CN104950305B - A kind of real beam scanning radar angle super-resolution imaging method based on sparse constraint - Google Patents
A kind of real beam scanning radar angle super-resolution imaging method based on sparse constraint Download PDFInfo
- Publication number
- CN104950305B CN104950305B CN201510335256.2A CN201510335256A CN104950305B CN 104950305 B CN104950305 B CN 104950305B CN 201510335256 A CN201510335256 A CN 201510335256A CN 104950305 B CN104950305 B CN 104950305B
- Authority
- CN
- China
- Prior art keywords
- sigma
- target
- maximum
- formula
- posteriori
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种基于稀疏约束的实波束扫描雷达角超分辨成像方法,包括以下步骤:S1、回波建模,基于实波束扫描雷达与目标的几何关系建立扫描雷达的回波数据模型;S2、对回波数据进行距离向脉冲压缩,实现距离向的高分辨率;S3、将脉冲压缩后的回波数据表示为天线波束与观察场景的散射系数的卷积模型;S4、根据S3得到的卷积模型建立最大后验目标函数,推导最大后验解;S5、通过自适应迭代的方法精确还原出原始目标分布。本发明使用瑞利分布表征杂波特性,并利用稀疏约束反应目标分布特性,在反演目标分布的同时抑制了噪声对成像结果的影响,使得角超分辨处理结果更加逼近实际目标分布,实现了实波束扫描雷达角超分辨成像。
The invention discloses a real-beam scanning radar angle super-resolution imaging method based on sparse constraints, comprising the following steps: S1, echo modeling, establishing a scanning radar echo data model based on the geometric relationship between the real-beam scanning radar and the target; S2. Perform range-wise pulse compression on the echo data to achieve high resolution in the range direction; S3. Express the pulse-compressed echo data as a convolution model of the antenna beam and the scattering coefficient of the observed scene; S4. Obtain according to S3 The convolution model establishes the maximum a posteriori objective function and derives the maximum a posteriori solution; S5. Accurately restores the original target distribution through an adaptive iterative method. The invention uses Rayleigh distribution to characterize clutter characteristics, and utilizes sparse constraints to reflect target distribution characteristics, suppresses the influence of noise on imaging results while inverting target distribution, makes the angle super-resolution processing results closer to the actual target distribution, and realizes Real-beam scanning radar angle super-resolution imaging.
Description
技术领域technical field
本发明属于雷达成像技术领域,它特别涉及一种基于稀疏约束的实波束扫描雷达角超分辨成像方法。The invention belongs to the technical field of radar imaging, and in particular relates to a real-beam scanning radar angle super-resolution imaging method based on sparse constraints.
背景技术Background technique
实波束扫描雷达的高分辨成像,在船舶导航、塔台监测和远程预警等领域有着巨大的应用价值,同时该成像模式还具有小体积和低成本等优势,因此该成像模式具有广泛的应用前景。实波束扫描雷达以固定扫描速度先后照射成像区域、通过发射线性调频信号(LFM)并接收回波信号以获得雷达作用区域的二维回波信号。由于发射信号维为LFM信号,因此,距离向高分辨能够通过使用脉冲压缩技术实现。在方位向,实波束方位角分辨率由决定,其中,λ是雷达波长,D表示天线孔径尺寸,虽然实波束方位角分辨率远低于距离分辨率,但是,通过信号处理的方法,能够突破天线波长和孔径限制,显著改善方位向分辨率,实现实波束雷达角超分辨成像。The high-resolution imaging of real beam scanning radar has great application value in the fields of ship navigation, tower monitoring and remote early warning. At the same time, this imaging mode also has the advantages of small size and low cost, so this imaging mode has broad application prospects. The real beam scanning radar irradiates the imaging area successively at a fixed scanning speed, and obtains the two-dimensional echo signal of the radar active area by transmitting a linear frequency modulation signal (LFM) and receiving the echo signal. Since the transmitted signal dimension is an LFM signal, high range resolution can be achieved by using pulse compression technology. In azimuth, the real beam azimuth resolution is given by decision, where λ is the radar wavelength, and D is the antenna aperture size. Although the azimuth angle resolution of the real beam is much lower than the distance resolution, the signal processing method can break through the antenna wavelength and aperture limitations and significantly improve the azimuth resolution. rate to achieve real-beam radar angle super-resolution imaging.
文献“Ly C,Dropkin H,Manitius A Z.Extension of the music algorithm tomillimeter-wave(mmw)real-beam radar scanning antennas.AeroSense 2002.”根据实波束扫描雷达的回波特性提出用谱估计中的MUSIC算法实现扫描雷达方位向超分辨成像,但是该方法需要足够的快拍数以准确估计噪声的协方差矩阵,这在实际的机械扫描雷达应用中很难实现的,同时在相干源背景下该方法的角超分辨性能会严重下降。The literature "Ly C, Dropkin H, Manitius A Z. Extension of the music algorithm tomillimeter-wave (mmw) real-beam radar scanning antennas. AeroSense 2002." According to the echo characteristics of real-beam scanning radar, it is proposed to use spectrum estimation The MUSIC algorithm realizes scanning radar azimuth super-resolution imaging, but this method needs enough snapshots to accurately estimate the covariance matrix of the noise, which is difficult to achieve in the actual mechanical scanning radar application. The angular super-resolution performance of the method will be severely degraded.
文献“Y.Zhang,Y.Zhang,W.Li,Y.Huang,and J.Yang.Angular superresolutionfor real beam radar with iterative adaptive approach.in Geoscience and RemoteSensing Symposium(IGARSS),2013IEEE International.IEEE,2013:3100-3103”提出了一种基于实波束扫描雷达的自适应迭代角超分辨方法,该方法基于加权最小加权二乘准则,该方法克服了快拍数的限制并能够显著改善方位角分辨率,但是该方法的计算复杂度过大,会占用大量的系统资源并严重影响成像的实时性,很难推广到实际应用中。Literature "Y. Zhang, Y. Zhang, W. Li, Y. Huang, and J. Yang. Angular superresolution for real beam radar with iterative adaptive approach. in Geoscience and RemoteSensing Symposium (IGARSS), 2013IEEE International.IEEE,2013:3100 -3103” proposed an adaptive iterative angle super-resolution method based on real-beam scanning radar, which is based on the weighted least weighted squares criterion. The calculation complexity of this method is too large, it will occupy a large amount of system resources and seriously affect the real-time performance of imaging, and it is difficult to be extended to practical applications.
文献“Huang Y,Zha Y,Zhang Y,et al.Real-beam scanning radar angularsuper-resolution via sparse deconvolution.Geoscience and Remote SensingSymposium(IGARSS),2014IEEE International.IEEE,2014:3081-3084.”将实波束扫描雷达方位向回波建立为天线方向图与目标散射系数的卷积模型,并通过解卷积算法重建目标场景,实现实波束雷达角分辨率。但是该方法假设的噪声服从泊松分布特性并不符合实际雷达成像特性,因此在低信噪比下,该算法的成像性能会急剧下降。The literature "Huang Y, Zha Y, Zhang Y, et al. Real-beam scanning radar angular super-resolution via sparse deconvolution. Geoscience and Remote Sensing Symposium (IGARSS), 2014IEEE International. IEEE, 2014:3081-3084." The radar azimuth echo is established as a convolution model of the antenna pattern and the target scattering coefficient, and the target scene is reconstructed through the deconvolution algorithm to achieve real beam radar angular resolution. However, the noise assumed by this method obeys the Poisson distribution characteristic and does not conform to the actual radar imaging characteristics, so the imaging performance of the algorithm will drop sharply under low signal-to-noise ratio.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种使用瑞利分布表征杂波特性,并利用稀疏约束反应目标分布特性,在反演目标分布的同时抑制了噪声对成像结果的影响,提高瑞利分布统计参数的估计精度,实现了基于稀疏约束的实波束扫描雷达角超分辨成像方法。The purpose of the present invention is to overcome the deficiencies of the prior art, to provide a method that uses Rayleigh distribution to characterize clutter characteristics, and uses sparse constraints to reflect the target distribution characteristics, and suppresses the influence of noise on imaging results while inverting the target distribution. The estimation accuracy of Rayleigh distribution statistical parameters is improved, and a real-beam scanning radar angle super-resolution imaging method based on sparse constraints is realized.
本发明的目的是通过以下技术方案来实现的,一种基于稀疏约束的实波束扫描雷达角超分辨成像方法,包括以下步骤:The purpose of the present invention is achieved by the following technical solutions, a real-beam scanning radar angle super-resolution imaging method based on sparse constraints, comprising the following steps:
S1、回波建模,基于实波束扫描雷达与目标的几何关系建立扫描雷达的回波数据模型;S1. Echo modeling, based on the geometric relationship between the real beam scanning radar and the target, the echo data model of the scanning radar is established;
S2、对回波数据进行距离向脉冲压缩,实现距离向的高分辨率;S2. Perform range-wise pulse compression on the echo data to achieve high resolution in the range direction;
S3、将脉冲压缩后的回波数据表示为天线波束与观察场景的散射系数的卷积模型;S3. Expressing the pulse-compressed echo data as a convolution model of the antenna beam and the scattering coefficient of the observed scene;
S4、根据S3得到的卷积模型建立最大后验目标函数,并推导最大后验解;S4. Establishing a maximum a posteriori objective function according to the convolution model obtained in S3, and deriving a maximum a posteriori solution;
S5、通过自适应迭代的方法精确还原出原始目标分布,包括以下子步骤:S5. Accurately restore the original target distribution through an adaptive iterative method, including the following sub-steps:
S51、计算迭代初始值:利用TIKHONOV正则化方法和最大似然估计方法获得目标函数的解和瑞利分布统计参数这两个参数的迭代初始值;S51. Calculating the iterative initial value: using the TIKHONOV regularization method and the maximum likelihood estimation method to obtain the iterative initial value of the two parameters of the solution of the objective function and the Rayleigh distribution statistical parameter;
S52、根据S4得到的最大后验解构建迭代表达式;S52. Construct an iterative expression according to the maximum a posteriori solution obtained in S4;
S53、将迭代初始值代入迭代表达式中,得到新的最大后验解;S53. Substituting the iteration initial value into the iteration expression to obtain a new maximum a posteriori solution;
S54、将S53得到的最大后验解带入瑞利分布的统计参数计算公式中,更新瑞利分布统计参数值;S54. Bring the maximum a posteriori solution obtained in S53 into the calculation formula of the statistical parameter of the Rayleigh distribution, and update the value of the statistical parameter of the Rayleigh distribution;
S55、将S53得到的最大后验解和S54得到的瑞利分布统计参数值代入迭代表达式中,重新获得新的最大后验解;S55. Substituting the maximum a posteriori solution obtained in S53 and the Rayleigh distribution statistical parameter value obtained in S54 into the iterative expression to obtain a new maximum a posteriori solution;
S56、重复步骤S54和S55,直到迭代表达式的结果与上一次迭代表达式的结果相比,满足迭代收敛条件时,记录该迭代表达式的结果为实波束扫描雷达角超分辨成像结果。S56. Steps S54 and S55 are repeated until the result of the iterative expression is compared with the result of the previous iterative expression and satisfies the iteration convergence condition, and the result of the iterative expression is recorded as the real beam scanning radar angle super-resolution imaging result.
进一步地,所述的步骤S1的具体实现方法为:雷达在高度H处以下视角对-ψ~ψ成像区域按顺时针顺序扫描;初始时刻,雷达天线与场景中心位置目标的初始斜距为r0,设场景中各目标点对应坐标为(xi,yi),各目标和雷达之间的方位角对应的为θi,各目标和雷达之间的斜距为ri;Further, the specific implementation method of the step S1 is as follows: the angle of view of the radar at the height H is below Scan the -ψ~ψ imaging area in clockwise order; at the initial moment, the initial slant distance between the radar antenna and the target at the center of the scene is r 0 , and the corresponding coordinates of each target point in the scene are ( xi , y i ), each target The azimuth angle between the target and the radar corresponds to θ i , and the slant distance between each target and the radar is r i ;
设发射信号为线性调频信号其中,rect(·)表示矩形信号,其定义为τ为距离向快时间变量,T为发射脉冲持续时间,c为光速,λ为波长,Kr为调频斜率;为了保证理论与实际验证情况相符,对接收回波进行离散处理;离散化后的回波解析表达式为:Let the transmitted signal be a chirp signal Among them, rect( ) represents a rectangular signal, which is defined as τ is the fast time variable in the distance direction, T is the duration of the transmitted pulse, c is the speed of light, λ is the wavelength, and K r is the frequency modulation slope; in order to ensure that the theory is consistent with the actual verification, the received echo is discretely processed; the discretized echo The wave analytical expression is:
其中,Ω为目标场景范围,θ为天线波束宽度,f(xi,yi)为点(xi,yi)处目标的散射函数;ω为天线扫描速度,Tβ是目标在3dB天线波束宽度的驻留时间。Among them, Ω is the range of the target scene, θ is the antenna beam width, f( xi ,y i ) is the scattering function of the target at point ( xi ,y i ); ω is the scanning speed of the antenna, T β is the Dwell time for beamwidth.
进一步地,所述的步骤S2的具体实现方法包括以下子步骤:Further, the specific implementation method of the step S2 includes the following sub-steps:
S21、构造距离向脉压参考信号:S21. Constructing a range-wise pulse pressure reference signal:
其中,表示距离向参考时间;in, Indicates the distance to the reference time;
S22、将sref与回波数据进行最大自相关运算,得到脉冲压缩后的二维信号为:S22. Combine s ref with echo data Carry out the maximum autocorrelation operation, and the two-dimensional signal after pulse compression is obtained as follows:
其中,B为发射信号带宽。Among them, B is the transmission signal bandwidth.
进一步地,所述的步骤S3的具体实现方法为:回波信号的卷积模型表示为:Further, the specific implementation method of the step S3 is: the convolution model of the echo signal is expressed as:
其中,s=[s(1,1),s(1,2),…,s(N,1),…,s(N,M)]T为NM×1维的向量,是将所有脉冲压缩后回波信号的测量值按距离单元顺序在方位向上重新排列的结果,上标T表示转置运算;Among them, s=[s(1, 1), s(1, 2), ..., s(N, 1), ..., s(N, M)] T is a vector of NM × 1 dimension, which is to combine all pulses The measured value of the compressed echo signal is rearranged in the azimuth direction according to the order of the distance unit, and the superscript T represents the transpose operation;
f=[f(1,1),f(1,2),…,f(N,1),…,f(N,M)]T为NM×1维的向量,是将成像区域内所有未知目标的幅度按距离单元顺序的在方位向上重新排列的结果;f=[f(1,1), f(1,2),..., f(N, 1),..., f(N, M)] T is a vector of NM×1 dimension, which is all The magnitude of the unknown target is rearranged in the azimuth direction according to the order of range cells;
n=[n(1,1),n(1,2),…,n(N,1),…,n(N,M)]T,为NM×1维的向量,表示杂波和干扰信号分量,服从统计独立的瑞利分布;n=[n(1,1), n(1,2),…,n(N,1),…,n(N,M)] T , which is a NM×1-dimensional vector, representing clutter and interference Signal component, subject to statistically independent Rayleigh distribution;
H为NM×NM维的矩阵,由卷积测量矩阵HM×N构成,其中,HM×N=[h1,h2,…,hM]。H is a matrix of NM×NM dimensions, which is composed of a convolution measurement matrix H M×N , where H M×N =[h 1 ,h 2 ,...,h M ].
进一步地,所述的步骤S4的具体实现方法为:在贝叶斯公式基础上,通过给定的噪声统计特性,并结合稀疏目标分布先验信息,推出最大后验概率解卷积超分辨方法,实现卷积反演,具体包括以下子步骤:Further, the specific implementation method of the step S4 is: on the basis of the Bayesian formula, through the given noise statistical characteristics, combined with the prior information of the sparse target distribution, the maximum a posteriori probability deconvolution super-resolution method is introduced , to realize convolution inversion, which specifically includes the following sub-steps:
S41、对于公式(3),利用贝叶斯公式,将回波数据的后验概率表示为:S41. For the formula (3), the posterior probability of the echo data is expressed as:
其中,p(·)表示概率密度函数;根据最大后验准则,将反卷积问题转化为求解最优解f使得其满足:Among them, p( ) represents the probability density function; according to the maximum a posteriori criterion, the deconvolution problem is transformed into solving the optimal solution f so that it satisfies:
其中,为目标函数的最大后验估计;p(f/s)、p(s/f)和p(f)分别代表回波数据的后验概率、似然概率和目标的先验概率;in, is the maximum a posteriori estimation of the objective function; p(f/s), p(s/f) and p(f) respectively represent the posterior probability, likelihood probability and prior probability of the target of the echo data;
S42、设实波束扫描雷达回波信号中每一采样点的杂波或干扰信号服从统计独立的瑞利分布,则似然概率表示为:S42. Assuming that the clutter or interference signal at each sampling point in the real beam scanning radar echo signal obeys a statistically independent Rayleigh distribution, then the likelihood probability is expressed as:
其中,i是各离散点目标,Among them, i is each discrete point target,
σ2是瑞利分布中的统计参数; σ2 is a statistical parameter in the Rayleigh distribution;
S43、选择稀疏特性作为正则化约束项,目标散射稀疏的概率密度为:S43. Select the sparseness feature as the regularization constraint item, and the probability density of target scattering is:
其中,0<q≤1;当q=1时,p(f)∝exp(-2||f||1)为拉普拉斯分布;当q→1时,目标的概率为 Among them, 0<q≤1; when q=1, p(f)∝exp(-2||f|| 1 ) is a Laplace distribution; when q→1, the target probability is
S44、根据(6)式和(7)式得到最大后验目标函数为:S44, obtain maximum a posteriori objective function according to (6) formula and (7) formula:
对(8)式取负自然对数,得到:Taking the negative natural logarithm of formula (8), we get:
求(9)式关于f的梯度运算,得到:Find the gradient operation of formula (9) with respect to f, and get:
其中,(·)T表示转置操作,P=diag{p1,…,pNM},pi=|fi|2-q;Among them, (·) T represents the transposition operation, P=diag{p 1 ,...,p NM }, p i =|f i | 2-q ;
S45、由于(10)式是非线性函数,因此,只能通过迭代的方法获得逼近原始场景的结果,令(10)式为零,得到关于f的最大后验解为:S45, because formula (10) is a non-linear function, therefore, can only obtain the result of approximating original scene by iterative method, make formula (10) be zero, obtain the maximum a posteriori solution about f as:
进一步地,所述的步骤S51具体实现包括以下步骤:Further, the specific implementation of step S51 includes the following steps:
S511、利用TIKHONOV正则化方法,计算出原始场景粗估计结果为:S511. Using the TIKHONOV regularization method, calculate the rough estimation result of the original scene as:
f=(HTH+βI)-1HTs (12)f=(H T H+βI) -1 H T s (12)
其中,β为正则化参数,I为NM×NM维单位对角矩阵;Among them, β is a regularization parameter, and I is an NM×NM dimensional unit diagonal matrix;
S512、利用最大似然估计方法估计瑞利分布统计参数,首先,针对一个NM维的服从独立瑞利分布的杂波向量g=[g1,…,gi](i=1,…,NM),对该向量的联合似然函数取对数处理后,得到:S512. Estimate the statistical parameters of the Rayleigh distribution using the maximum likelihood estimation method. First, for an NM-dimensional clutter vector g=[g 1 ,..., gi ] (i=1,...,NM ), after taking the logarithm of the joint likelihood function of this vector, we get:
求式(13)关于σ的导数,并令结果为零,得到:Calculate the derivative of formula (13) with respect to σ, and let the result be zero, we get:
因此,则σ2的最大似然估计值为:Therefore, the maximum likelihood estimate of σ2 is:
对于实波束扫描雷达成像,gi=si-(Hf)i,因此利用TIKHONOV正则化计算结果并结合(15)式计算出关于瑞利分布的统计参数为:For real-beam scanning radar imaging, g i =s i -(Hf) i , so the statistical parameters of the Rayleigh distribution are calculated by using TIKHONOV regularization calculation results combined with formula (15):
进一步地,所述的步骤S52构建的迭代表达式为:Further, the iterative expression constructed in step S52 is:
其中,迭代初始值为(12)式和将(12)式带入(16)式计算的结果,k+1和k是迭代的次数,Pk=diag{(p1)k,…,(pNM)k},(pi)k=|(fi)k|2-q。Among them, the initial value of the iteration is (12) formula and the result of bringing (12) formula into (16) formula, k+1 and k are the number of iterations, P k =diag{(p 1 ) k ,...,( p NM ) k }, (p i ) k =|(f i ) k | 2−q .
进一步地,所述的步骤S56中的收敛条件为:Further, the convergence condition in the step S56 is:
||fk+1-fk||2<ε (18)||f k+1 -f k || 2 <ε (18)
其中,fk+1、fk为相邻两次迭代结果,ε为预先设定的阈值。Wherein, f k+1 and f k are the results of two adjacent iterations, and ε is a preset threshold.
本发明的有益效果是:使用瑞利分布表征杂波特性,并利用稀疏约束反应目标分布特性,在反演目标分布的同时抑制了噪声对成像结果的影响,此外,在迭代处理中,利用自适应的方法提高瑞利分布统计参数的估计精度,使得角超分辨处理结果更加逼近实际目标分布,最终实现了实波束扫描雷达角超分辨成像。The beneficial effects of the present invention are: using Rayleigh distribution to characterize clutter characteristics, and using sparse constraints to reflect target distribution characteristics, suppressing the influence of noise on imaging results while inverting target distribution, in addition, in iterative processing, using The adaptive method improves the estimation accuracy of Rayleigh distribution statistical parameters, making the angle super-resolution processing results closer to the actual target distribution, and finally realizes the real-beam scanning radar angle super-resolution imaging.
附图说明Description of drawings
图1为本发明的成像方法流程图;Fig. 1 is the flow chart of imaging method of the present invention;
图2为本发明的具体实施例的实波束扫描雷达成像模式图;Fig. 2 is a real beam scanning radar imaging mode diagram of a specific embodiment of the present invention;
图3为本实施例的雷达天线方向图;Fig. 3 is the radar antenna pattern of the present embodiment;
图4为本实施例的仿真场景图;FIG. 4 is a simulation scene diagram of the present embodiment;
图5为本实施例的杂波场景下(SCR=25dB)回波剖面图;FIG. 5 is a profile diagram of an echo in a clutter scene (SCR=25dB) in this embodiment;
图6为本实施例处理后的最终的扫描雷达成像结果图。FIG. 6 is a diagram of the final scanning radar imaging result after processing in this embodiment.
具体实施方式detailed description
下面结合附图进一步说明本发明的技术方案,但本发明所保护的内容不局限于以下所述。The technical solution of the present invention will be further described below in conjunction with the accompanying drawings, but the content protected by the present invention is not limited to the following description.
如图1所示,一种基于稀疏约束的实波束扫描雷达角超分辨成像方法,包括以下步骤:As shown in Figure 1, a real-beam scanning radar angle super-resolution imaging method based on sparse constraints includes the following steps:
S1、回波建模,基于实波束扫描雷达与目标的几何关系建立扫描雷达的回波数据模型;其具体实现方法为:雷达在高度H处以下视角对-ψ~ψ成像区域按顺时针顺序扫描;初始时刻,雷达天线与场景中心位置目标的初始斜距为r0,设场景中各目标点对应坐标为(xi,yi),各目标和雷达之间的方位角对应的为θi,各目标和雷达之间的斜距为ri;S1. Echo modeling, based on the geometric relationship between the real beam scanning radar and the target, the echo data model of the scanning radar is established; the specific implementation method is: the radar is at a height H below the angle of view Scan the -ψ~ψ imaging area in clockwise order; at the initial moment, the initial slant distance between the radar antenna and the target at the center of the scene is r 0 , and the corresponding coordinates of each target point in the scene are ( xi , y i ), each target The azimuth angle between the target and the radar corresponds to θ i , and the slant distance between each target and the radar is r i ;
设发射信号为线性调频信号其中,rect(·)表示矩形信号,其定义为τ为距离向快时间变量,T为发射脉冲持续时间,c为光速,λ为波长,Kr为调频斜率;为了保证理论与实际验证情况相符,对接收回波进行离散处理;离散化后的回波解析表达式为:Let the transmitted signal be a chirp signal Among them, rect( ) represents a rectangular signal, which is defined as τ is the fast time variable in the distance direction, T is the duration of the transmitted pulse, c is the speed of light, λ is the wavelength, and K r is the frequency modulation slope; in order to ensure that the theory is consistent with the actual verification, the received echo is discretely processed; the discretized echo The wave analytical expression is:
其中,Ω为目标场景范围,θ为天线波束宽度,f(xi,yi)为点(xi,yi)处目标的散射函数;ω为天线扫描速度,Tβ是目标在3dB天线波束宽度的驻留时间。本实施例采用前视扫描雷达成像运动几何模式,如图2所示,扫描雷达成像参数如表一所示。Among them, Ω is the range of the target scene, θ is the antenna beam width, f( xi ,y i ) is the scattering function of the target at point ( xi ,y i ); ω is the scanning speed of the antenna, T β is the Dwell time for beamwidth. This embodiment adopts the forward-looking scanning radar imaging motion geometry mode, as shown in FIG. 2 , and the scanning radar imaging parameters are shown in Table 1.
表一扫描雷达系统参数Table 1 Scanning radar system parameters
S2、对回波数据进行距离向脉冲压缩,实现距离向的高分辨率;其具体实现方法包括以下子步骤:S2. Perform range-wise pulse compression on the echo data to achieve high resolution in the range direction; the specific implementation method includes the following sub-steps:
S21、构造距离向脉压参考信号:S21. Constructing a range-wise pulse pressure reference signal:
其中,表示距离向参考时间;in, Indicates the distance to the reference time;
S22、将sref与回波数据进行最大自相关运算,得到脉冲压缩后的二维信号为:S22. Combine s ref with echo data Carry out the maximum autocorrelation operation, and the two-dimensional signal after pulse compression is obtained as follows:
其中,B为发射信号带宽。Among them, B is the transmission signal bandwidth.
S3、将脉冲压缩后的回波数据表示为天线波束与观察场景的散射系数的卷积模型;其具体实现方法为:回波信号的卷积模型表示为:S3. Expressing the pulse-compressed echo data as a convolution model of the antenna beam and the scattering coefficient of the observed scene; the specific implementation method is: the convolution model of the echo signal is expressed as:
其中,s=[s(1,1),s(1,2),…,s(N,1),…,s(N,M)]T为NM×1维的向量,是将所有脉冲压缩后回波信号的测量值按距离单元顺序在方位向上重新排列的结果,上标T表示转置运算;Among them, s=[s(1, 1), s(1, 2), ..., s(N, 1), ..., s(N, M)] T is a vector of NM × 1 dimension, which is to combine all pulses The measured value of the compressed echo signal is rearranged in the azimuth direction according to the order of the distance unit, and the superscript T represents the transpose operation;
f=[f(1,1),f(1,2),…,f(N,1),…,f(N,M)]T为NM×1维的向量,是将成像区域内所有未知目标的幅度按距离单元顺序的在方位向上重新排列的结果;f=[f(1,1), f(1,2),..., f(N, 1),..., f(N, M)] T is a vector of NM×1 dimension, which is all The magnitude of the unknown target is rearranged in the azimuth direction according to the order of range cells;
n=[n(1,1),n(1,2),…,n(N,1),…,n(N,M)]T,为NM×1维的向量,表示杂波和干扰信号分量,服从统计独立的瑞利分布;n=[n(1,1), n(1,2),…,n(N,1),…,n(N,M)] T , which is a NM×1-dimensional vector, representing clutter and interference Signal component, subject to statistically independent Rayleigh distribution;
H为NM×NM维的矩阵,由卷积测量矩阵HM×N构成,其中,HM×N=[h1,h2,…,hM]。H is a matrix of NM×NM dimensions, which is composed of a convolution measurement matrix H M×N , where H M×N =[h 1 ,h 2 ,...,h M ].
S4、根据S3得到的卷积模型建立最大后验目标函数,并推导最大后验解;其具体实现方法为:在贝叶斯公式基础上,通过给定的噪声统计特性,并结合稀疏目标分布先验信息,推出最大后验概率解卷积超分辨方法,实现卷积反演,具体包括以下子步骤:S4. Establish the maximum a posteriori objective function according to the convolution model obtained in S3, and derive the maximum a posteriori solution; the specific implementation method is: based on the Bayesian formula, through the given noise statistical characteristics, combined with the sparse target distribution Prior information, the maximum a posteriori probability deconvolution super-resolution method is introduced to realize convolution inversion, which specifically includes the following sub-steps:
S41、对于公式(3),利用贝叶斯公式,将回波数据的后验概率表示为:S41. For the formula (3), the posterior probability of the echo data is expressed as:
其中,p(·)表示概率密度函数;根据最大后验准则,将反卷积问题转化为求解最优解f使得其满足:Among them, p( ) represents the probability density function; according to the maximum a posteriori criterion, the deconvolution problem is transformed into solving the optimal solution f so that it satisfies:
其中,为目标函数的最大后验估计;p(f/s)、p(s/f)和p(f)分别代表回波数据的后验概率、似然概率和目标的先验概率;in, is the maximum a posteriori estimation of the objective function; p(f/s), p(s/f) and p(f) respectively represent the posterior probability, likelihood probability and prior probability of the target of the echo data;
S42、设实波束扫描雷达回波信号中每一采样点的杂波或干扰信号服从统计独立的瑞利分布,则似然概率表示为:S42. Assuming that the clutter or interference signal at each sampling point in the real beam scanning radar echo signal obeys a statistically independent Rayleigh distribution, then the likelihood probability is expressed as:
其中,i是各离散点目标,Among them, i is each discrete point target,
σ2是瑞利分布中的统计参数; σ2 is a statistical parameter in the Rayleigh distribution;
S43、选择稀疏特性作为正则化约束项,目标散射稀疏的概率密度为:S43. Select the sparseness feature as the regularization constraint item, and the probability density of target scattering is:
其中,0<q≤1;当q=1时,p(f)∝exp(-2||f||1)为拉普拉斯分布;当q→1时,目标的概率为 Among them, 0<q≤1; when q=1, p(f)∝exp(-2||f|| 1 ) is a Laplace distribution; when q→1, the target probability is
S44、根据(6)式和(7)式得到最大后验目标函数为:S44, obtain maximum a posteriori objective function according to (6) formula and (7) formula:
对(8)式取负自然对数,得到:Taking the negative natural logarithm of formula (8), we get:
求(9)式关于f的梯度运算,得到:Find the gradient operation of formula (9) with respect to f, and get:
其中,(·)T表示转置操作,P=diag{p1,…,pNM},pi=|fi|2-q;Among them, (·) T represents the transposition operation, P=diag{p 1 ,...,p NM }, p i =|f i | 2-q ;
S45、由于(10)式是非线性函数,因此,只能通过迭代的方法获得逼近原始场景的结果,令(10)式为零,得到关于f的最大后验解为:S45, because formula (10) is a non-linear function, therefore, can only obtain the result of approximating original scene by iterative method, make formula (10) be zero, obtain the maximum a posteriori solution about f as:
S5、通过自适应迭代的方法精确还原出原始目标分布,包括以下子步骤:S5. Accurately restore the original target distribution through an adaptive iterative method, including the following sub-steps:
S51、计算迭代初始值:利用TIKHONOV正则化方法和最大似然估计方法获得目标函数的解和瑞利分布统计参数这两个参数的迭代初始值;其具体实现包括以下步骤:S51. Calculating the iterative initial value: using the TIKHONOV regularization method and the maximum likelihood estimation method to obtain the iterative initial value of the two parameters of the solution of the objective function and the Rayleigh distribution statistical parameter; its specific implementation includes the following steps:
S511、利用TIKHONOV正则化方法,计算出原始场景粗估计结果为:S511. Using the TIKHONOV regularization method, calculate the rough estimation result of the original scene as:
f=(HTH+βI)-1HTs (12)f=(H T H+βI) -1 H T s (12)
其中,β为正则化参数,I为NM×NM维单位对角矩阵;Among them, β is a regularization parameter, and I is an NM×NM dimensional unit diagonal matrix;
S512、利用最大似然估计方法估计瑞利分布统计参数,首先,针对一个NM维的服从独立瑞利分布的杂波向量g=[g1,…,gi](i=1,…,NM),对该向量的联合似然函数取对数处理后,得到:S512. Estimate the statistical parameters of the Rayleigh distribution using the maximum likelihood estimation method. First, for an NM-dimensional clutter vector g=[g 1 ,..., gi ] (i=1,...,NM ), after taking the logarithm of the joint likelihood function of this vector, we get:
求式(13)关于σ的导数,并令结果为零,得到:Calculate the derivative of formula (13) with respect to σ, and let the result be zero, we get:
因此,则σ2的最大似然估计值为:Therefore, the maximum likelihood estimate of σ2 is:
对于实波束扫描雷达成像,gi=si-(Hf)i,因此利用TIKHONOV正则化计算结果并结合(15)式计算出关于瑞利分布的统计参数为:For real-beam scanning radar imaging, g i =s i -(Hf) i , so the statistical parameters of the Rayleigh distribution are calculated by using TIKHONOV regularization calculation results combined with formula (15):
S52、根据S4得到的最大后验解构建迭代表达式:S52. Construct an iterative expression according to the maximum a posteriori solution obtained in S4:
其中,迭代初始值为(12)式和将(12)式带入(16)式计算的结果,k+1和k是迭代的次数,Pk=diag{(p1)k,…,(pNM)k},(pi)k=|(fi)k|2-q。Among them, the initial value of the iteration is (12) formula and the result of bringing (12) formula into (16) formula, k+1 and k are the number of iterations, P k =diag{(p 1 ) k ,...,( p NM ) k }, (p i ) k =|(f i ) k | 2−q .
S53、将迭代初始值代入迭代表达式中,得到新的最大后验解;S53. Substituting the iteration initial value into the iteration expression to obtain a new maximum a posteriori solution;
S54、将S53得到的最大后验解带入瑞利分布的统计参数计算公式中,更新瑞利分布统计参数值;S54. Bring the maximum a posteriori solution obtained in S53 into the statistical parameter calculation formula of the Rayleigh distribution, and update the statistical parameter value of the Rayleigh distribution;
S55、将S53得到的最大后验解和S54得到的瑞利分布统计参数值代入迭代表达式中,重新获得新的最大后验解;S55. Substituting the maximum a posteriori solution obtained in S53 and the Rayleigh distribution statistical parameter value obtained in S54 into the iterative expression to obtain a new maximum a posteriori solution;
S56、重复步骤S54和S55,直到迭代表达式的结果与上一次迭代表达式的结果相比,满足迭代收敛条件时,记录该迭代表达式的结果为实波束扫描雷达角超分辨成像结果,所述的收敛条件为:S56, repeating steps S54 and S55, until the result of the iterative expression is compared with the result of the previous iterative expression, and when the iterative convergence condition is satisfied, the result of the iterative expression is recorded as the real beam scanning radar angle super-resolution imaging result, so The stated convergence condition is:
||fk+1-fk||2<ε (18)||f k+1 -f k || 2 <ε (18)
其中,fk+1、fk为相邻两次迭代结果,ε为预先设定的阈值。Wherein, f k+1 and f k are the results of two adjacent iterations, and ε is a preset threshold.
本实施例采用如图3所示的雷达天线方向图,图4为本实施例的仿真场景图,图5为本实施例的杂波场景下(SCR=25dB)回波剖面图,图6为本实施例处理后的最终的扫描雷达成像结果图。从图中可以看出,通过本发明提供的方法,在瑞利杂波背景下,目标的角度信息得到了很好的恢复。This embodiment adopts the radar antenna pattern shown in Figure 3, Figure 4 is the simulation scene diagram of this embodiment, Figure 5 is the echo profile (SCR=25dB) in the clutter scene of this embodiment, and Figure 6 is The final image of the scanning radar imaging result after processing in this embodiment. It can be seen from the figure that through the method provided by the present invention, the angle information of the target is well restored under the background of Rayleigh clutter.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those skilled in the art will appreciate that the embodiments described here are to help readers understand the principles of the present invention, and it should be understood that the protection scope of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations based on the technical revelations disclosed in the present invention without departing from the essence of the present invention, and these modifications and combinations are still within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510335256.2A CN104950305B (en) | 2015-06-17 | 2015-06-17 | A kind of real beam scanning radar angle super-resolution imaging method based on sparse constraint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510335256.2A CN104950305B (en) | 2015-06-17 | 2015-06-17 | A kind of real beam scanning radar angle super-resolution imaging method based on sparse constraint |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104950305A CN104950305A (en) | 2015-09-30 |
CN104950305B true CN104950305B (en) | 2017-07-14 |
Family
ID=54165102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510335256.2A Expired - Fee Related CN104950305B (en) | 2015-06-17 | 2015-06-17 | A kind of real beam scanning radar angle super-resolution imaging method based on sparse constraint |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104950305B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105137424B (en) * | 2015-07-17 | 2018-10-23 | 电子科技大学 | Real beam scanning radar angle ultra-resolution method under a kind of clutter background |
CN105891826B (en) * | 2016-03-31 | 2018-07-27 | 电子科技大学 | The quick maximum a posteriori imaging method of airborne radar |
CN106168665B (en) * | 2016-07-18 | 2018-03-27 | 电子科技大学 | A kind of adaptive angle ultra-resolution method of scanning radar based on regularization |
CN106371095A (en) * | 2016-09-30 | 2017-02-01 | 上海机电工程研究所 | Pulse compression technique-based range imaging method and range imaging system |
CN107121665B (en) * | 2017-05-03 | 2019-11-05 | 电子科技大学 | A kind of passive location method of the near field coherent source based on Sparse Array |
CN107402380A (en) * | 2017-05-12 | 2017-11-28 | 电子科技大学 | A kind of quick self-adapted alternative manner for realizing Doppler beam sharpened imaging |
CN107193003B (en) * | 2017-07-20 | 2020-07-07 | 电子科技大学 | Sparse singular value decomposition scanning radar foresight imaging method |
CN107271993B (en) * | 2017-07-21 | 2020-07-07 | 电子科技大学 | Scanning radar angle super-resolution imaging method based on maximum posterior |
CN110850432A (en) * | 2018-07-25 | 2020-02-28 | 中国人民解放军国防科技大学 | Method for resolving reflectivity distribution of laser reflection tomography target |
CN109507744B (en) * | 2018-11-30 | 2020-06-09 | 北京遥测技术研究所 | Sparse array arrangement method for sparse circumferential scanning system |
CN109696671B (en) * | 2018-12-29 | 2020-08-18 | 南京汇君半导体科技有限公司 | High-resolution through-wall radar imaging method based on group structure and correlation learning |
CN110109097B (en) * | 2019-06-06 | 2021-04-13 | 电子科技大学 | A scanning radar forward-looking imaging azimuth super-resolution method |
WO2023193424A1 (en) * | 2022-04-07 | 2023-10-12 | 哈尔滨工业大学(深圳) | Global navigation method for mobile robot in man-machine coexistence environment following pedestrian norm |
CN114966640B (en) * | 2022-07-29 | 2022-12-09 | 宁波博海深衡科技有限公司 | Orientation estimation method and system based on array background noise statistics covariance estimation |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007225563A (en) * | 2006-02-27 | 2007-09-06 | Univ Of Tokyo | High-resolution detection apparatus and method |
CN103487803A (en) * | 2013-09-25 | 2014-01-01 | 电子科技大学 | Airborne scanning radar imaging method in iteration compression mode |
CN103487802A (en) * | 2013-09-18 | 2014-01-01 | 电子科技大学 | Scanning radar angle super-resolution imaging method |
CN104536000A (en) * | 2015-01-06 | 2015-04-22 | 电子科技大学 | Real beam scanning radar corner super-resolution method |
-
2015
- 2015-06-17 CN CN201510335256.2A patent/CN104950305B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007225563A (en) * | 2006-02-27 | 2007-09-06 | Univ Of Tokyo | High-resolution detection apparatus and method |
CN103487802A (en) * | 2013-09-18 | 2014-01-01 | 电子科技大学 | Scanning radar angle super-resolution imaging method |
CN103487803A (en) * | 2013-09-25 | 2014-01-01 | 电子科技大学 | Airborne scanning radar imaging method in iteration compression mode |
CN104536000A (en) * | 2015-01-06 | 2015-04-22 | 电子科技大学 | Real beam scanning radar corner super-resolution method |
Non-Patent Citations (2)
Title |
---|
Improving angular resolution based on maximum a posteriori criterion for scanning radar;Jinchen Guan et al.;《Radar Conference (RADAR)》;20120511;第0451-0454页 * |
机载雷达前视探测方位超分辨算法;管金称;《信号处理》;20141231;第30卷(第12期);第1450-1456页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104950305A (en) | 2015-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104950305B (en) | A kind of real beam scanning radar angle super-resolution imaging method based on sparse constraint | |
CN104950306B (en) | Method for realizing angular super-resolution imaging of forward-looking sea surface targets in sea clutter background | |
CN103713288B (en) | Sparse Bayesian reconstruct linear array SAR formation method is minimized based on iteration | |
CN103149561B (en) | Microwave imaging method based on scenario block sparsity | |
CN107271993B (en) | Scanning radar angle super-resolution imaging method based on maximum posterior | |
CN103698763B (en) | Sparse Imaging Method for Linear SAR Based on Hard Threshold Orthogonal Matching Pursuit | |
CN104111458B (en) | Compressed sensing synthetic aperture radar image-forming method based on dual sparse constraint | |
CN102662171B (en) | Synthetic aperture radar (SAR) tomography three-dimensional imaging method | |
CN107193003A (en) | A kind of sparse singular value decomposition scanning radar forword-looking imaging method | |
CN105137424B (en) | Real beam scanning radar angle ultra-resolution method under a kind of clutter background | |
CN102645651B (en) | SAR (synthetic aperture radar) tomography super-resolution imaging method | |
CN105699969B (en) | MAP estimation angle super-resolution imaging method based on Generalized Gaussian constraint | |
CN107621635B (en) | A forward-looking sea surface target angle super-resolution method | |
CN103439693A (en) | Linear array SAR sparse reconstitution imaging and phase error correction method | |
CN106405548A (en) | Inverse synthetic aperture radar imaging method based on multi-task Bayesian compression perception | |
CN104977582A (en) | Deconvolution method for realizing scanning radar azimuth super-resolution imaging | |
CN104536000A (en) | Real beam scanning radar corner super-resolution method | |
CN106680817A (en) | Method of realizing high-resolution imaging of forwarding looking radar | |
CN107894591A (en) | Through-wall radar diffraction tomography method based on compressed sensing | |
CN106291543A (en) | A kind of motion platform scanning radar super-resolution imaging method | |
CN105137430A (en) | Forward-looking array SAR echo sparse acquisition and three-dimensional imaging method | |
CN105137425A (en) | Scanning radar forward-looking angular superresolution method based on convolution inversion principle | |
CN113064165A (en) | Scanning radar pitch-azimuth two-dimensional super-resolution method | |
CN105353355A (en) | Multi-static radar multi-target positioning method based on sparse reconstruction and projection imaging | |
CN105699950A (en) | Radar clutter suppression method based on self-adaptive iteration forward and background smooth conjugate gradient |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170714 |