, and L is the sampling point number of the echo distance dimension of the scene.
x=[x(1,1),x(1,2),…,x(1,M),…,x(L,M)]TIs an LM x 1 dimensional vector obtained by rearranging the amplitudes of targets in each direction in an imaging scene according to the distance dimension sequence,the azimuth sample points for a single range cell,is the number of sample points for a single beam.
n=[n(1,1),n(1,2),…,n(1,N),…,n(L,N)]TThe vector is a LN × 1-dimensional vector representing the amplitude characteristic of the sea clutter, and follows Rayleigh distribution.
A is a matrix of dimension LNXLM constructed from the radar antenna pattern shown in FIG. 4, and is formed by the convolution matrix AN×MIn which A isN×M=[a1,a2,…aN]Convolution measurement matrix for real beam scanning antenna, AN×MExpressed as:
wherein,weighting coefficients for the antenna pattern.
As can be seen from equation (6), the doppler additional phase of each row is the same, and the nth element of the echo vector s can be expressed as:
<math> <mrow> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mrow> <mn>4</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mi>v</mi> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>P</mi> <mi>R</mi> <mi>I</mi> </mrow> </msup> <mo>.</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>M</mi> </mrow> </munderover> <msub> <mi>h</mi> <mrow> <mi>n</mi> <mi>i</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein h isniRepresenting the weighted amplitude values of the (n, i) th element of the convolution matrix a.
Since the purpose of radar imaging is to recover object amplitude and position information within the imaged scene, the echo signal can be written as:
|s|=|A|x+n (8)
where | is a modulo operation.
Therefore, real beam scanning radar front view super-resolution imaging can be converted into: given s and A in equation (8), the inverse problem of x is solved.
And S5, establishing a maximum posterior target function and deducing an iterative expression under a Bayes framework by using the statistical characteristics of noise and target distribution according to the orientation convolution model, thereby realizing convolution inversion.
According to the bayesian formula, the posterior probability of echo data can be expressed as:
p ( x / s ) = p ( s / x ) p ( x ) p ( s ) - - - ( 9 )
where p (-) represents a probability density function.
The maximum a posteriori is to find the most suitable x satisfying the following formula:
<math> <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>x</mi> </munder> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>|</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>x</mi> </munder> <mo>&lsqb;</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>|</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,maximum posterior solution for the target information; p (x/s), p (s/x) and p (x) respectively represent a posterior probability function, a likelihood probability function and target prior information.
For computational convenience, the negative natural logarithm operation is performed on equation (10), converting the maximum a posteriori problem to:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>arg</mi> <munder> <mi>min</mi> <mi>x</mi> </munder> <mo>&lsqb;</mo> <mo>-</mo> <mi>ln</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>(</mo> <mrow> <mi>x</mi> <mo>|</mo> <mi>s</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>arg</mi> <munder> <mi>min</mi> <mi>x</mi> </munder> <mo>&lsqb;</mo> <mo>-</mo> <mi>ln</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>(</mo> <mrow> <mi>s</mi> <mo>|</mo> <mi>x</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mi>ln</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
the invention aims at the super-resolution imaging of a sea surface scene target and needs to consider the amplitude distribution characteristic of the actual sea clutter. Therefore, we use the rayleigh distribution to represent the amplitude distribution of the sea clutter. Assuming that clutter statistics in each discrete echo sampling point are independent, the likelihood probability function is:
<math> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&Pi;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>N</mi> </mrow> </munderover> <mfrac> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <msup> <mi>e</mi> <msup> <mrow></mrow> <msup> <mrow></mrow> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </msup> </msup> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein n is each pixel point of the discrete echo signal,σ2is a clutter statistical parameter of the rayleigh distribution.
Because the foresight sea imaging is often applied to the localization and tracking of a small number of sea surface targets in a large imaging scene, the sea surface targets have sparse characteristics relative to an imaging area, and the target distribution is expressed as follows by adopting the laplace distribution:
<math> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&Proportional;</mo> <munderover> <mo>&Pi;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>M</mi> </mrow> </munderover> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&mu;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mi>m</mi> </msub> <mo>|</mo> </mrow> <mi>&mu;</mi> </mfrac> <mo>)</mo> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
where μ > 0 is a scale parameter of the Laplace distribution.
Substituting equations (12) and (13) into equation (10) yields the maximum a posteriori probability function:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mi>max</mi> <mi>x</mi> </munder> <mo>&lsqb;</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munderover> <mo>&Pi;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>M</mi> </mrow> </munderover> <mrow> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&mu;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mi>m</mi> </msub> <mo>|</mo> </mrow> <mi>&mu;</mi> </mfrac> <mo>)</mo> </mrow> </msup> <mo>&CenterDot;</mo> <munderover> <mo>&Pi;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>M</mi> </mrow> </munderover> <mrow> <mfrac> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </msup> </mrow> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
taking the natural logarithm of equation (14) yields:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>ln</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&lambda;</mi> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>|</mo> <msub> <mo>|</mo> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>N</mi> </mrow> </munderover> <mo>&lsqb;</mo> <mo>-</mo> <mi>ln</mi> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>LNln&sigma;</mi> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
where λ ═ 1/μ is a regularization parameter used to balance sparseness and imaging quality of the target information restoration result.
To overcome l in the objective function1The problem that the norm is not differentiable at zero, using a technique of smooth estimation, equation (15) is approximated as:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&ap;</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>N</mi> </mrow> </munderover> <mo>&lsqb;</mo> <mo>-</mo> <mi>ln</mi> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>LNln&sigma;</mi> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>&lambda;</mi> <munderover> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>N</mi> </mrow> </munderover> <msqrt> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mi>m</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <mi>&epsiv;</mi> </mrow> </msqrt> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
where a non-negative constant approximating zero is taken.
By performing a gradient operation on equation (16), we can obtain:
<math> <mrow> <mo>&dtri;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>-</mo> <mi>A</mi> <mi>x</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mn>1</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <msup> <mi>A</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>s</mi> <mo>-</mo> <mi>A</mi> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&lambda;</mi> <mi>W</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>x</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, <math> <mrow> <mi>W</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>{</mo> <msup> <mrow> <mo>(</mo> <mo>|</mo> <msub> <mi>x</mi> <mi>m</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <mo>}</mo> <mo>.</mo> </mrow> </math>
since equation (17) is a non-linear function with respect to x, it cannot be directly orderedObtaining an optimal solution to the objective function, here using an iterative method, by first obtaining a solution to the objective functionOne simple solution of (a) is:
<math> <mrow> <mi>x</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mi>A</mi> <mo>+</mo> <mi>&lambda;</mi> <mi>W</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <msub> <mi>T</mi> <mi>s</mi> </msub> </msup> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <msup> <mi>A</mi> <mi>T</mi> </msup> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>-</mo> <mi>A</mi> <mi>x</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, the iteration initial value is selected as x ═ ATA)-1ATs is the least square solution of formula (8), and the initial iteration value of w (x) is also formed by the initial value of x, and the iterative expression can be expressed as:
<math> <mrow> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mi>A</mi> <mo>+</mo> <mi>&lambda;</mi> <mi>W</mi> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mi>s</mi> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <msup> <mi>A</mi> <mi>T</mi> </msup> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>Ax</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein k +1 and k are iteration times,the iterative initial value of x is determined by calculating the least squares solution x ═ ATA)-1ATs is obtained, and the diagonal matrix is obtained by using the iteration initial valueThe initial value of iteration of (a) in the present embodiment is 0.01. Equation (19) is an expression form of the maximum a posteriori algorithm.
And S6, calculating clutter statistical parameters and regularization parameters.
Taking a single distance unit signal without target distribution in a two-dimensional echo signal, and setting a sea clutter amplitude sampling sequence f with the dimension of N1,…,fNAfter the rayleigh distribution is subjected to logarithmic operation, the following expression can be written:
<math> <mrow> <mi>&gamma;</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mi>&sigma;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>Nln&sigma;</mi> <mn>2</mn> </msup> <mo>-</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>+</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
the gradient of equation (20) with respect to σ is found to be:
<math> <mrow> <mfrac> <mrow> <mo>&part;</mo> <mrow> <mo>(</mo> <mi>&gamma;</mi> <mo>(</mo> <mrow> <mi>f</mi> <mo>,</mo> <mi>&sigma;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&part;</mo> <mi>&sigma;</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>N</mi> </mrow> <mi>&sigma;</mi> </mfrac> <mo>-</mo> <mfrac> <mn>1</mn> <msup> <mi>&sigma;</mi> <mn>3</mn> </msup> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
the clutter statistic parameter σ is obtained from the formula (21)2The maximum likelihood solution of (c) is:
<math> <mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
in the embodiment of the invention, a tenth distance unit without target distribution in an original scene is taken, and the maximum likelihood parameter estimation method is used for calculating the sigma2The maximum likelihood solution of (c) is:
<math> <mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </mfrac> <mo>=</mo> <mn>8.6678</mn> </mrow> </math>
then, a discrepanacy principle is adopted to select lambda, namely, the method selects the (| | y-Ax (lambda) | torrid cells2≈E[||n||2]λ when is the regularization parameter. In the present embodiment, λ is 0.65.
And S7, substituting the clutter statistical parameters and the regularization parameters into a formula (19), and iteratively calculating the restoration result of the original imaging scene to realize the super-resolution imaging of the sea surface target angle by the forward-looking radar. Fig. 5 is a final result obtained by the present invention, and it can be seen from the graph that the angle information of the target is well recovered in the background of the sea clutter by the method provided by the present invention.
It will be appreciated by those of ordinary skill in the art that the embodiments described herein are intended to assist the reader in understanding the principles of the invention and are to be construed as being without limitation to such specifically recited embodiments and examples. Those skilled in the art can make various other specific changes and combinations based on the teachings of the present invention without departing from the spirit of the invention, and these changes and combinations are within the scope of the invention.

Claims (7)

1. A forward-looking sea surface target angle super-resolution imaging method under a sea clutter background is characterized by comprising the following steps:
s1, establishing a motion geometric model of a forward-looking scanning radar echo signal according to the geometric relation between the airborne radar and the target;
s2, performing distance-direction pulse compression on the echo signals;
s3, performing distance walking correction on the echo signal after pulse compression;
s4, rearranging the echo signals after the distance walk correction into a product form of an orientation target vector and a convolution measurement matrix according to the distance dimension according to the orientation echo characteristics to construct an orientation convolution model;
s5, according to the orientation convolution model, by using the statistical characteristics of noise and target distribution, establishing a maximum posterior target function under a Bayes framework and deducing an iterative expression to realize convolution inversion;
s6, calculating clutter statistic parameters and regularization parameters;
and S7, substituting the clutter statistical parameters and the regularization parameters into the iterative expression in the step S5, restoring the original imaging scene, and realizing super-resolution imaging of the sea surface target angle by the forward-looking radar.
2. The method according to claim 1, wherein the step S1 is specifically performed by:
setting the moving speed of the platform of the carrier as v, scanning the scene clockwise by the antenna, and setting the initial time at the distance unit R0Is located at the distribution target Pn(ii) a At time t, the platform and scene are at PnDistance of object at point, denoted as Rn(t); at this time, the history of the target-to-radar slope is approximately expressed as:
Rn(t)≈R0-vt (1)
setting the transmitted signal to be a chirp signalWherein rect (-) denotes a rectangular signal, which is defined asTau is the distance-direction time variable, T is the pulse time width, c is the speed of light, lambda is the wavelength, KrIs the frequency modulation slope;
the received echo is subjected to discrete processing, and the number of azimuth discretization sampling points of a single distance unit is set asWhereinPhi is the scanning range, thetabIf the antenna beam width is, γ is the scanning speed, and PRI is the pulse repetition period, then the discretized echo analysis expression is:
<math> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&sigma;</mi> <mi>n</mi> </msub> <mo>.</mo> <mi>&omega;</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>c</mi> </mfrac> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>4</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <msub> <mi>R</mi> <mi>n</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>&CenterDot;</mo> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>j&pi;K</mi> <mi>r</mi> </msub> <msup> <mrow> <mo>&lsqb;</mo> <mi>&tau;</mi> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>c</mi> </mfrac> <mo>&rsqb;</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
where t is the azimuthal time variable, σnIs the scattering function of the target at the nth sampling point in azimuth, thetanAn antenna pointing angle corresponding to the nth target; ω is a window function in the slow time domain, representing the modulation of the antenna pattern function in the azimuth direction.
3. The method according to claim 2, wherein the step S2 is specifically performed by:
constructing a range-wise pulse compression reference signalWherein, taurefRepresenting a distance to a reference time;
will srefPerforming maximum autocorrelation operation on the echo signal data s (t, τ) to obtain a pulse-compressed echo signal:
<math> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&sigma;</mi> <mi>n</mi> </msub> <mo>.</mo> <mi>&omega;</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>4</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>}</mo> <mo>&times;</mo> <mi>sin</mi> <mi>c</mi> <mo>{</mo> <mi>B</mi> <mo>&lsqb;</mo> <mi>&tau;</mi> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mo>&CenterDot;</mo> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>c</mi> </mfrac> <mo>&rsqb;</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
where B is the transmit signal bandwidth.
4. The method according to claim 3, wherein the step S3 is specifically as follows:
distance walk correction function construction according to echo distance courseWherein f isrIs the range frequency;
the distance walk correction function is related to s1(t, τ) to obtain the echo signal after the distance walk correction as:
<math> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&sigma;</mi> <mi>n</mi> </msub> <mo>.</mo> <mi>&omega;</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>,</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>4</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>}</mo> <mo>&times;</mo> <mi>sin</mi> <mi>c</mi> <mo>{</mo> <mi>B</mi> <mo>&lsqb;</mo> <mi>&tau;</mi> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mo>&CenterDot;</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> </mrow> <mi>c</mi> </mfrac> <mo>&rsqb;</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
5. the method according to claim 4, wherein the step S4 is specifically as follows:
two-dimensional echo signal s in formula (4)2(t, τ) rearranging according to the distance dimension order to obtain the following matrix vector product form:
wherein s ═ s (1,1) … s (1,2), …, s (1, N), …,s(L,N)]TRearranging the measured values in all distance dimensions in the azimuth direction to obtain LN multiplied by 1-dimensional vectors, wherein the superscript T represents transposition operation, and L is the number of sampling points in the echo distance dimension of the scene; x ═ x (1,1), x (1,2), …, x (1, M), …, x (L, M)]TIs an LM x 1 dimensional vector obtained by rearranging the amplitudes of targets in each direction in an imaging scene according to the distance dimension sequence,the azimuth sample points for a single range cell,is the number of sample points for a single beam; n ═ N [ N (1,1), N (1,2), …, N (1, N), …, N (L, N)]TIs LN multiplied by 1 dimensional vector representing sea clutter amplitude characteristic, obeying Rayleigh distribution; a is a measurement matrix A formed by convolutionN×MA matrix of LNxLM dimensions formed, wherein AN×M=[a1,a2,…aN]Convolution measurement matrix for real beam scanning antenna, AN×MExpressed as:
wherein,weighting coefficients for the antenna pattern;
as can be seen from equation (6), if the doppler additional phases of the rows are the same, the nth element of the echo vector s is represented as:
<math> <mrow> <msub> <mi>S</mi> <mi>n</mi> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>4</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mi>v</mi> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>P</mi> <mi>R</mi> <mi>I</mi> </mrow> </msup> <mo>.</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>M</mi> </mrow> </munderover> <msub> <mi>h</mi> <mrow> <mi>n</mi> <mi>i</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein h isniA weighted amplitude value representing the (n, i) th element of the convolution matrix a;
since the purpose of radar imaging is to recover target amplitude and position information within the imaged scene, the echo signal is expressed as:
|s|=|A|x+n (8)
wherein, | · | is a modulo operation;
therefore, the real beam scanning radar front view super-resolution imaging is converted into: given s and A in equation (8), the inverse problem of x is solved.
6. The method according to claim 5, wherein the step S5 is specifically as follows:
according to the Bayesian formula, the posterior probability of the echo data is expressed as:
p ( x / s ) = p ( s / x ) p ( x ) p ( s ) - - - ( 9 )
wherein p (-) represents a probability density function;
the maximum a posteriori is to find the most suitable x satisfying the following formula:
<math> <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>x</mi> </munder> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>|</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>x</mi> </munder> <mo>&lsqb;</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>|</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,maximum posterior solution for the target information; p (x/s), p (s/x) and p (x) respectively represent a posterior probability function, a likelihood probability function and target prior information;
the negative natural logarithm operation is performed on equation (10), converting the maximum a posteriori problem to:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>arg</mi> <munder> <mi>min</mi> <mi>x</mi> </munder> <mo>&lsqb;</mo> <mo>-</mo> <mi>l</mi> <mi>n</mi> <mo>(</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>|</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>arg</mi> <munder> <mi>min</mi> <mi>x</mi> </munder> <mo>&lsqb;</mo> <mo>-</mo> <mi>l</mi> <mi>n</mi> <mo>(</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>|</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>-</mo> <mi>l</mi> <mi>n</mi> <mo>(</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
assuming that clutter statistics in each discrete echo sampling point are independent, the likelihood probability function is:
<math> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&Pi;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>N</mi> </mrow> </munderover> <mfrac> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mi>A</mi> <mi>x</mi> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mi>A</mi> <mi>x</mi> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein n is each pixel point of the discrete echo signal,σ2is a clutter statistical parameter of the rayleigh distribution;
because the foresight sea imaging is often applied to the localization and tracking of a small number of sea surface targets in a large imaging scene, the sea surface targets have sparse characteristics relative to an imaging area, and the target distribution is expressed as follows by adopting the laplace distribution:
<math> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&Proportional;</mo> <munderover> <mo>&Pi;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>M</mi> </mrow> </munderover> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&mu;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mi>m</mi> </msub> <mo>|</mo> </mrow> <mi>&mu;</mi> </mfrac> <mo>)</mo> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein μ > 0 is a scale parameter of the Laplace distribution;
substituting equations (12) and (13) into equation (10) yields the maximum a posteriori probability function:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mi>max</mi> <mi>x</mi> </munder> <mo>&lsqb;</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>M</mi> </mrow> </munderover> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&mu;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mi>m</mi> </msub> <mo>|</mo> </mrow> <mi>&mu;</mi> </mfrac> <mo>)</mo> </mrow> </msup> <mo>&CenterDot;</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>LN</mi> </munderover> <mfrac> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mi>A</mi> <mi>x</mi> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mi>A</mi> <mi>x</mi> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </msup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
taking the natural logarithm of equation (14) yields:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mi>ln</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&lambda;</mi> <msub> <mrow> <mo>||</mo> <mi>x</mi> <mo>||</mo> </mrow> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>N</mi> </mrow> </munderover> <mo>&lsqb;</mo> <mo>-</mo> <mi>ln</mi> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mi>A</mi> <mi>x</mi> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>LNln&sigma;</mi> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mi>A</mi> <mi>x</mi> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
λ ═ 1/μ is a regularization parameter, and is used for balancing sparsity and imaging quality of a target information restoration result;
to overcome l in the objective function1The problem that the norm is not differentiable at zero, using a technique of smooth estimation, equation (15) is approximated as:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&ap;</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>N</mi> </mrow> </munderover> <mo>&lsqb;</mo> <mo>-</mo> <mi>l</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mi>A</mi> <mi>x</mi> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>LNln&sigma;</mi> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <mi>A</mi> <mi>x</mi> <mo>)</mo> </mrow> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>&lambda;</mi> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>L</mi> <mi>N</mi> </mrow> </munderover> <msqrt> <mrow> <msup> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mi>m</mi> </msub> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mi>&epsiv;</mi> </mrow> </msqrt> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein a non-negative constant approximating zero is taken;
performing gradient operation on equation (16) to obtain:
<math> <mrow> <mo>&dtri;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>=</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>-</mo> <mi>A</mi> <mi>x</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mn>1</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <msup> <mi>A</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>s</mi> <mo>-</mo> <mi>A</mi> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&lambda;</mi> <mi>W</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>x</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, <math> <mrow> <mi>W</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>{</mo> <msup> <mrow> <mo>(</mo> <mo>|</mo> <msub> <mi>x</mi> <mi>m</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <mi>&epsiv;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mo>}</mo> <mo>;</mo> </mrow> </math>
since equation (17) is a non-linear function with respect to x, it cannot be directly orderedObtaining an optimal solution to the objective function, here using an iterative method, by first obtaining a solution to the objective functionOne simple solution of (a) is:
<math> <mrow> <mi>x</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mi>A</mi> <mo>+</mo> <mi>&lambda;</mi> <mi>W</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mi>s</mi> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <msup> <mi>A</mi> <mi>T</mi> </msup> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>-</mo> <mi>A</mi> <mi>x</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, the iteration initial value is selected as x ═ ATA)-1ATs is the least square solution of formula (8), and the initial iteration value of w (x) is also formed by the initial value of x, and the iteration expression is expressed as:
<math> <mrow> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mi>A</mi> <mo>+</mo> <mi>&lambda;</mi> <mi>W</mi> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi>T</mi> </msup> <mi>s</mi> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <msup> <mi>A</mi> <mi>T</mi> </msup> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>Ax</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein k +1 and k are iteration times,equation (19) is an expression form of the maximum a posteriori algorithm.
7. The method according to claim 6, wherein the step S6 is specifically as follows:
taking a single distance unit signal without target distribution in a two-dimensional echo signal, and setting a sea clutter amplitude sampling sequence f with the dimension of N1,…,fNAfter the rayleigh distribution is subjected to logarithmic operation, the following expression is obtained:
<math> <mrow> <mi>&gamma;</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mi>&sigma;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>Nln&sigma;</mi> <mn>2</mn> </msup> <mo>-</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>+</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
the gradient of equation (20) with respect to σ is found to be:
<math> <mrow> <mfrac> <mrow> <mo>&part;</mo> <mrow> <mo>(</mo> <mi>&gamma;</mi> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mi>&sigma;</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>&part;</mo> <mi>&sigma;</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>N</mi> </mrow> <mi>&sigma;</mi> </mfrac> <mo>-</mo> <mfrac> <mn>1</mn> <msup> <mi>&sigma;</mi> <mn>3</mn> </msup> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
the clutter statistic parameter σ is obtained from the formula (21)2The maximum likelihood solution of (c) is:
<math> <mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
then, a discrepanacy principle is adopted to select lambda, namely, the method selects the (| | y-Ax (lambda) | torrid cells2≈E[||n||2]λ when is the regularization parameter.
CN201510357512.8A 2015-06-25 2015-06-25 Method for realizing angular super-resolution imaging of forward-looking sea surface targets in sea clutter background Active CN104950306B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510357512.8A CN104950306B (en) 2015-06-25 2015-06-25 Method for realizing angular super-resolution imaging of forward-looking sea surface targets in sea clutter background

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510357512.8A CN104950306B (en) 2015-06-25 2015-06-25 Method for realizing angular super-resolution imaging of forward-looking sea surface targets in sea clutter background

Publications (2)

Publication Number Publication Date
CN104950306A true CN104950306A (en) 2015-09-30
CN104950306B CN104950306B (en) 2017-04-19

Family

ID=54165103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510357512.8A Active CN104950306B (en) 2015-06-25 2015-06-25 Method for realizing angular super-resolution imaging of forward-looking sea surface targets in sea clutter background

Country Status (1)

Country Link
CN (1) CN104950306B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891826A (en) * 2016-03-31 2016-08-24 电子科技大学 Airborne radar fast maximum posteriori imaging method
CN106156496A (en) * 2016-06-29 2016-11-23 西安电子科技大学 The maximum Likelihood of the sea clutter amplitude model parameter of inverse Gauss texture
CN106707256A (en) * 2015-07-27 2017-05-24 中国人民解放军信息工程大学 Tropospheric waveguide inversion method and device based on radar sea clutter
CN107271993A (en) * 2017-07-21 2017-10-20 电子科技大学 A kind of scanning radar angle super-resolution imaging method based on maximum a posteriori
CN107390181A (en) * 2017-07-26 2017-11-24 电子科技大学 A kind of radar high-resolution imaging method based on multi-beam scanning
CN107621635A (en) * 2017-08-21 2018-01-23 电子科技大学 A kind of forward sight sea-surface target angle ultra-resolution method
CN107729381A (en) * 2017-09-15 2018-02-23 广州嘉影软件有限公司 Interactive multimedia resource polymerization method and system based on multidimensional characteristic identification
CN108107429A (en) * 2017-12-22 2018-06-01 电子科技大学 Forward sight super-resolution imaging method based on maximal possibility estimation
CN108562884A (en) * 2018-07-18 2018-09-21 电子科技大学 A kind of Air-borne Forward-looking sea-surface target angle ultra-resolution method based on maximum a posteriori probability
CN110109097A (en) * 2019-06-06 2019-08-09 电子科技大学 A kind of scanning radar forword-looking imaging Azimuth super-resolution method
CN110515075A (en) * 2019-04-08 2019-11-29 电子科技大学 A kind of scanning radar object detection method
CN111624571A (en) * 2020-05-19 2020-09-04 哈尔滨工业大学 Non-uniform Weibull background statistical distribution parameter estimation method based on self-adaptive tight frame
CN111856465A (en) * 2020-07-30 2020-10-30 电子科技大学 Forward-looking sea surface target angle super-resolution method based on sparse constraint
CN112083416A (en) * 2020-09-18 2020-12-15 电子科技大学 Motion platform scanning radar super-resolution imaging view field selection method
CN112799070A (en) * 2021-04-06 2021-05-14 中船航海科技有限责任公司 Rain and snow clutter suppression algorithm for marine radar
CN114859342A (en) * 2022-03-24 2022-08-05 电子科技大学 Weibull-generalized Gaussian-based sea super-resolution imaging method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100067822A1 (en) * 2005-01-19 2010-03-18 U.S. Government As Represented By The Secretary Of The Army System and method of super-resolution imaging from a sequence of translated and rotated low-resolution images
CN103412305A (en) * 2013-07-15 2013-11-27 电子科技大学 Scanning radar super-resolution imaging method
CN103487802A (en) * 2013-09-18 2014-01-01 电子科技大学 Scanning radar angle super-resolution imaging method
CN104166129A (en) * 2014-08-22 2014-11-26 电子科技大学 Real beam radar iteration minimum mean square error angle super-resolution method
CN104536000A (en) * 2015-01-06 2015-04-22 电子科技大学 Real beam scanning radar corner super-resolution method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100067822A1 (en) * 2005-01-19 2010-03-18 U.S. Government As Represented By The Secretary Of The Army System and method of super-resolution imaging from a sequence of translated and rotated low-resolution images
CN103412305A (en) * 2013-07-15 2013-11-27 电子科技大学 Scanning radar super-resolution imaging method
CN103487802A (en) * 2013-09-18 2014-01-01 电子科技大学 Scanning radar angle super-resolution imaging method
CN104166129A (en) * 2014-08-22 2014-11-26 电子科技大学 Real beam radar iteration minimum mean square error angle super-resolution method
CN104536000A (en) * 2015-01-06 2015-04-22 电子科技大学 Real beam scanning radar corner super-resolution method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐刚 等: "前视扫描SAR超分辨成像", 《西安电子科技大学学报(自然科学版)》 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707256A (en) * 2015-07-27 2017-05-24 中国人民解放军信息工程大学 Tropospheric waveguide inversion method and device based on radar sea clutter
CN106707256B (en) * 2015-07-27 2019-01-25 中国人民解放军信息工程大学 A kind of tropospheric ducting inversion method and device based on radar sea clutter
CN105891826A (en) * 2016-03-31 2016-08-24 电子科技大学 Airborne radar fast maximum posteriori imaging method
CN105891826B (en) * 2016-03-31 2018-07-27 电子科技大学 The quick maximum a posteriori imaging method of airborne radar
CN106156496A (en) * 2016-06-29 2016-11-23 西安电子科技大学 The maximum Likelihood of the sea clutter amplitude model parameter of inverse Gauss texture
CN106156496B (en) * 2016-06-29 2018-08-17 西安电子科技大学 The maximum Likelihood of the sea clutter amplitude model parameter of inverse Gauss texture
CN107271993B (en) * 2017-07-21 2020-07-07 电子科技大学 Scanning radar angle super-resolution imaging method based on maximum posterior
CN107271993A (en) * 2017-07-21 2017-10-20 电子科技大学 A kind of scanning radar angle super-resolution imaging method based on maximum a posteriori
CN107390181B (en) * 2017-07-26 2021-02-09 电子科技大学 Radar high-resolution imaging method based on multi-beam scanning
CN107390181A (en) * 2017-07-26 2017-11-24 电子科技大学 A kind of radar high-resolution imaging method based on multi-beam scanning
CN107621635A (en) * 2017-08-21 2018-01-23 电子科技大学 A kind of forward sight sea-surface target angle ultra-resolution method
CN107621635B (en) * 2017-08-21 2020-09-01 电子科技大学 Forward-looking sea surface target angle super-resolution method
CN107729381A (en) * 2017-09-15 2018-02-23 广州嘉影软件有限公司 Interactive multimedia resource polymerization method and system based on multidimensional characteristic identification
CN107729381B (en) * 2017-09-15 2020-05-08 广州嘉影软件有限公司 Interactive multimedia resource aggregation method and system based on multi-dimensional feature recognition
CN108107429A (en) * 2017-12-22 2018-06-01 电子科技大学 Forward sight super-resolution imaging method based on maximal possibility estimation
CN108562884A (en) * 2018-07-18 2018-09-21 电子科技大学 A kind of Air-borne Forward-looking sea-surface target angle ultra-resolution method based on maximum a posteriori probability
CN110515075A (en) * 2019-04-08 2019-11-29 电子科技大学 A kind of scanning radar object detection method
CN110109097A (en) * 2019-06-06 2019-08-09 电子科技大学 A kind of scanning radar forword-looking imaging Azimuth super-resolution method
CN110109097B (en) * 2019-06-06 2021-04-13 电子科技大学 Scanning radar foresight imaging azimuth super-resolution method
CN111624571A (en) * 2020-05-19 2020-09-04 哈尔滨工业大学 Non-uniform Weibull background statistical distribution parameter estimation method based on self-adaptive tight frame
CN111856465A (en) * 2020-07-30 2020-10-30 电子科技大学 Forward-looking sea surface target angle super-resolution method based on sparse constraint
CN112083416A (en) * 2020-09-18 2020-12-15 电子科技大学 Motion platform scanning radar super-resolution imaging view field selection method
CN112799070A (en) * 2021-04-06 2021-05-14 中船航海科技有限责任公司 Rain and snow clutter suppression algorithm for marine radar
CN112799070B (en) * 2021-04-06 2021-09-10 中船航海科技有限责任公司 Rain and snow clutter suppression algorithm for marine radar
CN114859342A (en) * 2022-03-24 2022-08-05 电子科技大学 Weibull-generalized Gaussian-based sea super-resolution imaging method
CN114859342B (en) * 2022-03-24 2023-05-12 电子科技大学 Sea super-resolution imaging method based on Wei Boer-generalized Gaussian

Also Published As

Publication number Publication date
CN104950306B (en) 2017-04-19

Similar Documents

Publication Publication Date Title
CN104950306B (en) Method for realizing angular super-resolution imaging of forward-looking sea surface targets in sea clutter background
CN107271993B (en) Scanning radar angle super-resolution imaging method based on maximum posterior
CN104950305B (en) A kind of real beam scanning radar angle super-resolution imaging method based on sparse constraint
CN103487802B (en) Scanning radar angle super-resolution imaging method
CN103149561B (en) Microwave imaging method based on scenario block sparsity
Yang et al. Segmented reconstruction for compressed sensing SAR imaging
CN106680817B (en) Method for realizing high-resolution imaging of forward-looking radar
CN104536000A (en) Real beam scanning radar corner super-resolution method
CN104977582B (en) A kind of deconvolution method for realizing the imaging of scanning radar Azimuth super-resolution
CN103487803B (en) Airborne scanning radar imaging method in iteration compression mode
CN105137425B (en) The preceding visual angle ultra-resolution method of scanning radar based on Deconvolution principle
CN107621635B (en) Forward-looking sea surface target angle super-resolution method
CN105699969A (en) A maximum posterior estimated angle super-resolution imaging method based on generalized Gaussian constraints
CN106291543A (en) A kind of motion platform scanning radar super-resolution imaging method
CN104122549B (en) Radar angle super-resolution imaging method based on deconvolution
CN108226891B (en) Scanning radar echo calculation method
Wang et al. Sparse ISAR imaging using a greedy Kalman filtering approach
CN108562884A (en) A kind of Air-borne Forward-looking sea-surface target angle ultra-resolution method based on maximum a posteriori probability
CN109613532B (en) Airborne radar real-time Doppler beam sharpening super-resolution imaging method
CN109507666A (en) The sparse frequency band imaging method of ISAR based on off-network variation bayesian algorithm
CN111505639A (en) Synthetic aperture radar wide-width sparse imaging method based on variable repetition frequency sampling mode
CN107402380A (en) A kind of quick self-adapted alternative manner for realizing Doppler beam sharpened imaging
Zhang et al. Superresolution imaging for forward-looking scanning radar with generalized Gaussian constraint
CN111856465A (en) Forward-looking sea surface target angle super-resolution method based on sparse constraint
Wei et al. Sparse autofocus recovery for under-sampled linear array SAR 3-D imaging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant