CN104940126A - 控制释放型耳结构调节和先天性免疫系统调节组合物、装置以及治疗耳部病症的方法 - Google Patents

控制释放型耳结构调节和先天性免疫系统调节组合物、装置以及治疗耳部病症的方法 Download PDF

Info

Publication number
CN104940126A
CN104940126A CN201510260647.2A CN201510260647A CN104940126A CN 104940126 A CN104940126 A CN 104940126A CN 201510260647 A CN201510260647 A CN 201510260647A CN 104940126 A CN104940126 A CN 104940126A
Authority
CN
China
Prior art keywords
ear
compositions
certain embodiments
regulator
cases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510260647.2A
Other languages
English (en)
Inventor
杰伊·利希特尔
贝内迪克特·福尔拉特
安德鲁·M·特拉梅尔
塞尔希奥·G·杜龙
法布里斯·皮乌
路易斯·A·德拉玛丽
叶强
卡尔·勒贝尔
迈克尔·克里斯托弗·斯凯夫
杰弗里·P·哈里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Otonomy Inc
Original Assignee
University of California
Otonomy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California, Otonomy Inc filed Critical University of California
Priority claimed from CN200980128665.8A external-priority patent/CN102105133B/zh
Publication of CN104940126A publication Critical patent/CN104940126A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本申请涉及控制释放型耳结构调节和先天性免疫系统调节组合物、装置以及治疗耳部病症的方法。本文揭示用耳结构调节组合物治疗耳部病症的组合物和方法,其中通过将所述组合物和组合物直接施用于目标耳结构上或通过灌注至目标耳结构中来局部投予患有耳部病症的个体。

Description

控制释放型耳结构调节和先天性免疫系统调节组合物、装置以及治疗耳部病症的方法
本申请是申请日为2009年7月20日,申请号为200980128665.8、发明名称为“控制释放型耳结构调节和先天性免疫系统调节组合物以及治疗耳部病症的方法”的发明专利申请的分案申请。
交叉引用
本申请案主张2008年7月21日申请的美国临时申请案第61/082,450号;2008年8月22日申请的美国临时申请案第61/091,205号;2008年9月4日申请的美国临时申请案第61/094,384号;2008年9月29日申请的美国临时申请案第61/101,112号;2008年10月27日申请的美国临时申请案第61/108,845号;2008年12月22日申请的美国临时申请案第61/140,033号;2009年3月2日申请的美国临时申请案第61/156,771号;和2008年8月22日申请的美国临时申请案第61/091,200号的权利;所有这些临时申请案都以全文引用的方式并入本文中。
技术领域
本申请涉及用耳结构调节组合物治疗耳部病症的组合物、装置和方法,其中通过将所述组合物和组合物直接施用于目标耳结构上或通过灌注至目标耳结构中来局部投予患有耳部病症的个体。
背景技术
脊椎动物都有一对耳朵,其对称地位于头部的对侧。耳朵用作检测声音的感觉器官与维持平衡和身体姿势的器官。耳朵一般分成三个部分:外耳、中耳和内耳。
发明内容
在某些实施例中,本文描述用于耳结构调节剂或先天性免疫系统调节剂控制释放至耳朵的至少一个结构或区域中的组合物、组合物、制造方法、治疗方法、用途、试剂盒和传递装置。在某些实施例中,本文揭示用于将耳结构调节剂或先天性免疫系统调节剂传递至耳朵中的控制释放型组合物。在一些实施例中,耳朵的目标部分为中耳。在一些实施例中,耳朵的目标部分为内耳。在其它实施例中,耳朵的目标部分为中耳与内耳。在一些实施例中,控制释放型组合物另外包含用于将耳结构调节剂或先天性免疫系统调节剂传递至目标耳结构中的迅速或立即释放组分。所有组合物都包含耳可接受的赋形剂。
在某些实施例中,本文也揭示用于治疗耳部病症的组合物和装置,这些组合物和装置包含耳结构调节剂或先天性免疫系统调节剂。在某些实施例中,本文另外揭示治疗耳部病症的方法,这些方法通过向有需要的个体投予包含耳结构调节剂或先天性免疫系统调节剂的控制释放型组合物来进行。在一些实施例中,耳部病症为外耳炎、中耳炎、乳突炎、感觉神经性听力损失、耳毒性、膜迷路积水、迷路炎、梅尼埃尔氏病(Meniere'sdisease)、梅尼埃尔氏综合症(Meniere's syndrome)、微血管压迫综合症、前庭神经元炎、听觉损伤、老年性耳聋、胆脂瘤、耳硬化症、沙伊贝综合症(Scheibe syndrome)、蒙蒂尼-米歇尔综合症(Mondini-Michelle syndrome)、瓦尔登布尔氏综合症(Waardenburg'ssyndrome)、迈克尔综合症(Michel syndrome)、亚历山大耳畸形(Alexander's eardeformity)、距离过远、耶韦尔-兰赫-尼尔森综合症(Jervell-Lange Nielson syndrome)、雷氏综合症(Refsum's syndrome)、尤希尔氏综合症(Usher's syndrome)或其组合。在一些实施例中,耳部病症为外耳炎、中耳炎、乳突炎、AIED、拉姆齐·亨特氏病(RamsayHunt's)、再灌注损伤、骨化性迷路炎或其组合。
本文所述的耳用组合物和治疗方法具有大量优点,克服了现有技术中所述的组合物和治疗方法的先前未认识到的限制。
无菌
内耳环境为孤立的环境。内淋巴和外淋巴为静止的流体,且不与循环系统接触。血-迷路-屏障(BLB)包括血-内淋巴屏障和血-外淋巴屏障,由迷路空间(即前庭和耳蜗空间)中的特化上皮细胞之间紧密接合组成。BLB的存在限制活性剂(例如耳结构调节剂或先天性免疫系统调节剂)传递至内耳的孤立微环境。耳毛细胞浸泡在内淋巴或外淋巴流体中,且钾离子在耳蜗中的再循环对于毛细胞功能来说是重要的。当内耳受感染时,白血球和/或免疫球蛋白(例如对微生物感染应答)流入内淋巴和/或外淋巴中,且白血球和/或免疫球蛋白的流入搅乱内耳流体的离子组成。在一些情况下,内耳流体的离子组成的变化会引起听力损失、失去平衡和/或听觉结构骨化。在一些情况下,痕量的热原和/或微生物会引发内耳的孤立微环境中感染和相关生理变化。
由于内耳易受感染,耳用组合物需要达到迄今在现有技术中尚未认识到的无菌程度。本文提供在严格无菌要求下灭菌且适于投予中耳和/或内耳的耳用组合物。在一些实施例中,本文所述的耳相容组合物实质上不含热原和/或微生物。
与内耳环境相容
本文描述具有与外淋巴和/或内淋巴相容且不引起耳蜗电位任何变化的离子平衡的耳用组合物。在特定实施例中,例如通过使用适当的盐浓度(例如钠盐浓度)或使用使组合物与内淋巴相容和/或与外淋巴相容(即与内淋巴和/或外淋巴等张)的张力剂,调整本发明组合物的容量渗透摩尔浓度/重量渗透摩尔浓度。在一些情况下,本文所述的与内淋巴相容和/或与外淋巴相容的组合物在投予后引起内耳环境最低程度地紊乱,且引起个体(例如人类)最低程度地不适(例如眩晕)。另外,组合物包含生物可降解和/或可分散和/或另外对内耳环境无毒的聚合物。在一些实施例中,本文所述的组合物不含防腐剂且引起耳结构最低程度地紊乱(例如pH值或容量渗透摩尔浓度的变化、刺激)。在一些实施例中,本文所述的组合物包含对耳结构无刺激性和/或无毒的抗氧化剂。
给药频率
当前针对耳用组合物的护理标准需要经若干天(例如长达两周)多次投予滴剂或注射(例如鼓室内注射),包括每天接受多次注射的时程。在一些实施例中,本文所述的耳用组合物为控制释放型组合物且以相较于当前护理标准减少的给药频率投予。在一些情况下,当通过鼓室内注射来投予耳用组合物时,减少的投药频率可减轻进行中耳和/或内耳疾病、病症或病状治疗的个体中由多次鼓室内注射所引起的不适。在一些情况下,鼓室内注射的投予频率减少可降低鼓膜永久性损伤(例如穿孔)的风险。本文所述的组合物提供活性剂以恒定、持续、延长、延迟或脉冲式速率释放至内耳环境中,由此避免耳部病症治疗中药物暴露的任何可变性。
治疗指数
本文所述的耳用组合物投予耳道或耳前庭中。在一些实施例中,通过中耳(例如圆窗膜、卵圆窗/镫骨足板、环韧带和通过听囊/颞骨)进入前庭和耳蜗器官。本文所述的组合物经耳投予可避免与活性剂全身性投药相关联的毒性(例如肝脏毒性、心脏毒性、胃肠道副作用、肾毒性)。在一些情况下,局部投予耳中可使活性剂到达目标(例如内耳)而未全身性累积活性剂。在一些情况下,对于另外具有剂量限制性全身性毒性的活性剂,局部投予耳中可提供较高的治疗指数。
防止排入耳咽管中
在一些情况下,液体组合物的缺点在于其倾向于滴入耳咽管中且使组合物从内耳中迅速清除。在某些实施例中,本文提供包含在体温下胶凝且保持与目标耳表面(例如圆窗)长时间接触的聚合物的耳用组合物。在一些实施例中,组合物另外包含使组合物粘着于耳粘膜表面的粘膜粘着剂。在一些情况下,本文所述的耳用组合物避免因活性剂通过耳咽管排出或泄漏而减弱治疗益处。
描述某些实施例
在某些实施例中,本文描述用于治疗耳部病症的控制释放型组合物和装置,其包含治疗有效量的耳结构调节剂或先天性免疫系统调节剂、控制释放型耳可接受的赋形剂和耳可接受的媒剂。一方面,控制释放型耳可接受的赋形剂选自耳可接受的聚合物、耳可接受的粘度增强剂、耳可接受的凝胶、耳可接受的涂料、耳可接受的发泡体、耳可接受的微球体或微粒、耳可接受的水凝胶、耳可接受的原位形成的海绵状材料、耳可接受的光化辐射可固化凝胶、耳可接受的脂质体、耳可接受的纳米囊或纳米球、耳可接受的热致可逆凝胶或其组合。在其它实施例中,耳可接受的粘度增强剂为纤维素、纤维素醚、褐藻酸盐、聚乙烯吡咯烷酮、胶、纤维素聚合物或其组合。在另一实施例中,耳可接受的粘度增强剂的量足以提供约1000至约1,000,000厘泊(centipoise)之间的粘度。另一方面,耳可接受的粘度增强剂的量足以提供约50,000至约1,000,000厘泊之间的粘度。
在一些实施例中,本文所揭示的组合物经调配,达到确保其与目标耳结构相容的pH值。在一些实施例中,本文所揭示的组合物经调配,达到确保维持目标耳结构稳定状态的实际重量渗透摩尔浓度和/或容量渗透摩尔浓度。外淋巴适合的容量渗透摩尔浓度/重量渗透摩尔浓度为在投予本文所述的医药组合物期间维持目标耳结构稳定状态的实际容量渗透摩尔浓度/重量渗透摩尔浓度。
举例来说,外淋巴的容量渗透摩尔浓度在约270-300mOsm/L之间,且本文所述的组合物任选经调配,达到约150至约1000mOsm/L的实际容量渗透摩尔浓度。在某些实施例中,本文所述的组合物在目标作用部位(例如内耳和/或外淋巴和/或内淋巴)达到约150至约500mOsm/L内的实际容量渗透摩尔浓度。在某些实施例中,本文所述的组合物在目标作用部位(例如内耳和/或外淋巴和/或内淋巴)达到约200至约400mOsm/L内的实际容量渗透摩尔浓度。在某些实施例中,本文所述的组合物在目标作用部位(例如内耳和/或外淋巴和/或内淋巴)达到约250至约320mOsm/L内的实际容量渗透摩尔浓度。在某些实施例中,本文所述的组合物在目标作用部位(例如内耳和/或外淋巴和/或内淋巴)达到约150至约500mOsm/L、约200至约400mOsm/L或约250至约320mOsm/L内的外淋巴适合的容量渗透摩尔浓度。在某些实施例中,本文所述的组合物在目标作用部位(例如内耳和/或外淋巴和/或内淋巴)达到约150至约500mOsm/kg、约200至约400mOsm/kg或约250至约320mOsm/kg内的外淋巴适合的重量渗透摩尔浓度。类似地,外淋巴的pH值为约7.2-7.4,且本发明组合物的pH值经调配(例如借助于缓冲剂),达到约5.5至约9.0、约6.0至约8.0或约7.0至约7.6的外淋巴适合的pH值。在某些实施例中,组合物的pH值在约6.0至约7.6内。在一些情况下,内淋巴的pH值为约7.2-7.9,且本发明组合物的pH值经调配(例如借助于缓冲剂),在约5.5至约9.0内、约6.5至约8.0内或约7.0至约7.6内。
在一些方面,控制释放型耳可接受的赋形剂为生物可降解的和/或经历生物消除(例如通过尿、粪便或其它消除途径降解和/或消除)。另一方面,控制释放型组合物另外包含耳可接受的粘膜粘着剂、耳可接受的穿透增强剂或耳可接受的生物粘着剂。
一方面,控制释放型组合物使用药物传递装置传递,此装置为针和注射器、泵、微注射装置和原位形成的海绵状材料或其组合。在一些实施例中,控制释放型组合物的耳结构调节剂或先天性免疫系统调节剂具有限制性或非全身性释放,当全身投予时具有毒性,具有不良pK特征,或其组合。
在一些实施例中,耳结构调节剂为耳结构增强剂(例如耳结构的分子组分)。在一些实施例中,耳结构增强剂为肌动蛋白、聚集蛋白聚糖、软骨素、胶原蛋白、核心蛋白聚糖、硫酸皮肤素、弹性蛋白、纤维蛋白原、纤维结合蛋白、丝束蛋白、胶质纤维酸性蛋白、硫酸乙酰肝素、透明质酸、角蛋白、层粘连蛋白、巢蛋白(nestin)、NF-L、NF-M、NF-H、NF66、外周蛋白、α-微管蛋白、β-微管蛋白、绒毛蛋白、波形蛋白、旋转蛋白(whirlin)或其组合。
在一些实施例中,耳结构调节剂为耳结构降解剂。在一些实施例中,耳结构降解剂降解骨。在一些实施例中,耳结构降解剂降解软骨。在一些实施例中,耳结构降解剂降解神经元。在一些实施例中,耳结构降解剂降解膜(例如鼓膜)。在一些实施例中,耳结构降解剂降解内淋巴。在一些实施例中,耳结构降解剂降解外淋巴。在一些实施例中,耳结构降解剂降解脓清(即脓液)。
在一些实施例中,耳结构调节剂为耳结构降解剂。在一些实施例中,耳结构降解剂为醇、烷醇、香精油、脂肪酸、二醇、月桂氮酮(laurocapram)、吡咯烷酮、亚砜、表面活性剂、酶或其组合。在一些实施例中,酶为蛋白酶、糖苷酶、链丝菌蛋白酶、酪蛋白酶、软骨素酶、胶原酶、皮肤素酶(dermatanase)、弹性蛋白酶、明胶酶、肝素酶、透明质酸酶、角蛋白酶、脂肪酶、金属蛋白酶(例如基质金属蛋白酶)、葡激酶、链激酶、胰凝乳蛋白酶、内肽酶V8、胰蛋白酶、嗜热菌蛋白酶、胃蛋白酶、血纤维蛋白溶酶或其组合。在一些实施例中,耳结构调节剂为骨重塑调节剂。在一些实施例中,骨重塑调节剂为成骨细胞或破骨细胞调节剂,包括(但不限于)激素;双膦酸盐(bisphosphonate);基质金属蛋白酶抑制剂;腺苷酸环化酶(AC)调节剂;蛋白酶抑制剂;抗酒石酸酸性磷酸酶(TRACP)调节剂;雌激素受体调节剂;PPARγ调节剂;HMG-CoA还原酶抑制剂;斯他汀(statin);碳酸酐酶抑制剂;核κB配体受体活化剂(RANKL)的调节剂;COX-2抑制剂;蛋白质异戊烯化(protein prenylation)抑制剂;5-脂肪氧合酶抑制剂;TNF抑制剂;白细胞三烯抑制剂;细胞因子调节剂;TSG-6抑制剂、TGFβ调节剂;一氧化氮合酶抑制剂;乙酰半胱氨酸;芳香化酶调节剂;和如WO/2008/027880中揭示的基于锶的化合物,此专利以引用的方式并入本文中。
在一些实施例中,耳结构调节剂为耳结构增强剂。在一些实施例中,耳结构增强剂重建或补充骨。在一些实施例中,耳结构增强剂重建或补充软骨。在一些实施例中,耳结构增强剂重建或补充膜(例如鼓膜)。在一些实施例中,耳结构增强剂重建或补充内淋巴。在一些实施例中,耳结构增强剂重建或补充外淋巴。
在一些实施例中,耳结构调节剂为耳结构增强剂。在一些实施例中,耳结构增强剂为肌动蛋白、聚集蛋白聚糖、软骨素、胶原蛋白、核心蛋白聚糖、硫酸皮肤素、弹性蛋白、纤维蛋白原、纤维结合蛋白、丝束蛋白、胶质纤维酸性蛋白、硫酸乙酰肝素、透明质酸、角蛋白、层粘连蛋白、巢蛋白、NF-L、NF-M、NF-H、NF66、外周蛋白、α-微管蛋白、β-微管蛋白、绒毛蛋白、波形蛋白、旋转蛋白或其组合。
在一些实施例中,先天性免疫系统调节剂为补体级联调节剂和/或过敏毒素调节剂。在一些实施例中,先天性免疫系统调节剂为补体级联拮抗剂和/或过敏毒素拮抗剂。在一些实施例中,先天性免疫系统调节剂为补体级联激动剂和/或过敏毒素激动剂。
在一些实施例中,先天性免疫系统调节剂为CHIPS、PMX53、PMX205、PMX273、PMX201、PMX218、C089、L-156,602、C5aRAM、C5aRAD、PR226-MAP、PL37-MAP、SB-290157、GR-2II、AGIIa、AGIIb-1、AR-2IIa、AR-2IIb、AR-2IIc、AR-2IId、CVF、CVF、人化CVF、rC3、HC3-1496、HC3-1496-2、HC3-1496-3、HC3-1496-4、HC3-1496/1617、HC3-1496-8、HC3-1496-9、HC3-1496-10、HC3-1496-11、HC3-1496-12、HC3-1496-13、HC3-1496-14、HC3-1496-15、HC3-1496-16、HC3-1496-17、补体成分1抑制剂、硫酸葡聚糖、补体成分1q受体、C1q抑制剂、核心蛋白聚糖、CSPG、CBP2、补体受体1、sCR1、APT070、TP10、TP20、sCR1[desLHR-A]、sCR1-SLex、Crry、Crry-Ig、岩藻聚糖、BS8、补体结合抑制素、Ecb、Efb、补体抑制素、迷迭香酸、CRIT、CRIT-H17、甘草次酸、抗补体成分5(C5)鼠类单克隆抗体、培克珠单抗(pexelizumab)、抗C5鼠类单链抗体、K76、TKIXc、K76COOH、SCIN、SCIN-B、SCIN-C、CD55、sCD55、CD59、sCD59、CD59/CD55融合蛋白、CD55/MCP融合蛋白、BCX-1470、FUT-175、因子I、MCP、sMCP、肝素、LU 51198、凝聚素(clusterin)、玻连蛋白、抗备解素抗体、SB 290157(N2-((2,2-二苯基乙氧基)乙酰基)精氨酸)、抗MIF抗体、二甲双胍(metformin)、ISO-1、2-[(4-羟基苯亚甲基)氨基]-3(1H-吲哚-3-基)丙酸甲酯、NAPQI、AVP-28225或其组合。
在某些实施例中,本文也揭示一种治疗耳部病症的方法,其包含至少每3、4、5、6、7、8、9、10、11、12、13、14或15天投予本文所揭示的组合物一次;至少一周一次、每两周一次、每三周一次、每四周一次、每五周一次或每六周一次;或至少一月一次、每两个月一次、每三个月一次、每四个月一次、每五个月一次、每六个月一次、每七个月一次、每八个月一次、每九个月一次、每十个月一次、每十一个月一次或每十二个月一次。在特定实施例中,本文所述的控制释放型组合物在后来的控制释放型组合物给药之间,提供耳结构调节剂或先天性免疫系统调节剂持续地给予内耳中。也就是说,仅举个例子,如果每10天通过鼓室内注射向圆窗膜投予新剂量的耳结构调节剂或先天性免疫系统调节剂控制释放型组合物,那么控制释放型组合物将在此10天时间期间向内耳(例如穿过圆窗膜)提供有效剂量的耳结构调节剂或先天性免疫系统调节剂。
一方面,投予组合物,以便组合物接触蜗窗嵴、圆窗膜或鼓室。一方面,组合物通过鼓室内注射来投予。
本文提供用于治疗耳部疾病或病状的医药组合物或装置,其经调配以提供治疗有效量的耳结构调节剂,所述医药组合物或装置包含实质上较少的耳结构调节剂降解产物,医药组合物或装置另外包含两个或两个以上选自以下的特征:
(i)约0.1重量%至约10重量%之间的耳结构调节剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106P70E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;
(iii)足量无菌水,经缓冲以提供约5.5与约8.0之间的pH值;
(iv)多颗粒耳结构调节剂;
(v)胶凝温度在约19℃至约42℃之间;
(vi)每克组合物少于约50个菌落形成单位(cfu)的微生物剂;
(vii)每公斤个体体重少于约5个内毒素单位(EU);
(viii)耳结构调节剂的平均溶解时间为约30小时;和
(ix)表观粘度为约100,000cP至约500,000cP。
在一些实施例中,医药组合物包含至少三个上述特征。在一些实施例中,医药组合物包含至少四个上述特征。在一些实施例中,医药组合物包含至少五个上述特征。在一些实施例中,医药组合物包含至少六个上述特征。在一些实施例中,医药组合物包含至少七个上述特征。在一些实施例中,医药组合物包含所有上述特征。
在一些实施例中,本文所述的医药组合物或装置包含:
(i)约0.1重量%至约10重量%之间的耳结构调节剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;和
(iii)多颗粒耳结构调节剂。
在一些实施例中,本文所述的医药组合物或装置包含:
(i)约0.1重量%至约10重量%之间的耳结构调节剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;
(iii)多颗粒耳结构调节剂;和
(iv)胶凝温度在约19℃至约42℃之间。
本文提供用于治疗耳部疾病或病状的医药组合物或装置,其经调配以提供治疗有效量的耳结构分子组分,所述医药组合物或装置包含实质上较少的耳结构增强剂降解产物,医药组合物或装置另外包含两个或两个以上选自以下的特征:
(i)约0.1重量%至约10重量%之间的耳结构增强剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;
(iii)足量无菌水,经缓冲以提供约5.5与约8.0之间的pH值;
(iv)多颗粒耳结构分子组分;
(v)胶凝温度在约19℃至约42℃之间;
(vi)每克组合物少于约50个菌落形成单位(cfu)的微生物剂;
(vii)每公斤个体体重少于约5个内毒素单位(EU);
(viii)耳结构增强剂的平均溶解时间为约30小时;和
(ix)表观粘度为约100,000cP至约500,000cP。
在一些实施例中,医药组合物包含至少三个上述特征。在一些实施例中,医药组合物包含至少四个上述特征。在一些实施例中,医药组合物包含至少五个上述特征。在一些实施例中,医药组合物包含至少六个上述特征。在一些实施例中,医药组合物包含至少七个上述特征。在一些实施例中,医药组合物包含所有上述特征。
在一些实施例中,本文所述的医药组合物或装置包含:
(i)约0.1重量%至约10重量%之间的耳结构增强剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;和
(iii)多颗粒耳结构分子组分。
在一些实施例中,本文所述的医药组合物或装置包含:
(i)约0.1重量%至约10重量%之间的耳结构增强剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;
(iii)多颗粒耳结构分子组分;和
(iv)胶凝温度在约19℃至约42℃之间。
本文提供用于治疗耳部疾病或病状的医药组合物或装置,其经调配以提供治疗有效量的耳结构降解剂,所述医药组合物或装置包含实质上较少的耳结构降解剂降解产物,医药组合物或装置另外包含两个或两个以上选自以下的特征:
(i)约0.1重量%至约10重量%之间的耳结构降解剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;
(iii)足量无菌水,经缓冲以提供约5.5与约8.0之间的pH值;
(iv)多颗粒耳结构降解剂;
(v)胶凝温度在约19℃至约42℃之间;
(vi)每克组合物少于约50个菌落形成单位(cfu)的微生物剂;
(vii)每公斤个体体重少于约5个内毒素单位(EU);
(viii)耳结构降解剂的平均溶解时间为约30小时;和
(ix)表观粘度为约100,000cP至约500,000cP。
在一些实施例中,医药组合物包含至少三个上述特征。在一些实施例中,医药组合物包含至少四个上述特征。在一些实施例中,医药组合物包含至少五个上述特征。在一些实施例中,医药组合物包含至少六个上述特征。在一些实施例中,医药组合物包含至少七个上述特征。在一些实施例中,医药组合物包含所有上述特征。
在一些实施例中,本文所述的医药组合物或装置包含:
(i)约0.1重量%至约10重量%之间的耳结构降解剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;和
(iii)多颗粒耳结构降解剂。
在一些实施例中,本文所述的医药组合物或装置包含:
(i)约0.1重量%至约10重量%之间的耳结构降解剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;
(iii)多颗粒耳结构降解剂;和
(iv)胶凝温度在约19℃至约42℃之间。
本文提供用于治疗耳部疾病或病状的医药组合物或装置,其经调配以提供治疗有效量的先天性免疫系统调节剂,所述医药组合物或装置包含实质上较少的先天性免疫系统调节剂降解产物,医药组合物或装置另外包含两个或两个以上选自以下的特征:
(i)约0.1重量%至约10重量%之间的先天性免疫系统调节剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;
(iii)足量无菌水,经缓冲以提供约5.5与约8.0之间的pH值;
(iv)多颗粒先天性免疫系统调节剂;
(v)胶凝温度在约19℃至约42℃之间;
(vi)每克组合物少于约50个菌落形成单位(cfu)的微生物剂;
(vii)每公斤个体体重少于约5个内毒素单位(EU);
(viii)先天性免疫系统调节剂的平均溶解时间为约30小时;和
(ix)表观粘度为约100,000cP至约500,000cP。
在一些实施例中,医药组合物包含至少三个上述特征。在一些实施例中,医药组合物包含至少四个上述特征。在一些实施例中,医药组合物包含至少五个上述特征。在一些实施例中,医药组合物包含至少六个上述特征。在一些实施例中,医药组合物包含至少七个上述特征。在一些实施例中,医药组合物包含所有上述特征。
在一些实施例中,本文所述的医药组合物或装置包含:
(i)约0.1重量%至约10重量%之间的先天性免疫系统调节剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;和
(iii)多颗粒先天性免疫系统调节剂。
在一些实施例中,本文所述的医药组合物或装置包含:
(i)约0.1重量%至约10重量%之间的先天性免疫系统调节剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;
(iii)多颗粒先天性免疫系统调节剂;和
(iv)胶凝温度在约19℃至约42℃之间。
本文提供治疗特征是过多耳结构的耳部疾病或病状的方法,其包含向有需要的个体投予包含以下的鼓室内组合物或装置:治疗有效量的具有实质上较少降解产物的耳结构降解剂;且其中组合物或装置包含两个或两个以上选自以下的特征:
(i)约0.1重量%至约10重量%之间的耳结构降解剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;
(iii)足量无菌水,经缓冲以提供约5.5与约8.0之间的pH值;
(iv)多颗粒耳结构降解剂;
(v)胶凝温度在约19℃至约42℃之间;
(vi)每克组合物少于约50个菌落形成单位(cfu)的微生物剂;和
(vii)每公斤个体体重少于约5个内毒素单位(EU);
(viii)耳结构降解剂的平均溶解时间为约30小时;和
(ix)表观粘度为约100,000cP至约500,000cP。
在一些实施例中,医药组合物包含至少三个上述特征。在一些实施例中,医药组合物包含至少四个上述特征。在一些实施例中,医药组合物包含至少五个上述特征。在一些实施例中,医药组合物包含至少六个上述特征。在一些实施例中,医药组合物包含至少七个上述特征。在一些实施例中,医药组合物包含所有上述特征。
在一些实施例中,耳结构降解剂历时至少3天的时间从组合物中释放出。在一些实施例中,耳结构降解剂基本上呈微粉化粒子的形式。在一些实施例中,耳结构降解剂降解骨。在一些实施例中,耳结构降解剂降解神经元。在一些实施例中,耳结构降解剂降解膜。在一些实施例中,耳结构降解剂降解脓清。在一些实施例中,耳结构降解剂降解内淋巴或外淋巴。
在一些实施例中,上述医药组合物或装置提供约150与500mOsm/L之间的实际容量渗透摩尔浓度。在一些实施例中,上述医药组合物或装置提供约200与400mOsm/L之间的实际容量渗透摩尔浓度。在一些实施例中,上述医药组合物或装置提供约250与320mOsm/L之间的实际容量渗透摩尔浓度。
在一些实施例中,耳结构调节剂或先天性免疫系统调节剂历时至少3天的时间从上述医药组合物或装置中释放出。在一些实施例中,耳结构调节剂或先天性免疫系统调节剂历时至少5天的时间从上述医药组合物或装置中释放出。在一些实施例中,耳结构调节剂或先天性免疫系统调节剂历时至少10天的时间从上述医药组合物或装置中释放出。在一些实施例中,耳结构调节剂或先天性免疫系统调节剂历时至少14天的时间从上述医药组合物或装置中释放出。在一些实施例中,耳结构调节剂或先天性免疫系统调节剂历时至少一个月的时间从上述医药组合物或装置中释放出。
在一些实施例中,上述医药组合物或装置包含呈中性分子、游离酸、游离碱、盐或前药形式的耳结构调节剂或先天性免疫系统调节剂。在一些实施例中,上述医药组合物或装置包含呈中性分子、游离酸、游离碱、盐或前药或其组合形式的耳结构调节剂或先天性免疫系统调节剂。
在一些实施例中,上述医药组合物或装置包含呈多颗粒状的耳结构调节剂或先天性免疫系统调节剂。在一些实施例中,上述医药组合物或装置包含呈微粉化粒子形式的耳结构调节剂或先天性免疫系统调节剂。在一些实施例中,上述医药组合物或装置包含呈微粉化粉末状的耳结构调节剂或先天性免疫系统调节剂。
在一些实施例中,上述医药组合物或装置包含以组合物的重量计约10%通式E106P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约15%通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约20%通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约25%通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物。
在一些实施例中,本文所述的医药组合物或装置包含以组合物的重量计约1%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约2%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。在一些实施例中,本文所述的医药组合物或装置包含以组合物的重量计约3%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。在一些实施例中,本文所述的医药组合物或装置包含以组合物的重量计约4%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约5%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约10%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约15%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约20%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约25%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约30%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约40%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约50%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约60%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约70%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约80%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。在一些实施例中,上述医药组合物或装置包含以组合物的重量计约90%耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的前药或盐。
在一些实施例中,上述医药组合物或装置的pH值在约5.5与约8.0之间。在一些实施例中,上述医药组合物或装置的pH值在约6.0与约8.0之间。在一些实施例中,上述医药组合物或装置的pH值在约6.0与约7.6之间。
在一些实施例中,上述医药组合物或装置中每克组合物含有少于100个菌落形成单位(cfu)的微生物剂。在一些实施例中,上述医药组合物或装置中每克组合物含有少于50个菌落形成单位(cfu)的微生物剂。在一些实施例中,上述医药组合物或装置中每克组合物含有少于10个菌落形成单位(cfu)的微生物剂。
在一些实施例中,上述医药组合物或装置含有每公斤个体体重少于5个内毒素单位(EU)。在一些实施例中,上述医药组合物或装置含有每公斤个体体重少于4个内毒素单位(EU)。
在一些实施例中,上述医药组合物或装置提供约19℃至约42℃之间的胶凝温度。在一些实施例中,上述医药组合物或装置提供约19℃至约37℃之间的胶凝温度。在一些实施例中,上述医药组合物或装置提供约19℃至约30℃之间的胶凝温度。
在一些实施例中,医药组合物或装置为耳可接受的热致可逆凝胶。在一些实施例中,聚氧化乙烯-聚氧化丙烯三嵌段共聚物为生物可降解的和/或经历生物消除(例如共聚物通过生物降解方法从体内消除,例如通过尿、粪便等消除)。在一些实施例中,本文所述的医药组合物或装置另外包含粘膜粘着剂。在一些实施例中,本文所述的医药组合物或装置另外包含穿透增强剂。在一些实施例中,本文所述的医药组合物或装置另外包含增稠剂。在一些实施例中,本文所述的医药组合物或装置另外包含染料。
在一些实施例中,本文所述的医药组合物或装置另外包含选自以下的药物传递装置:针和注射器、泵、微注射装置、纱布条(wick)、原位形成的海绵状材料或其组合。
在一些实施例中,本文所述的医药组合物或装置为如下医药组合物或装置,其中耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的盐具有限制性或非全身性释放、全身性毒性、不良PK特征或其组合。在本文所述的医药组合物或装置的一些实施例中,耳结构调节剂或先天性免疫系统调节剂呈中性分子、游离碱、游离酸、盐、前药或其组合的形式。在本文所述的医药组合物或装置的一些实施例中,耳结构调节剂或先天性免疫系统调节剂呈磷酸盐或酯前药的形式投予。在一些实施例中,本文所述的医药组合物或装置包含呈立即释放型药剂形式的耳结构调节剂或先天性免疫系统调节剂或其医药学上可接受的盐、前药或其组合。
在一些实施例中,本文所述的医药组合物或装置另外包含另一治疗剂。在一些实施例中,另一治疗剂为酸化剂、麻醉剂、镇痛剂、抗生素、止吐剂、抗真菌剂、抗微生物剂、抗精神病药(特别是吩噻嗪(phenothiazine)类)、消毒剂、抗病毒剂、收敛剂、化学治疗剂、胶原蛋白、皮质类固醇、利尿剂、角质层分离剂、一氧化氮合酶抑制剂、其组合。
在一些实施例中,本文所述的医药组合物或装置为如下医药组合物或装置,其中医药组合物或装置的pH值在约6.0至约7.6之间。
在本文所述的医药组合物或装置的一些实施例中,通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物与增稠剂的比率为约40:1至约5:1。在一些实施例中,增稠剂为羧甲基纤维素、羟丙基纤维素或羟丙基甲基纤维素。
在一些实施例中,耳部疾病或病状为膜迷路积水、晕动病、迷路炎、登陆困难症(malde debarquement)、梅尼埃尔氏病、梅尼埃尔氏综合症、拉姆齐·亨特综合症(带状疱疹感染)、复发性前庭病、耳鸣、眩晕、微血管压迫综合症、椭圆囊功能障碍、前庭神经元炎、良性阵发性位置性眩晕或其组合。
本文也提供一种治疗耳部疾病或病状的方法,其包含向有需要的个体投予包含治疗有效量的耳结构调节剂的鼓室内组合物或装置,所述组合物或装置包含实质上较少的耳结构调节剂降解产物,组合物或装置另外包含两个或两个以上选自以下的特征:
(i)约0.1重量%至约10重量%之间的耳结构调节剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;
(iii)足量无菌水,经缓冲以提供约5.5与约8.0之间的pH值;
(iv)多颗粒耳结构调节剂;
(v)胶凝温度在约19℃至约42℃之间;
(vi)每克组合物少于约50个菌落形成单位(cfu)的微生物剂;和
(vii)每公斤个体体重少于约5个内毒素单位(EU)。
本文也提供一种治疗耳部疾病或病状的方法,其包含向有需要的个体投予包含治疗有效量的耳结构降解剂的鼓室内组合物或装置,所述组合物或装置包含实质上较少的耳结构降解剂降解产物,组合物或装置另外包含两个或两个以上选自以下的特征:
(i)约0.1重量%至约10重量%之间的耳结构降解剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;
(iii)足量无菌水,经缓冲以提供约5.5与约8.0之间的pH值;
(iv)多颗粒耳结构降解剂;
(v)胶凝温度在约19℃至约42℃之间;
(vi)每克组合物少于约50个菌落形成单位(cfu)的微生物剂;和
(vii)每公斤个体体重少于约5个内毒素单位(EU)。
本文也提供一种治疗耳部疾病或病状的方法,其包含向有需要的个体投予包含治疗有效量的耳结构增强剂的鼓室内组合物或装置,所述组合物或装置包含实质上较少的耳结构增强剂降解产物,组合物或装置另外包含两个或两个以上选自以下的特征:
(i)约0.1重量%至约10重量%之间的耳结构增强剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;
(iii)足量无菌水,经缓冲以提供约5.5与约8.0之间的pH值;
(iv)多颗粒耳结构分子组分;
(v)胶凝温度在约19℃至约42℃之间;
(vi)每克组合物少于约50个菌落形成单位(cfu)的微生物剂;和
(vii)每公斤个体体重少于约5个内毒素单位(EU)。
本文也提供一种治疗耳部疾病或病状的方法,其包含向有需要的个体投予包含治疗有效量的先天性免疫系统调节剂的鼓室内组合物或装置,所述组合物或装置包含实质上较少的先天性免疫系统调节剂降解产物,组合物或装置另外包含两个或两个以上选自以下的特征:
(i)约0.1重量%至约10重量%之间的先天性免疫系统调节剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106 P70 E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;
(iii)足量无菌水,经缓冲以提供约5.5与约8.0之间的pH值;
(iv)多颗粒先天性免疫系统调节剂;
(v)胶凝温度在约19℃至约42℃之间;
(vi)每克组合物少于约50个菌落形成单位(cfu)的微生物剂;和
(vii)每公斤个体体重少于约5个内毒素单位(EU)。
在本文所述的方法的一些实施例中,耳结构调节剂或先天性免疫系统调节剂历时至少3天的时间从组合物或装置中释放出。在本文所述的方法的一些实施例中,耳结构调节剂或先天性免疫系统调节剂历时至少4天的时间从组合物或装置中释放出。在本文所述的方法的一些实施例中,耳结构调节剂或先天性免疫系统调节剂历时至少5天的时间从组合物或装置中释放出。在本文所述的方法的一些实施例中,耳结构调节剂或先天性免疫系统调节剂历时至少6天的时间从组合物或装置中释放出。在本文所述的方法的一些实施例中,耳结构调节剂或先天性免疫系统调节剂历时至少7天的时间从组合物或装置中释放出。在本文所述的方法的一些实施例中,耳结构调节剂或先天性免疫系统调节剂历时至少8天的时间从组合物或装置中释放出。在本文所述的方法的一些实施例中,耳结构调节剂或先天性免疫系统调节剂历时至少9天的时间从组合物或装置中释放出。在本文所述的方法的一些实施例中,耳结构调节剂或先天性免疫系统调节剂历时至少10天的时间从组合物或装置中释放出。在上述方法的一些实施例中,耳结构调节剂或先天性免疫系统调节剂基本上呈微粉化粒子的形式。
在本文所述的方法的一些实施例中,组合物穿过圆窗投予。在本文所述的方法的一些实施例中,耳部疾病或病状为外耳炎、中耳炎、乳突炎、感觉神经性听力损失、耳毒性、膜迷路积水、迷路炎、梅尼埃尔氏病、梅尼埃尔氏综合症、微血管压迫综合症、前庭神经元炎、听觉损伤、老年性耳聋、胆脂瘤、耳硬化症、沙伊贝综合症、蒙蒂尼-米歇尔综合症、瓦尔登布尔氏综合症、迈克尔综合症、亚历山大耳畸形、距离过远、耶韦尔-兰赫-尼尔森综合症、雷氏综合症、尤希尔氏综合症或其组合。
附图说明
图1说明非持续释放型组合物与持续释放型组合物的比较。
图2说明浓度对布郎赛改良的CMC水溶液的粘度的影响。
图3说明浓度对Methocel水溶液的粘度的影响。
图4提供耳朵解剖的例示性图。
图5说明活性剂从四种组合物中可调整地释放。
具体实施方式
本文提供控制释放型耳结构调节组合物和组合物,其用于治疗(例如改善或减轻影响)特征为耳结构过多或缺失的耳部疾病、病症或病状。在一些实施例中,控制释放型耳结构调节组合物和组合物治疗(例如改善或减轻影响)特征为耳结构过多的耳部疾病、病症或病状。在一些实施例中,控制释放型耳结构调节组合物和组合物治疗(例如改善或减轻影响)特征为耳结构缺失的耳部疾病、病症或病状。在一些实施例中,耳部疾病、病症或病状为外耳炎、中耳炎、乳突炎、感觉神经性听力损失、耳毒性、膜迷路积水、迷路炎、梅尼埃尔氏病、梅尼埃尔氏综合症、微血管压迫综合症、前庭神经元炎、听觉损伤、老年性耳聋、胆脂瘤、耳硬化症、沙伊贝综合症、蒙蒂尼-米歇尔综合症、瓦尔登布尔氏综合症、迈克尔综合症、亚历山大耳畸形、距离过远、耶韦尔-兰赫-尼尔森综合症、雷氏综合症、尤希尔氏综合症或其组合。
本文另外提供控制释放型补体调节组合物和组合物,其用于治疗(例如改善或减轻影响)特征为先天性免疫系统功能障碍的耳部疾病、病症或病状。在一些实施例中,控制释放型补体调节组合物和装置治疗(例如改善或减轻影响)特征为先天性免疫系统过度活性的耳部疾病、病症或病状。在一些实施例中,耳部疾病、病症或病状为外耳炎、中耳炎、乳突炎、AIED、拉姆齐·亨特氏病、再灌注损伤、骨化性迷路炎或其组合。
在一些实施例中,耳结构调节剂为耳结构降解剂。在一些实施例中,耳结构调节剂为耳结构增强剂。
在一些实施例中,先天性免疫系统调节剂为补体级联调节剂和/或过敏毒素调节剂。在一些实施例中,先天性免疫系统调节剂为补体级联拮抗剂和/或过敏毒素拮抗剂。在一些实施例中,先天性免疫系统调节剂为补体级联激动剂和/或过敏毒素激动剂。
一些治疗产品可用于治疗耳部病症;然而,目前这些治疗剂通过口服、静脉内或肌肉内途径等全身性途径来传递。在一些情况下,全身性投药会使药物浓度可能有差别,在血清中循环含量较高,而在目标中耳和内耳器官结构中含量较低。因此,需要相当多药物来克服此差别,以传递足够并治疗有效的量至内耳。另外,由于实现足量局部传递至目标部位需要高血清量,所以全身性投药可增加全身性毒性和不良副作用的可能性。也可能由于肝衰竭和治疗剂加工,形成实际上可抹去任何从所投治疗剂中获取的益处的毒性代谢物,而出现全身性毒性。
为克服全身性传递的毒性和伴随的副作用,本文揭示用于局部传递治疗剂至目标耳结构的方法和组合物和装置。举例来说,通过中耳(包括圆窗膜、卵圆窗/镫骨足板、环韧带和通过听囊/颞骨)进入前庭和耳蜗器官。
鼓室内注射治疗剂为将鼓膜后面的治疗剂注射至中耳和/或内耳中的技术。此技术呈现出若干挑战;例如,进入圆窗膜(药物吸收到内耳中的部位)具有挑战性。
另外,鼓室内注射产生若干无法由现用治疗方案解决的未认识到的问题,例如改变外淋巴和内淋巴的容量渗透摩尔浓度和pH值,和引入直接或间接破坏内耳结构的病原体和内毒素。所属领域未能认识到这些问题的原因之一是尚无批准的鼓室内组合物:内耳提供独特的组合物挑战。因此,针对身体其它部分研发的组合物与鼓室内组合物几乎没有什么相关性。
现有技术中没有对适于投予人类的耳用组合物的要求(例如无菌程度、pH值、容量渗透摩尔浓度)作出指导。各物种间动物耳朵的解剖学差异很大。耳结构的物种间差异的后果为,内耳疾病的动物模型作为测试经研发以供临床批准的治疗剂的工具常常不可靠。
本文提供满足针对pH值、容量渗透摩尔浓度、离子平衡、无菌、内毒素和/或热原含量的严格标准的耳用组合物。本文所述的耳用组合物与内耳的微环境(例如外淋巴)相容且适于投予人类。在一些实施例中,本文所述的组合物包含染料且帮助目测所投组合物,以避免在临床前和/或临床研发鼓室内治疗剂期间对侵入性程序(例如除去外淋巴)的需要。
本文提供控制释放型耳结构调节组合物和组合物,其用于局部治疗目标耳结构,从而避免因全身性投予耳结构调节组合物而引起的副作用。局部施加的耳结构调节组合物和装置与目标耳结构相容,且直接投予所需目标耳结构(例如耳蜗区、鼓室或外耳),或投予与内耳区直接连通的结构(例如圆窗膜、蜗窗嵴或卵圆窗膜)。通过特定地靶向耳结构,可避免因全身性治疗而引起的不良副作用。另外,临床研究已展示药物长期暴露于耳蜗外淋巴的益处,例如当多次给予治疗剂时突发性听力损失的临床功效提高。因此,通过提供控制释放型耳结构调节组合物来治疗耳部病症,可向患有耳部病症的个体提供恒定、变化和/或扩大的耳结构调节剂或先天性免疫系统调节剂来源,从而减少或消除治疗的不确定性。因此,本文所揭示的一实施例为提供一种能够使治疗有效剂量的耳结构调节剂或先天性免疫系统调节剂以变化或恒定的速率释放的组合物,例如以确保耳结构调节剂或先天性免疫系统调节剂连续地释放。在一些实施例中,本文所揭示的耳结构调节剂或先天性免疫系统调节剂呈立即释放型组合物形式投予。在其它实施例中,耳结构调节剂或先天性免疫系统调节剂呈持续释放型组合物形式投予,连续地、变化地或以脉冲方式或其变化方式释放。在其它实施例中,耳结构调节剂或先天性免疫系统调节剂组合物呈立即释放型与持续释放型组合物形式投予,连续地、变化地或以脉冲方式或其变化方式释放。释放任选取决于环境或生理条件,例如外部离子环境(参见例如强生公司(Johnson&Johnson)的释放系统)。
另外,局部治疗目标耳结构也允许使用先前不欲的治疗剂,包括具有不良pK概况、不良吸收、低全身性释放和/或毒性问题的药剂。由于耳结构调节组合物和装置靶向局部以及内耳中存在生物的血屏障,所以因先前表征的毒性或低效的耳结构调节剂或先天性免疫系统调节剂的治疗所引起的不良影响的风险将降低。因此,本文中实施例的范围内也涵盖耳结构调节剂或先天性免疫系统调节剂的用途,其用于治疗执业医生先前因所述耳结构调节剂或先天性免疫系统调节剂的不良影响或低效而放弃治疗的病症。
本文所揭示的实施例内也包括其它耳相容的药剂的用途,其与本文所揭示的耳结构调节组合物和装置组合使用。使用时,这些药剂可有助于治疗由以下疾病所引起的听力或平衡损失或功能障碍:外耳炎、中耳炎、乳突炎、感觉神经性听力损失、耳毒性、膜迷路积水、迷路炎、梅尼埃尔氏病、梅尼埃尔氏综合症、微血管压迫综合症、前庭神经元炎、听觉损伤、老年性耳聋、胆脂瘤、耳硬化症、沙伊贝综合症、蒙蒂尼-米歇尔综合症、瓦尔登布尔氏综合症、迈克尔综合症、亚历山大耳畸形、距离过远、耶韦尔-兰赫-尼尔森综合症、雷氏综合症、尤希尔氏综合症或其组合。因此,也涵盖改善或减轻以下疾病的影响的其它药剂与耳结构调节剂或先天性免疫系统调节剂组合使用:外耳炎、中耳炎、乳突炎、感觉神经性听力损失、耳毒性、膜迷路积水、迷路炎、梅尼埃尔氏病、梅尼埃尔氏综合症、微血管压迫综合症、前庭神经元炎、听觉损伤、老年性耳聋、胆脂瘤、耳硬化症、沙伊贝综合症、蒙蒂尼-米歇尔综合症、瓦尔登布尔氏综合症、迈克尔综合症、亚历山大耳畸形、距离过远、耶韦尔-兰赫-尼尔森综合症、雷氏综合症、尤希尔氏综合症、外耳炎、中耳炎、乳突炎、AIED、拉姆齐·亨特氏病、再灌注损伤、骨化性迷路炎或其组合。在一些实施例中,其它药剂为酸化剂、麻醉剂、镇痛剂、抗生素、止吐剂、抗真菌剂、抗微生物剂、抗精神病药(特别是吩噻嗪类)、消毒剂、抗病毒剂、收敛剂、化学治疗剂、胶原蛋白、皮质类固醇、利尿剂、角质层分离剂、一氧化氮合酶抑制剂或其组合。
在一些实施例中,本文所述的耳可接受的控制释放型耳结构调节组合物投予目标耳朵区域,且另外投予口服剂量的耳结构调节剂或先天性免疫系统调节剂。在一些实施例中,投予口服剂量的耳结构调节剂或先天性免疫系统调节剂,接着投予耳可接受的控制释放型耳结构调节组合物,接着在提供控制释放型耳结构调节组合物的时间段内逐渐减少口服剂量。或者,在投予控制释放型耳结构调节组合物期间,投予口服剂量的耳结构调节剂或先天性免疫系统调节剂,接着在提供控制释放型耳结构调节组合物的时间段内逐渐减少口服剂量。或者,投予控制释放型耳结构调节组合物,接着投予口服剂量的耳结构调节剂或先天性免疫系统调节剂,接着在提供控制释放型耳结构调节组合物的时间段内逐渐减少口服剂量。
另外,本文中所包括的耳结构调节剂或先天性免疫系统调节剂医药组合物或组合物或装置也包括载剂、佐剂(例如防腐剂、稳定剂、湿润剂或乳化剂)、溶解促进剂、调节渗透压力的盐和/或缓冲剂。这些载剂、佐剂和其它赋形剂与目标耳结构中的环境相容。特别涵盖缺乏耳毒性或耳毒性最小的载剂、佐剂和赋形剂以有效地治疗本文所涵盖的耳部病症,且目标区域或目标区中的副作用最低。
传递装置的鼓室内注射产生若干其它问题,这些问题必须也在投予组合物或装置前予以解决。举例来说,许多赋形剂具有耳毒性。虽然这些赋形剂可在调配通过另一方法(例如表面)传递的活性剂时使用,但当调配投予耳朵的组合物或装置时因耳毒性作用而应限制、减少或消除其使用。
以非限制性实例说明,当调配投予耳朵的药剂时应限制、减少或消除以下常用溶剂的使用:醇、丙二醇和环己烷。因此,在一些实施例中,本文所揭示的装置不含或实质上不含醇、丙二醇和环己烷。在一些实施例中,本文所揭示的装置包含少于约50ppm的醇、丙二醇和环己烷中的每一者。在一些实施例中,本文所揭示的装置包含少于约25ppm的醇、丙二醇和环己烷中的每一者。在一些实施例中,本文所揭示的装置包含少于约20ppm的醇、丙二醇和环己烷中的每一者。在一些实施例中,本文所揭示的装置包含少于约10ppm的醇、丙二醇和环己烷中的每一者。在一些实施例中,本文所揭示的装置包含少于约5ppm的醇、丙二醇和环己烷中的每一者。在一些实施例中,本文所揭示的装置包含少于约1ppm的醇、丙二醇和环己烷中的每一者。
另外,以非限制性实例说明,当调配投予耳朵的药剂时应限制、减少或消除以下常用防腐剂的使用:苄索氯铵(Benzethonium chloride)、苯扎氯铵(Benzalkonium chloride)和硫柳汞(Thiomersal)。因此,在一些实施例中,本文所揭示的装置不含或实质上不含苄索氯铵、苯扎氯铵和硫柳汞。在一些实施例中,本文所揭示的装置包含少于约50ppm的苄索氯铵、苯扎氯铵和硫柳汞中的每一者。在一些实施例中,本文所揭示的装置包含少于约25ppm的苄索氯铵、苯扎氯铵和硫柳汞中的每一者。在一些实施例中,本文所揭示的装置包含少于约20ppm的苄索氯铵、苯扎氯铵和硫柳汞中的每一者。在一些实施例中,本文所揭示的装置包含少于约10ppm的苄索氯铵、苯扎氯铵和硫柳汞中的每一者。在一些实施例中,本文所揭示的装置包含少于约5ppm的苄索氯铵、苯扎氯铵和硫柳汞中的每一者。在一些实施例中,本文所揭示的装置包含少于约1ppm的苄索氯铵、苯扎氯铵和硫柳汞中的每一者。
在耳用制剂中,应限制、减少或消除用以给治疗制剂(或用以投予这些制剂的装置)的组分消毒的某些消毒剂。举例来说,已知乙酸、碘和汞溴红都具有耳毒性。另外,给耳用制剂(包括用以投予此制剂的装置)的任何组分消毒的常用消毒剂氯己定(chlorhexidene)因在微量浓度(例如0.05%)下具有高度耳毒性而应受到限制、减少或消除。因此,在一些实施例中,本文所揭示的装置不含或实质上不含乙酸、碘、汞溴红和氯己定。在一些实施例中,本文所揭示的装置包含少于约50ppm的乙酸、碘、汞溴红和氯己定中的每一者。在一些实施例中,本文所揭示的装置包含少于约25ppm的乙酸、碘、汞溴红和氯己定中的每一者。在一些实施例中,本文所揭示的装置包含少于约20ppm的乙酸、碘、汞溴红和氯己定中的每一者。在一些实施例中,本文所揭示的装置包含少于约10ppm的乙酸、碘、汞溴红和氯己定中的每一者。在一些实施例中,本文所揭示的装置包含少于约5ppm的乙酸、碘、汞溴红和氯己定中的每一者。在一些实施例中,本文所揭示的装置包含少于约1ppm的乙酸、碘、汞溴红和氯己定中的每一者。
另外,耳用制剂要求已知具有耳毒性的若干可能常见的污染物的浓度特别低。其它剂型虽然设法限制因这些化合物而引起的污染,但是未要求耳用制剂所要求的严格预防措施。举例来说,以下污染物在耳用制剂中应不存在或几乎不存在:砷、铅、汞和锡。因此,在一些实施例中,本文所揭示的装置不含或实质上不含砷、铅、汞和锡。在一些实施例中,本文所揭示的装置包含少于约50ppm的砷、铅、汞和锡中的每一者。在一些实施例中,本文所揭示的装置包含少于约25ppm的砷、铅、汞和锡中的每一者。在一些实施例中,本文所揭示的装置包含少于约20ppm的砷、铅、汞和锡中的每一者。在一些实施例中,本文所揭示的装置包含少于约10ppm的砷、铅、汞和锡中的每一者。在一些实施例中,本文所揭示的装置包含少于约5ppm的砷、铅、汞和锡中的每一者。在一些实施例中,本文所揭示的装置包含少于约1ppm的砷、铅、汞和锡中的每一者。
为防止耳毒性,本文所揭示的耳结构调节剂或先天性免疫系统调节剂医药组合物或组合物或装置任选地靶向目标耳结构的不同区域,包括(但不限于)鼓室、前庭骨和膜迷路、耳蜗骨和膜迷路和其它位于内耳中的解剖或生理结构。
一些定义
如本文所用,关于组合物、组合物或成分的术语“耳可接受”包括对所治疗个体的中耳和内耳无持久的不利影响。如本文所用,“耳医药学上可接受”是指例如载剂或稀释剂等物质不消除化合物在中耳和内耳中的生物活性或性质,且对中耳和内耳的毒性相对降低或降低,也就是说,此物质投予个体时不会引起不良的生物作用或以有害的方式与含此物质的组合物中的任何组分相互作用。
如本文所用,通过投予特定化合物或医药组合物来改善或减轻特定耳部疾病、病症或病状的症状是指可以归因于所述化合物或组合物的投予或与所述投予相关联的任何严重程度减轻、发作延迟、进展减缓或持续时间缩短,此改善或减轻可为持久的或暂时的、持续的或短暂的。
“抗氧化剂”为耳医药学上可接受的抗氧化剂,且包括例如丁基化羟基甲苯(BHT)、抗坏血酸钠、抗坏血酸、焦亚硫酸钠和生育酚。在某些实施例中,需要时,抗氧化剂可增强化学稳定性。抗氧化剂也用以对抗某些治疗剂的耳毒性作用,这些治疗剂包括与本文所揭示的耳结构调节剂或先天性免疫系统调节剂组合使用的药剂。
“内耳”是指包括耳蜗和前庭迷路以及连接耳蜗与中耳的圆窗的内耳。
“耳生物利用率”或“内耳生物利用率”或“中耳生物利用率”或“外耳生物利用率”是指所研究的动物或人类的目标耳结构中可利用的本文所揭示化合物的投予剂量的百分比。
“中耳”是指包括鼓室、耳小骨和连接中耳与内耳的卵圆窗的中耳。
“外耳”是指包括耳廓、耳道和连接外耳与中耳的鼓膜的外耳。
“血浆浓度”是指个体血液的血浆组分中本文所提供的化合物的浓度。
“载剂物质”为与耳结构调节剂或先天性免疫系统调节剂、目标耳结构、和耳可接受的医药组合物的释放曲线性质相容的赋形剂。这些载剂物质包括例如粘合剂、悬浮剂、崩解剂、填充剂、表面活性剂、增溶剂、稳定剂、润滑剂、湿润剂、稀释剂等。“耳医药学上相容的载剂物质”包括(但不限于)阿拉伯胶、明胶、胶状二氧化硅、甘油磷酸钙、乳酸钙、麦芽糊精、甘油、硅酸镁、聚乙烯吡咯烷酮(PVP)、胆固醇、胆固醇酯、酪蛋白酸钠、大豆卵磷脂、牛磺胆酸、磷脂酰胆碱、氯化钠、磷酸三钙、磷酸二钾、纤维素和纤维素结合物、糖、硬脂酰乳酸钠、角叉菜胶、甘油一酸酯、甘油二酸酯、预胶化淀粉等。
如本文所用,术语“补体调节剂”意指增强或抑制补体系统组分的活性的药剂。在一些实施例中,补体调节剂增强补体系统组分的活性。在一些实施例中,补体调节剂抑制(部分或完全)补体系统组分的活性。
术语“稀释剂”是指用以在耳结构调节剂或先天性免疫系统调节剂传递前稀释所述调节剂且与目标耳结构相容的化合物。
“分散剂”和/或“粘度调节剂”为通过液体介质控制耳结构调节剂或先天性免疫系统调节剂的扩散和均匀性的物质。扩散促进剂/分散剂的实例包括(但不限于)亲水性聚合物、电解质、60或80、PEG、聚乙烯吡咯烷酮(PVP;商业上称为),和基于碳水化合物的分散剂,例如羟丙基纤维素(例如HPC、HPC-SL和HPC-L)、羟丙基甲基纤维素(例如HPMC K100、HPMC K4M、HPMC K15M和HPMC K100M)、羧甲基纤维素钠、甲基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素邻苯二甲酸酯、羟丙基甲基纤维素乙酸硬脂酸酯(HPMCAS)、非结晶纤维素、硅酸镁铝、三乙醇胺、聚乙烯醇(PVA)、乙烯基吡咯烷酮/乙酸乙烯酯共聚物(S630)、4-(1,1,3,3-四甲基丁基)-苯酚与环氧乙烷和甲醛的聚合物(又称作泰洛沙泊(tyloxapol))、泊洛沙姆(poloxamer)(例如泊洛尼克(Pluronic)F127、Pluronics它们是环氧乙烷与环氧丙烷的嵌段共聚物);和泊洛沙胺(poloxamine)(例如Tetronic又称作poloxamine它是环氧丙烷和环氧乙烷依序加入乙二胺中所衍生的四官能团嵌段共聚物(新泽西州(N.J.)帕尔西帕尼(Parsippany)巴斯夫公司(BASFCorporation)))、聚乙烯吡咯烷酮K12、聚乙烯吡咯烷酮K17、聚乙烯吡咯烷酮K25或聚乙烯吡咯烷酮K30、聚乙烯吡咯烷酮/乙酸乙烯酯共聚物(S-630)、聚乙二醇(例如聚乙二醇的分子量为约300至约6000、或约3350至约4000、或约7000至约5400)、羧甲基纤维素钠、甲基纤维素、聚山梨酸酯-80、褐藻酸钠、树胶(例如黄芪胶和阿拉伯胶、瓜尔胶、黄原酸烷(xanthans)(包括黄原胶))、糖、纤维素制品(例如羧甲基纤维素钠、甲基纤维素、羧甲基纤维素钠)、聚山梨酸酯-80、褐藻酸钠、聚乙氧基化脱水山梨糖醇单月桂酸酯、聚乙氧基化脱水山梨糖醇单月桂酸酯、聚维酮(povidone)、卡波姆(carbomer)、聚乙烯醇(PVA)、褐藻酸盐、壳聚糖和其组合。例如纤维素或三乙基纤维素等增塑剂也用作分散剂。可用于本文所揭示的耳结构调节剂或先天性免疫系统调节剂的脂质体分散液和自乳化分散液中的任选分散剂为二肉豆蔻酰磷脂酰胆碱、磷脂酰胆碱(c8-c18)、磷脂酰乙醇胺(c8-c18)、磷脂酰甘油(c8-c18)、来自卵或大豆的天然磷脂酰胆碱、来自卵或大豆的天然磷脂酰甘油、胆固醇和肉豆蔻酸异丙酯。
“药物吸收”或“吸收”是指耳结构调节剂或先天性免疫系统调节剂从局部投药部位(仅举例来说,内耳的圆窗膜)移动并穿过屏障(如下所述的圆窗膜)进入内耳或内耳结构中的过程。如本文所用,术语“共同投予”等意指涵盖向单个患者投予耳结构调节剂或先天性免疫系统调节剂,并意欲包括通过相同或不同的投药途径或在相同或不同的时间投予耳结构调节剂或先天性免疫系统调节剂的治疗方案。
如本文所用,术语“有效量”或“治疗有效量”是指投予足量耳结构调节剂或先天性免疫系统调节剂,预期将在某种程度上减轻所治疗的疾病或病状的一种或一种以上症状。举例来说,投予本文所揭示的耳结构调节剂或先天性免疫系统调节剂的结果是减少和/或减轻梅尼埃尔氏病的征象、症状或病因。举例来说,用于治疗用途的“有效量”是提供疾病症状减少或改善且无过度的不良副作用所需的包括如本文所揭示的组合物的耳结构调节剂或先天性免疫系统调节剂的量。术语“治疗有效量”包括例如防治有效量。本文所揭示的耳结构调节剂或先天性免疫系统调节剂的“有效量”是有效实现所需的药理作用或治疗改善且无过度的不良副作用的量。应了解,在一些实施例中,“有效量”或“治疗有效量”随各个体而变化,这是因为所投予的化合物的代谢、个体的年龄、体重、全身情况、所治疗的病状、所治疗的病状的严重程度和治疗医生的判断存在变化性。也应了解,基于药物动力学和药效学考虑,呈延长释放给药形式的“有效量”可不同于呈立即释放给药形式的“有效量”。
术语“增强”是指在耳结构调节剂或先天性免疫系统调节剂投予后,此治疗剂的所需作用的效力或持续时间增加或延长,或例如局部疼痛等任何不利症状减少。因此,就增强本文所揭示的耳结构调节剂或先天性免疫系统调节剂的作用而论,术语“增强”是指能够增加或延长与本文所揭示的耳结构调节剂或先天性免疫系统调节剂组合使用的其它治疗剂的作用的效力或持续时间。如本文所用,“增强有效量”是指耳结构调节剂或先天性免疫系统调节剂或其它治疗剂足以增强另一种治疗剂或耳结构调节剂或先天性免疫系统调节剂在所需系统中的作用的量。当用于患者中时,有效达成此用途的量将取决于疾病、病症或病状的严重程度和病程、先前疗法、患者的健康状况和对药物的反应以及治疗医生的判断。
术语“抑制”包括预防、减缓或逆转例如外耳炎等病状的发展或需要治疗的患者体内的病状进展。
如本文所用,术语“先天性免疫系统调节剂”意指增强或抑制先天性免疫系统组分的活性的药剂。在一些实施例中,先天性免疫系统调节剂增强先天性免疫系统组分的活性。在一些实施例中,先天性免疫系统调节剂抑制(部分或完全)先天性免疫系统组分的活性。
“平衡障碍”是指使个体感到不平稳或具有运动感觉的病症、疾病或病状。此定义包括头晕、眩晕、失去平衡和近昏厥(pre-syncope)在内。归类为平衡障碍的疾病包括(但不限于)登陆困难症、良性阵发性位置性眩晕和迷路炎。
术语“试剂盒”和“制品”用作同义词。
如本文所用,术语“耳介入”意指对一种或一种以上耳结构的外部损害或损伤,且包括植入物、耳外科手术、注射、套管插入术等。植入物包括内耳或中耳医学装置,其实例包括耳蜗植入物、听力防护装置、听力改善装置、短电极、微假体或活塞样假体;针;干细胞移植物;药物传递装置;任何基于细胞的治疗剂等。耳外科手术包括中耳外科手术、内耳外科手术、鼓膜切开术、内耳开窗术、迷路切开术、乳突切除术、镫骨切除术、镫骨足板造孔术、鼓膜造孔术、内淋巴球囊切开术等。注射包括鼓室内注射、耳蜗内注射、穿过圆窗膜注射等。套管插入术包括鼓室内、耳蜗内、内淋巴、外淋巴或前庭套管插入术等。
如本文所用,“耳结构调节剂”意指耳结构增强剂或降解耳结构分子组分的药剂。
“药物动力学”是指决定目标耳结构内所需部位处适当药物浓度的实现和维持的因素。
在防治应用中,含有本文所述的药剂的组合物投予易患以下特定疾病、病症或病状或另外处于其风险中的患者:外耳炎、中耳炎、乳突炎、感觉神经性听力损失、耳毒性、膜迷路积水、迷路炎、梅尼埃尔氏病、梅尼埃尔氏综合症、微血管压迫综合症、前庭神经元炎、听觉损伤、老年性耳聋、胆脂瘤、耳硬化症、沙伊贝综合症、蒙蒂尼-米歇尔综合症、瓦尔登布尔氏综合症、迈克尔综合症、亚历山大耳畸形、距离过远、耶韦尔-兰赫-尼尔森综合症、雷氏综合症和尤希尔氏综合症。此类量定义为“防治有效量或剂量”。在此用途中,准确的量也取决于患者的健康状态、体重等。如本文所用,“医药装置”包括在投予耳朵后为本文所述的活性剂的延长释放提供储积器的本文所述的任何组合物。
平均滞留时间(MRT)为活性剂分子在给药后滞留于耳结构中的平均时间。
“前药”是指在体内转化为母体药物的耳结构调节剂或先天性免疫系统调节剂。在某些实施例中,前药通过一个或一个以上步骤或过程酶促代谢成在生物学、医药学或治疗上具活性的化合物形式。为产生前药,将医药学上的活性化合物改性,使得活性化合物将在体内投药后再生。在一实施例中,前药经设计以改变药物的代谢稳定性或输送特征,遮蔽副作用或毒性,或改变药物的其它特征或性质。在一些实施例中,本文所提供的化合物衍生形成合适的前药。
“圆窗膜”是人体内覆盖耳蜗窗(又称为圆形窗、正圆窗或圆窗)的膜。人体内,圆窗膜的厚度为约70微米。
“增溶剂”是指例如甘油三乙酸酯、柠檬酸三乙酯、油酸乙酯、辛酸乙酯、月桂基硫酸钠、癸酸钠、蔗糖酯、烷基糖苷、多库酯钠(sodium doccusate)、维生素E TPGS、二甲基乙酰胺、N-甲基吡咯烷酮、N-羟乙基吡咯烷酮、聚乙烯吡咯烷酮、羟丙基甲基纤维素、羟丙基环糊精、乙醇、正丁醇、异丙醇、胆固醇、胆汁盐、聚乙二醇200-600、四氢呋喃聚乙二醇醚(glycofurol)、二乙二醇单乙醚(transcutol)、丙二醇和异山梨醇二甲醚(dimethyl isosorbide)等耳可接受的化合物。
“稳定剂”是指例如任何抗氧化剂、缓冲剂、酸、防腐剂等与目标耳结构的环境相容的化合物。稳定剂包括(但不限于)实现以下任何作用的试剂:(1)改善赋形剂与容器或传递系统(包括注射器或玻璃瓶)的相容性;(2)提高组合物的组分的稳定性;或(3)提高组合物的稳定性。
如本文所用,术语“实质上较少的降解产物”意指少于5重量%的活性剂为活性剂的降解产物。在其它实施例中,此术语意指少于3重量%的活性剂为活性剂的降解产物。在其它实施例中,此术语意指少于2重量%的活性剂为活性剂的降解产物。在其它实施例中,此术语意指少于1重量%的活性剂为活性剂的降解产物。
如本文所用,“过多耳结构”包括例如过多骨头生长(例如镫骨中)、耳结构堵塞(例如由粘液、脓液或渗出物分泌过多引起)、内耳中渗出物过多(例如由发炎引起)或可引起本文所述的耳部疾病或病状的任何耳结构的任何其它异常。
如本文所用,“基本上呈微粉化粉末形式”包括(仅举例来说)超过70重量%的活性剂呈活性剂的微粉化粒子形式。在其它实施例中,此术语意指超过80重量%的活性剂呈活性剂的微粉化粒子形式。在其它实施例中,此术语意指超过90重量%的活性剂呈活性剂的微粉化粒子形式。
如本文所用,“稳定状态”是在一个给药间隔内投予目标耳结构的药物的量等于排泄的药物的量,从而产生目标结构内平稳或恒定的药物暴露量的状态。
如本文所用,术语“个体”用以指任何动物,优选为哺乳动物,包括人类或非人类。术语患者与个体可互换使用。此两个术语都不应解释为需要医务人员(例如医生、护士、医师助理、护理员、收容所工作人员)的监督。
“表面活性剂”是指例如月桂基硫酸钠、多库酯钠、60或80、甘油三乙酸酯、维生素E TPGS、脱水山梨糖醇单油酸酯、聚氧化乙烯脱水山梨糖醇单油酸酯、聚山梨酸酯、泊拉索姆(polaxomer)、胆汁盐、单硬脂酸甘油酯、环氧乙烷与环氧丙烷的共聚物(例如(巴斯夫))等耳可接受的化合物。一些其它的表面活性剂包括聚氧化乙烯脂肪酸甘油酯和植物油,例如聚氧化乙烯(60)氢化蓖麻油;和聚氧化乙烯烷基醚和烷基苯基醚,例如辛苯昔醇10(octoxynol 10)、辛苯昔醇40。在一些实施例中,包括表面活性剂以增强物理稳定性或达成其它目的。
如本文所用,术语“治疗”包括减轻、缓和或改善疾病或病状的症状、预防其它症状、改善或阻止症状的基础代谢原因、抑制疾病或病状,例如使疾病或病状的发展停滞、减轻疾病或病状、使疾病或病状消退、减轻由疾病或病状引起的情况、或防治性和/或治疗性中止疾病或病状的症状。
本文所述的方法和组合物的其它目标、特征和优点将根据以下详细说明而变得显而易见。然而,应了解,所述详细说明和具体实例虽然指示具体实施例,但仅作为例证而给出。
耳的解剖
如图4中所示,外耳为此器官的外部部分,且由耳廓(耳郭)、耳道(外耳道)、和鼓膜(又称为耳鼓)的面向外部分构成。耳廓为在头的侧面可见的外耳多肉部分,其集中声波并引导声波朝向耳道。因此,外耳的功能部分地为集中和引导声波朝向鼓膜和中耳。
中耳是在鼓膜后面的充满空气的空腔,称为鼓室。又称为耳鼓的鼓膜是将外耳与中耳分离的薄膜。中耳位于颞骨内,且包括三个听小骨(耳小骨)在此空间内:锤骨、砧骨和镫骨。耳小骨通过微小的韧带连接在一起,形成横穿鼓室空间的桥。一端附接于鼓膜的锤骨在前端连接于砧骨,砧骨又连接于镫骨。镫骨附接于卵圆窗,卵圆窗是位于鼓室内的两个窗之一。被称为环韧带的纤维组织层将镫骨连接于卵圆窗。来自外耳的声波首先引起鼓膜振动。振动通过耳小骨和卵圆窗传递至耳蜗,耳蜗将此动作传送至内耳中的流体。因此,耳小骨经配置以提供鼓膜与充满流体的内耳的卵圆窗之间的机械连接,其中声音转换和传导至内耳以供进一步处理。耳小骨、鼓膜或卵圆窗的强直、僵硬或运动损失会导致听力损失,例如耳硬化症,或镫骨骨头僵硬。
鼓室也通过耳咽管连接于咽喉。耳咽管能够使外界空气与中耳腔之间的压力相等。圆窗为内耳的组分,但在鼓室内也可接触,其通向内耳的耳蜗。圆窗被圆窗膜覆盖,圆窗膜由三层组成:外部或粘膜层、中间或纤维层和内膜,内膜直接与耳蜗流体连通。因此,圆窗通过此内膜与内耳直接连通。
卵圆窗和圆窗的运动是互相连接的,即当镫骨骨头将运动从鼓膜传递至卵圆窗以针对内耳流体向内运动时,圆窗(圆窗膜)相应地伸出且远离耳蜗流体。圆窗的此运动使耳蜗内的流体运动,随后又引起耳蜗的内毛细胞运动,从而传导听觉信号。圆窗膜的强直和僵硬因使耳蜗流体无法运动而导致听力损失。近来研究集中于将机械转换器植入圆窗上,其绕过正常的通过卵圆窗的传导通路,并将通往耳蜗腔的输入扩大。
听觉信号传导发生在内耳中。充满流体的内耳由两个主要组分组成:耳蜗和前庭器官。内耳部分地位于骨迷路内,骨迷路是颅骨的颞骨中一系列复杂的通道。前庭器官是平衡器官并由三个半规管和前庭组成。三个半规管相互之间经配置,使得头部沿空间中三个正交平面的运动可以通过流体的运动和半规管的感觉器官(称为壶腹嵴)随后的信号处理来检测。壶腹嵴含有毛细胞和支持细胞,且由称为壶腹帽的圆顶状凝胶体覆盖。毛细胞的毛包埋入壶腹帽中。半规管检测动力平衡、转动或角运动的平衡。
当头部快速地转动时,半规管随头部一起运动,但位于膜半规管内的内淋巴流体倾向于保持固定。内淋巴流体推压壶腹帽,使其倾斜至一侧。当壶腹帽倾斜时,其使壶腹嵴的毛细胞上的一些毛弯曲,触发感觉冲击。因为各半规管位于不同的平面上,所以各半规管的相应壶腹嵴对同一头部运动不同地反应。此产生冲动嵌合体,被传递到前庭蜗神经的前庭分支上的中枢神经系统。中枢神经系统解释此信息并引发适当的反应以维持平衡。中枢神经系统中重要的是小脑,其介导平衡和均衡的感觉。
前庭是内耳的中心部分,且含有载有毛细胞的机械刺激感受器,从而确定静态平衡或头部相对于重力的位置。当头部不动或以直线运动时,静态平衡起作用。前庭中的膜迷路分成两个囊样结构,即椭圆囊和球囊。每一结构又都含有称为囊斑的小结构,这些囊斑负责维持静态平衡。囊斑由包埋入覆盖囊斑的凝胶体(类似于壶腹帽)中的感觉毛细胞组成。称为耳石的碳酸钙颗粒包埋在胶质层的表面上。
当头部处于竖直位置时,毛沿着囊斑为笔直的。当头部倾斜时,凝胶体和耳石相应地倾斜,使囊斑的毛细胞上的一些毛弯曲。此弯曲动作引发信号脉冲至中枢神经系统,信号脉冲通过前庭蜗神经的前庭分支前进,前庭分支又将运动脉冲传达至适当的肌肉以维持平衡。
耳蜗是内耳中与听觉相关的部分。耳蜗为锥形管样结构,其卷曲成类似于蜗牛的形状。耳蜗的内部分成三个区域,由前庭膜和基底膜的位置进一步界定。在前庭膜上方的部分为前庭阶,其从卵圆窗延伸到耳蜗的顶点,且含有外淋巴流体,外淋巴流体是钾含量低且钠含量高的水性液体。基底膜界定鼓阶区域,鼓阶从耳蜗的顶点延伸到圆窗,且也含有外淋巴。基底膜含有数千根硬纤维,纤维长度从圆窗逐渐增加到耳蜗的顶点。基底膜的纤维在通过声音启动时振动。前庭阶与鼓阶的中间是蜗管,蜗管以闭合囊形式终止于耳蜗的顶点。蜗管含有内淋巴流体,内淋巴流体类似于脑脊髓液且钾含量高。
柯蒂氏器(organ of Corti)是听觉的感觉器官,位于基底膜上并向上延伸到蜗管中。柯蒂氏器含有具有毛样凸出物从自由表面伸出的毛细胞,且接触称为耳蜗覆膜的凝胶状表面。虽然毛细胞没有轴突,但是其被形成前庭蜗神经(脑神经VIII)的蜗支的感觉神经纤维环绕。
如所讨论,又称为卵形窗的卵圆窗与镫骨连通,以传达从鼓膜振动的声波。振动传递到卵圆窗,通过外淋巴和前庭阶/鼓阶,增加充满流体的耳蜗内的压力,随后又引起圆窗膜对此作出反应而张开。卵圆窗向内按压/圆窗向外张开一致进行,使得耳蜗内的流体运动而不改变耳蜗内的压力。然而,当振动穿过前庭阶中的外淋巴时,其在前庭膜中产生相应振荡。这些相应振荡穿过蜗管的内淋巴,并传递到基底膜。当基底膜振荡或上下运动时,柯蒂氏器随之一起运动。接着柯蒂氏器中的毛细胞受体抵靠着耳蜗覆膜运动,引起耳蜗覆膜机械变形。此机械变形将引发神经冲动,神经冲动通过前庭蜗神经前进至中枢神经系统,从而将所接收到的声波以机械方式传递成随后经中枢神经系统处理的信号。
疾病
自身免疫性内耳病
自身免疫性内耳病(AIED)是感觉神经性听力损失的少数可逆病因之一。它是出现在成人与儿童中的稀有病症,常常涉及内耳的听觉和前庭功能的双侧紊乱。多数情况下,AIED没有全身性自身免疫症状,但多达三分之一的患者也患有全身性自身免疫疾病,例如发炎性肠道疾病、类风湿性关节炎(姆汀(Murdin,L.)等人(2007)听力困难在类风湿性关节炎患者中是常见的(Hearing difficulties are common in patients withrheumatoid arthritis),临床风湿病学(Clin Rheumatol),27(5):637-640)、强直性脊柱炎、全身性红斑狼疮(SLE)、斯耶格伦氏综合症(Syndrome)、科根氏病(Cogan'sdisease)、溃疡性结肠炎、韦格纳氏肉芽肿(Wegener's granulomatosis)和硬皮病。白塞氏病(Behget's disease)是一种多系统疾病,也常常有听觉前庭的问题。一些证据证明食物相关性过敏症为耳蜗和前庭自身免疫的病因,但目前并不认同其在所述疾病病因中的重要性。已经发展AIED的分类方案(哈里斯(Harris)和吉时利(Keithley),(2002)自身免疫性内耳病(Autoimmune inner ear disease),耳鼻咽喉头颈外科(Otorhinolaryngology Head and Neck Surgery).91,18-32)。
免疫系统通常在保护内耳不受例如细菌和病毒等侵入病原体伤害中起关键作用。然而,在AIED中,免疫系统自身开始破坏脆弱的内耳组织。内耳完全能够发动对外来抗原的局部免疫反应。当外来抗原进入内耳时,其首先被存在于内淋巴囊内和周围的免疫活性细胞处理。一旦外来抗原被这些免疫活性细胞处理,这些细胞就将分泌出各种调节内耳免疫反应的细胞因子。细胞因子释放的一个结果是,促进从体循环中募集的发炎细胞流入。这些全身性发炎细胞通过血球渗出,穿过螺旋轴静脉和其支流进入耳蜗,且开始参与抗原吸收和反调节,正如在身体其它部分中发生的一样。白细胞介素1(IL-1)在调节先天性(非特异性)免疫反应中起重要作用,且为休眠T辅助细胞和B细胞的已知活化剂。T辅助细胞一旦经IL-1活化,即产生IL-2。IL-2的分泌可引起多能T细胞分化成辅助、细胞毒性和抑制T细胞亚型。IL-2也帮助T辅助细胞活化B淋巴细胞,且可能在前庭和耳蜗区域的免疫反应的免疫调节中起关键作用。IL-2早在抗原攻击后第6小时即在内耳的外淋巴内,且在抗原攻击后第18小时达到峰值含量。接着IL-2的外淋巴含量消散,且在抗原攻击后第120小时IL-2不再存在于外淋巴内。
IL-1β与肿瘤坏死因子-α(TNF-α)都可能在免疫反应的开始和扩大中起关键作用。在存在例如外科手术创伤或听觉损伤等损伤下,在非特异性反应中,IL-1β由螺旋韧带的纤维细胞表达。在抗原存在下TNF-α由浸润性全身性细胞或者由内淋巴囊内含有的固有细胞表达。在动物模型中,TNF-α作为适应性(特异性)免疫反应的一部分释放。当抗原注射至小鼠的内耳中时,IL-1β与TNF-α都表达,且出现强烈的免疫反应。然而,在缺乏损伤下当抗原通过脑脊液引入内耳中时,仅表达TNF-α且免疫反应最小。重要的是,孤立的耳蜗损伤也只引起最小的免疫反应。这些结果表明,只有非特异性与特异性免疫反应组分在内耳中共同起作用,才会获得最大反应。
因此,如果耳蜗受损伤且注射抗原(或在自身免疫疾病的状况下,患者具有针对内耳抗原的免疫细胞),那么非特异性与特异性免疫反应可同时活化。此会导致IL-1β与TNF-α同时产生,引起发炎程度极大地扩大,导致内耳受到相当大的损伤。随后在动物模型中的实验证实,免疫介导的损伤中的一个重要步骤要求在特异性适应性免疫反应引起足以导致损伤的发炎之前,应通过非特异性先天性免疫反应来调节内耳(桥本(Hashimoto),听力学与神经耳科学(Audiol.Neurootol.)(2005),10,35-43)。因此,下调或阻断特异性免疫反应、尤其是TNF-α影响的药剂可预防特异性与非特异性免疫反应同时活化时所见到的过度免疫反应。
因而,一些实施例包括通过投予抗TNF剂来治疗自身免疫性耳部疾病。依那西普(Etanercept)是一种抗TNF药物,其有望成为治疗自身免疫性内耳病的药剂。另外,抗TNF剂英利昔单抗(infliximab)阿达木单抗(adalimumab)和戈利木单抗(golimumab)也适用于治疗自身免疫性内耳病症。患有AIED的个体的全身性治疗的临床试验方案包括每周注射呈注射液形式的抗TNF剂两次。其它实施例包括通过投予选自以下的免疫调节剂来治疗自身免疫性耳部疾病:TACE抑制剂、IKK抑制剂、钙调神经磷酸酶(calcineurin)抑制剂、黄酮衍生物、toll样抑制剂、白细胞介素抑制剂或其组合。
在其它实施例中,包括用免疫调节剂与包括以下的另一药剂的组合来治疗自身免疫性耳部病症:类固醇、化学治疗剂、胶原蛋白、γ球蛋白输注液或其它免疫调节药物。类固醇包括例如泼尼松(prednisone)或地卡特隆(decadron)。化学治疗剂包括例如环磷酰胺(cytoxan)、硫唑嘌呤(azathiaprine)或甲氨蝶呤(methotrexate)。任选使用血浆除去程序。使用口服胶原蛋白、γ球蛋白输注液或其它免疫调节药物(例如β-干扰素、α干扰素或克帕松(copaxone))的治疗也任选与抗TNF药物组合使用。
膜迷路积水
膜迷路积水是指内耳的内淋巴系统内水压增加。内淋巴与外淋巴由含有多个神经的薄膜分离。压力波动会压迫膜和其所具有的神经。如果压力足够大,那么可能在膜中造成破坏。此会引起流体混合,导致去极化阻断和功能短暂性丧失。前庭神经放电速率的变化常常引起眩晕。另外,柯蒂氏器也可能受到影响。基底膜以及内毛细胞和外毛细胞的变形会导致听力损失和/或耳鸣。
病因包括代谢紊乱、激素不平衡、自身免疫疾病和病毒、细菌或真菌感染。症状包括听力损失、眩晕、耳鸣和耳胀。也可能出现眼球震颤。治疗包括全身性投予苯并二氮呯(benzodiazepine)、利尿剂(减少流体压力)、皮质类固醇和/或抗细菌剂、抗病毒剂或抗真菌剂。
复发性前庭病
复发性前庭病是个体多次发作严重眩晕的病状。眩晕发作可能持续数分钟或数小时。其不同于梅尼埃尔氏病,不伴有听力损失。在一些状况下,其可能发展成梅尼埃尔氏病或良性阵发性位置性眩晕。治疗类似于梅尼埃尔氏病。
耳鸣
耳鸣定义为在缺乏任何外界刺激下感觉到声音。其可能连续或零星地发生在一个或两个耳朵中,且最常描述为振铃声。其最常用作其它疾病的诊断性症状。存在两种类型的耳鸣:客观性和主观性。前者是任何人可听到的在体内产生的声音。后者仅仅是患病个体能听到。研究估计,超过五千万的美国人经历过某种形式的耳鸣。在这五千万人中,约一千二百万人经历严重的耳鸣。
针对耳鸣有一些治疗。静脉内投予利多卡因(Lidocaine)可减少或消除约60%-80%患者中与耳鸣相关的噪音。例如去甲替林(nortriptyline)、舍曲林(sertraline)和帕罗西汀(paroxetine)等选择性神经传递素再摄取抑制剂也显示针对耳鸣的功效。苯并二氮呯也被开立为药方来治疗耳鸣。
眩晕
眩晕描述为虽然身体静止不动,却感到旋转或摇摆。存在两种类型的眩晕。主观性眩晕是错误地感觉到身体在运动。客观性眩晕是感觉周围在运动。其常常伴有恶心、呕吐和难以维持平衡。
虽然不希望受到任一理论的束缚,但是假定眩晕是由内淋巴过多累积而引起。此流体不平衡会引起内耳细胞上的压力增加,从而产生运动的感觉。眩晕最常见的病因是良性阵发性位置性眩晕或BPPV。其也可以是由头部损伤或血压突然改变所致。眩晕是若干疾病的诊断性症状,这些疾病包括上半规管裂隙综合症(superior canal dehiscencesyndrome)和梅尼埃尔氏病。
良性阵发性位置性眩晕
良性阵发性位置性眩晕是由自由浮动的碳酸钙结晶(耳石)从椭圆囊运动到一个半规管(最常是后半规管)所引起的。头部的运动引起耳石运动,导致内淋巴位移异常,从而感到眩晕。眩晕发作通常持续约一分钟,且很少伴有其它的听觉症状。
登陆困难症
登陆困难症是通常发生在持续的运动事件,例如航行、汽车旅行或乘飞机之后的病状。其特征为持久的运动感觉、难以维持平衡、疲劳和认知障碍。症状也可包括头晕、头疼、听觉过敏和/或耳鸣。症状常常持续一个月以上。治疗包括苯并二氮呯、利尿剂、钠通道阻断剂和三环抗抑郁药。
外耳炎
外耳炎(OE)也称为游泳性耳病,是外耳的发炎和/或感染。OE常常是由外耳中的细菌引起,这些细菌在破坏耳道皮肤后形成感染。虽然引起OE的主要细菌性病原体是绿脓杆菌(Pseudomonas aeruginosa)和金黄色葡萄球菌(Staphylococcus aureus),但此病状与许多其它的革兰氏阳性和阴性细菌菌株的存在相关联。OE还有时候是由外耳中的真菌感染所引起,包括白色念珠菌(Candida albicans)和曲霉属(Aspergillus)。OE的症状包括耳痛、肿胀和耳液溢。如果此病状进展显著,那么OE可能因肿胀和排出物而引起暂时性传导性听力损失。
OE的治疗包含消除来自耳道的致病性病原体和减少发炎,通常通过投予例如抗细菌剂与抗真菌剂等抗微生物剂与例如类固醇等消炎剂的组合来实现。用于治疗OE的典型抗细菌剂包括氨基糖苷(aminoglycoside)(例如新霉素(neomycin)、庆大霉素(gentamycin)和托普霉素(tobramycin))、多粘菌素(polymyxin)(例如多粘菌素B)、氟喹诺酮(fluoroquinolone)(例如氧氟沙星(ofloxacin)和环丙沙星(ciprofloxacin))、头孢菌素(cephalosporin)(例如头孢呋肟(cefuroxime)、头孢克洛(ceflacor)、头孢丙烯(cefprozil)、氯碳头孢(loracarbef)、头孢芬迪(cefindir)、头孢克肟(cefixime)、头孢泊肟酯(cefpodoxime proxetil)、头孢布烯(cefibuten)和头孢曲松(ceftriaxone))、青霉素(penicillin)(例如阿莫西林(amoxicillin)、阿莫西林-克拉维酸盐和抗青霉素酶青霉素)和其组合。用于治疗OE的典型抗真菌剂包括克霉唑(clotrimazole)、噻美唑(thimerasol)、乙酸间甲酚酯(M-cresyl acetate)、托萘酯(tolnaftate)、伊曲康唑(itraconazole)和其组合。也可将乙酸单独和与其它药剂组合投予耳朵,以治疗细菌和真菌感染。当OE疼痛非常严重,以致干扰例如睡觉等正常活动时,可给予例如局部镇痛剂或口服麻醉药等止痛药,直到减轻潜在的发炎和感染。
中耳炎
中耳炎(OM)包括急性中耳炎(AOM)、慢性中耳炎、渗出性中耳炎(OME)、分泌性中耳炎和慢性分泌性中耳炎作为实例,是一种出现在耳鼓与内耳之间的区域中的病状。细菌感染是大多数OM病例的原因,其中超过40%的病例可归因于肺炎链球菌(Streptococcus pneumoniae)感染。然而,病毒以及其它微生物也可能是OM病状的原因。
AOM是最经常为纯粹病毒性和自限性的病状。病毒性AOM可在很短时间内引起细菌性中耳炎,特别是在儿童中。症状包括(但不限于)耳朵充血、不适、脓液和压力不平衡。OME是特征为中耳空间中出现累积的病状。其常常是由改变的耳咽管功能所产生的负压引起。流体累积有时会导致传导性听力损伤(例如当其干扰鼓膜振动的能力时)。如果病状持续,那么流体的粘度可增加,从而增大听力损失的可能性。
因为OM可由病毒、细菌或两者引起,所以常常难以鉴别确切的病因,因此难以确定最适当的治疗。OM的治疗选择包括抗生素,例如青霉素(例如阿莫西林和阿莫西林-克拉维酸盐)、克拉维酸、甲氧苄啶-磺胺甲恶唑(trimethoprim-sulfamethoxazole)、头孢菌素(例如头孢呋肟、头孢克洛、头孢丙烯、氯碳头孢、头孢芬迪、头孢克肟、头孢泊肟酯、头孢布烯和头孢曲松)、大环内酯(macrolide)和氮杂内酯(azalide)(例如红霉素(erythromycin)、克拉霉素(clarithromycin)和阿奇霉素(azithromycin))、磺酰胺(sulfonamide)和其组合。也可以使用外科手术,包括鼓膜切开术,其为一种将鼓膜造孔管穿过鼓膜并插入病人的中耳中以排去流体且使外耳与中耳之间的压力平衡的手术。包括苯佐卡因(benzocaine)、布洛芬(ibuprofen)和乙酰胺苯酚(acetaminophen)的退热剂和镇痛剂也可以被开立为药方来治疗伴随的发热或疼痛影响。
乳突炎
乳突炎为乳突受到感染,乳突是在耳朵后面的颞骨的一部分。其通常由未经治疗的急性中耳炎引起。乳突炎可为急性或慢性的。症状包括乳突区疼痛、肿胀和触痛以及耳痛、红斑(erythematosus)和耳液溢。
乳突炎通常是在细菌从中耳传播到乳突气房时发生,其中发炎引起对骨结构的破坏。最常见的细菌性病原体是肺炎链球菌、化脓性链球菌(Streptococcus pyogenes)、金黄色葡萄球菌和革兰氏阴性杆菌(gram-negative bacilli)。因此,包含有效针对细菌的抗细菌剂的本文所揭示的抗微生物剂调配物适用于治疗乳突炎,包括急性乳突炎和慢性乳突炎。
大疱性鼓膜炎是鼓膜受到感染,由包括支原体细菌(Mycoplasma bacteria)在内的多种细菌和病毒引起。此感染会引起鼓膜和附近的耳道发炎,并引起耳鼓上形成水泡。大疱性鼓膜炎的主要症状是疼痛,通过投予镇痛剂可减轻。包含抗细菌剂和抗病毒剂的本文所揭示的抗微生物调配物适用于治疗大疱性鼓膜炎。
感觉神经性听力损失
感觉神经性听力损失是一类由前庭蜗神经(也称为脑神经VIII)或内耳感觉细胞存在缺陷(先天性和后天性)所引起的听力损失。大部分内耳缺陷是耳毛细胞的缺陷。
耳蜗发育不全、染色体缺陷和先天性胆脂瘤是可引起感觉神经性听力损失的先天性缺陷的实例。以非限制性实例说明,发炎性疾病(例如化脓性迷路炎、脑膜炎、腮腺炎、麻疹、病毒性梅毒和自身免疫病症)、梅尼埃尔氏病、暴露于耳毒性药物(例如氨基糖苷、袢利尿剂(loop diuretics)、抗代谢物、水杨酸酯(salicylate)和顺铂(cisplatin))、身体损伤、老年性耳聋和听觉损伤(长时间暴露于超过90dB的声音)都可以引起后天性感觉神经性听力损失。
如果引起感觉神经性听力损失的缺陷是听觉通路的缺陷,那么感觉神经性听力损失称为中枢性听力损失。如果引起感觉神经性听力损失的缺陷是听觉通路的缺陷,那么感觉神经性听力损失称为皮质性聋。
耳毒性
耳毒性是指由毒素引起的听力损失。此听力损失可由耳毛细胞、耳蜗和/或脑神经VII的损伤引起。已知多种药物具有耳毒性。耳毒性常常取决于剂量。在停止服用药物后,耳毒性可能为持久或可逆转的。
已知的耳毒性药物包括(但不限于)氨基糖苷类抗生素(例如庆大霉素和阿米卡星(amikacin))、大环内酯类抗生素的一些成员(例如红霉素)、糖肽类抗生素的一些成员(例如万古霉素(vancomycin))、水杨酸、烟碱、一些化学治疗剂(例如放线菌素(actinomycin)、博来霉素(bleomycin)、顺铂、卡铂(carboplatin)和长春新碱(vincristine))、和袢利尿剂家族药物的一些成员(例如呋塞米(furosemide))。
顺铂和氨基糖苷类抗生素诱发活性氧(reactive oxygen species,ROS)的产生。ROS可直接通过损伤DNA、多肽和/或脂质使细胞受损。抗氧化剂通过预防ROS形成或在ROS损伤细胞之前清除自由基来预防ROS造成的损伤。顺铂与氨基糖苷类抗生素也都被认为是通过结合内耳血管纹中的黑色素来损伤耳朵。
水杨酸被归类为耳毒性药物是因为其抑制多肽压力素(prestin)的功能。压力素通过控制氯离子和碳酸根穿过外耳毛细胞的质膜交换,来介导外耳毛细胞的运动。仅在外耳毛细胞中发现压力素,在内耳毛细胞中未发现。因此,本文揭示包含抗氧化剂的控制释放型耳用组合物的用途,其用于预防、改善或减轻包括(但不限于)顺铂治疗、氨基糖苷或水杨酸投药或其它耳毒性药剂在内的化学疗法的耳毒性作用。
兴奋性毒性
兴奋性毒性是指谷氨酸和/或类似物质使神经元和/或耳毛细胞死亡或损伤。
谷氨酸是中枢神经系统中最丰富的刺激性神经传递素。突触前神经元在刺激后会释放出谷氨酸。谷氨酸流过突触,结合于位于突触后神经元上的受体,并活化这些神经元。谷氨酸受体包括NMDA、AMPA和红藻氨酸受体。谷氨酸转运体的工作是将细胞外谷氨酸从突触中除去。某些事件(例如缺血或中风)可损伤这些转运体。此会导致突触中谷氨酸过多累积。突触中过多的谷氨酸可引起谷氨酸受体过度活化。
AMPA受体通过谷氨酸和AMPA两者的结合而活化。AMPA受体的某些同功异型物的活化会引起位于神经元质膜中的离子通道打开。当通道打开时,Na+和Ca2+离子流入神经元中且K+离子从神经元中流出。
NMDA受体通过谷氨酸和NMDA两者的结合而活化。NMDA受体的活化会引起位于神经元质膜中的离子通道打开。然而,这些通道被Mg2+离子阻断。AMPA受体的活化会引起Mg2+离子从离子通道排到突触中。当离子通道打开且Mg2+离子排空离子通道时,Na+和Ca2+离子流入神经元中且K+离子从神经元中流出。
当NMDA受体和AMPA受体通过结合过量配体,例如异常量的谷氨酸而过度活化时,产生兴奋性毒性。这些受体过度活化会引起离子通道在其控制下过多地打开。此使得异常高含量的Ca2+和Na+进入神经元中。这些含量的Ca2+和Na+流入神经元中会引起神经元更高频率地放电,从而引起自由基和发炎性化合物迅速积聚于细胞内。自由基最终损伤线粒体,消耗细胞的能量存储。此外,过多含量的Ca2+和Na+离子活化过多含量的酶,包括(但不限于)磷脂酶、核酸内切酶和蛋白酶。这些酶的过度活化引起对感觉神经元的细胞骨架、质膜、线粒体和DNA的破坏。
拉姆齐·亨特综合症(带状疱疹感染)
拉姆齐·亨特综合症由听神经的带状疱疹感染所引起。此感染可能引起严重的耳痛、听力损失、眩晕,以及外耳上、耳道中以及由这些神经供给的面部或颈部的皮肤上出现水泡。如果肿胀挤压面神经,那么脸部肌肉也可能变瘫痪。听力损失可为暂时性或永久性的,且眩晕症状通常持续数天到数周。
拉姆齐·亨特综合症的治疗包括投予包括阿昔洛韦(acyclovir)在内的抗病毒剂。其它抗病毒剂包括泛昔洛韦(famciclovir)和发昔洛韦(valacyclovir)。也可以采用抗病毒剂与皮质类固醇疗法的组合来改善带状疱疹感染。也可以投予镇痛剂或麻醉药来减轻疼痛,且投予安定(diazepam)或其它的中枢神经系统药剂来抑制眩晕。任选使用辣椒素(Capsaicin)、利多卡因贴片和神经阻滞。也可以对挤压的面神经进行外科手术以减轻面神经麻痹。
迷路炎
迷路炎是含有内耳前庭系统的耳迷路发炎。病因包括细菌、病毒和真菌感染。其也可能由头部损伤或过敏症引起。迷路炎的症状包括难以维持平衡、头晕、眩晕、耳鸣和听力损失。恢复可能需要一至六周;然而,慢性症状可能存在多年。
对迷路炎有若干种治疗。丙氯拉嗪(Prochlorperazine)常常被开立为药方作为止吐剂。血清素再摄取抑制剂显示对内耳中新的神经生长有刺激作用。另外,如果病因是细菌感染,那么开立药方用抗生素治疗,且如果病状由病毒感染引起,那么建议用皮质类固醇和抗病毒剂治疗。
晕动病
晕动病又称为运动病,是视觉上所察觉的运动与前庭系统的动作感觉之间断开的病状。头晕、疲劳和恶心是最常见的晕动病症状。茶苯海明(Dimenhydrinate)、桂利嗪(cinnarizine)和美克利嗪(meclizine)都是对晕动病的全身性治疗。另外,苯并二氮呯和抗组胺药显示治疗晕动病的功效。
梅尼埃尔氏病
梅尼埃尔氏病是一种特发性病状,其特征为眩晕、恶心和呕吐突然发作,可持续3至24个小时,且可逐渐消退。进行性听力损失、耳鸣和耳中压力感伴随此疾病,历经病程。梅尼埃尔氏病的病因可能与内耳流体稳态的不平衡相关,包括内耳流体的产生增加或再吸收减少。
对内耳中加压素(VP)介导的水通道蛋白2(AQP2)系统的研究表明,VP在诱导内淋巴产生,从而增加前庭和耳蜗结构中的压力方面起作用。发现在膜迷路积水(梅尼埃尔氏病)病例中VP含量上调,且发现天竺鼠中长期投予VP会诱发膜迷路积水。用VP拮抗剂治疗,包括输注OPC-31260(V2-R的竞争性拮抗剂))至鼓阶中,可使梅尼埃尔氏病症状显著地减少。其它VP拮抗剂包括WAY-140288、CL-385004、托伐普坦(tolvaptan)、考尼伐坦(conivaptan)、SR 121463A和VPA 985。(桑吉(Sanghi)等人,欧洲心脏杂志(Eur.Heart J.)(2005)26:538-543;帕姆(Palm)等人,肾病学,透析,移植术(Nephrol Dial Transplant)(1999)14:2559-2562)。
其它研究表明,雌激素相关受体β/NR3B2(ERR/Nr3b2)在调节内淋巴产生,因此调节前庭/耳蜗器官中的压力方面起作用。小鼠中的基因敲除研究显示,Nr3b2基因的多肽产物在调节内淋巴流体产生方面起作用。Nr3b2的表达分别定位于耳蜗和前庭器官的分泌内淋巴的血管纹边缘细胞和前庭暗细胞中。另外,Nr3b2基因的条件基因敲除会引起耳聋和内淋巴流体量减少。用ERR/Nr3b2的拮抗剂治疗可有助于减小内淋巴体积,因此改变内耳结构中的压力。
其它治疗可针对处理即刻的症状和预防复发。提倡低钠饮食,避免咖啡因、酒精和烟草。可暂时地减轻眩晕发作的药物包括抗组胺药(包括美克利嗪和其它抗组胺药)和中枢神经系统药剂,包括巴比妥酸盐(barbiturate)和/或苯并二氮呯,包括劳拉西泮(lorazepam)或安定。可用于减轻症状的药物的其它实例包括毒蕈碱型拮抗剂,包括莨菪碱(scopolamine)。可通过含有抗精神病药(包括吩噻嗪药剂丙氯拉嗪)的栓剂来减轻恶心和呕吐。
用以减轻症状的外科手术程序包括破坏前庭和/或耳蜗的功能以减轻眩晕症状。这些程序旨在减少内耳中的流体压力和/或破坏内耳的平衡功能。可在内耳中进行减轻流体压力的内淋巴分流程序,以减轻前庭功能障碍的症状。其它的治疗包括应用庆大霉素,其在注射至鼓膜中时会破坏感觉毛细胞的功能,从而根除内耳的平衡功能。也可以切断前庭神经,此在保留听觉的同时可控制眩晕。
梅尼埃尔氏综合症
梅尼埃尔氏综合症显示与梅尼埃尔氏病类似的症状,认为其是例如梅毒感染所致的甲状腺疾病或内耳发炎等另一疾病过程的继发性疾病。因此,梅尼埃尔氏综合症是干扰内淋巴正常产生或再吸收的各种过程的副效应,包括内分泌异常、电解质不平衡、自身免疫功能障碍、药物治疗、感染(例如寄生虫感染)或高脂质血症。患有梅尼埃尔氏综合症的患者的治疗类似于梅尼埃尔氏病。
微血管压迫综合症
微血管压迫综合症(MCS)又称为“血管压迫”或“神经血管压迫”,是一种特征为眩晕和耳鸣的病症。其由血管对脑神经VII的刺激所引起。在患有MCS的个体中发现的其它症状包括(但不限于)严重的运动难忍、和神经痛如“迅速旋转”一样。MCS用卡马西平(carbamazepine)、和巴氯芬(baclofen)治疗。其也可用外科手术来治疗。
前庭神经元炎
前庭神经元炎或前庭神经病是一种急性并持续的周围前庭系统功能障碍。推断前庭神经元炎由来自一个或两个前庭器官的传入神经元输入遭到破坏所引起。此破坏的原因包括前庭神经和/或迷路的病毒感染和急性局部缺血。
在诊断前庭神经元炎时,最重大的发现是自发、单向、水平性眼球震颤。其常常伴有恶心、呕吐和眩晕。然而,其一般不伴有听力损失或其它的听觉症状。
对前庭神经元炎有若干种治疗。例如茶苯海明、苯海拉明(diphenhydramine)、美克利嗪和异丙嗪等H1-受体拮抗剂通过抗胆碱能作用可减少前庭刺激并抑制迷路功能。例如安定和劳拉西泮等苯并二氮呯也因作用于GABAA受体而可用以抑制前庭反应。也开立抗胆碱能药的药方,例如莨菪碱。这些抗胆碱能药通过抑制前庭小脑通路中的传导性起作用。最后,开立皮质类固醇(即泼尼松)的药方来改善前庭神经和相关器官的发炎。
听觉损伤
长时间暴露于例如大声的音乐、重型设备或机器、飞机或炮火等巨大的噪音也可能出现听力损失。听力损失因内耳中毛细胞受体遭到破坏而引起。此听力损失常常伴有耳鸣。常常诊断出听力损失为永久性损伤。
虽然目前还无法治疗噪音诱发的听力损失,但是已经在实验上研发若干种治疗方案,包括用胰岛素样生长因子1(IGF-1)治疗。(李(Lee)等人,耳科学与神经耳科学(Otol.Neurotol.)(2007)28:976-981)。
老年性耳聋
老年性耳聋或年龄相关性听力损失是作为自然衰老的一部分而出现,且因内耳中柯蒂氏螺旋器中的感受细胞退化而引起。其它病因也可归于前庭蜗神经中大量神经纤维减少,以及耳蜗中基底膜的柔性丧失。目前已知尚无法治愈因老年性耳聋或过度噪音而引起的永久性听力损伤。
遗传性病症
在约20%的感觉神经性听力损失患者中发现包括沙伊贝综合症、蒙蒂尼-米歇尔综合症、瓦尔登布尔氏综合症、迈克尔综合症、亚历山大耳畸形、距离过远、耶韦尔-兰赫-尼尔森综合症、雷氏综合症和尤希尔氏综合症在内的遗传性病症。先天性耳畸形可能由膜迷路、骨迷路或两者的发育缺陷所引起。除深度听力损失和前庭功能异常外,遗传性畸形也可能导致其它功能障碍,包括发展复发性脑膜炎、脑脊液(CSF)泄漏以及外淋巴瘘。需要在遗传性病症患者中治疗慢性感染。
耳硬化症
骨重塑是一个终生的过程,其中旧的骨头从骨架上移走(骨吸收)并加入新的骨头(骨形成)。这些过程也控制生长期间和受伤后骨头的再成型或替换。骨吸收与骨形成的调节不平衡会引起许多骨病,例如耳硬化症。
骨重塑包含破骨细胞侵蚀骨头,接着成骨细胞再填充再吸收部位。破骨细胞粘着于骨头,且通过酸化和蛋白水解消化除去。接着在骨头中形成隧道,且这些隧道充当成骨细胞和小血管的通路。新鲜的类骨质(水泥样物质)层通过成骨细胞沉积在隧道中,且最终变成新的骨基质。
破骨细胞分泌用于溶解骨头物质的各种酶。举例来说,抗酒石酸酸性磷酸酶(TRACP)使骨头脱钙,而组织蛋白酶K消化骨基质蛋白质。骨头稳态的调节通过若干因子来控制。这些因子可以分成三组:1)影响成骨细胞活性的因子,例如甲状旁腺激素(PTH)或1,25-二羟基维生素D3;2)影响破骨细胞前体或破骨细胞的因子,例如成骨细胞产生在破骨细胞分化中起作用的骨保护素(OPG)和RANKL;和3)具有双潜能作用的因子(例如TGF-β可分别通过作用于成骨细胞或破骨细胞来抑制或促进破骨细胞分化)。
“耳硬化症”是人类颞骨听囊内的局部骨重塑。三个小骨,即锤骨、砧骨和镫骨,在中耳中将声音从鼓膜传导至内耳的卵圆窗。耳的骨结构的病变从稳定的听囊骨头软化/再吸收(“活跃期”)开始,接着为骨沉积的修复期。在耳硬化症的活跃期中,骨头中存在许多破骨细胞。板骨通过破骨细胞除去,且经更厚且血管分布更大的编织型海绵水肿性骨头替换。此海绵水肿期(“耳海绵症”)对内耳产生其最显著的作用。耳海绵症可产生进行性感觉神经性听力损失、耳鸣、头晕和梅尼埃尔氏综合症的症状。硬化期仍然可能在内耳周围具有活跃的骨头脱矿质成分,而且伴有更坚硬或硬化的成分。视觉检验无法确定骨头为海绵水肿性或是硬化性。凭肉眼,其似乎为硬骨头,因此称为耳硬化症,不过其可能处于活跃期,且更适宜称为耳海绵症。依常见用法,此病症的两期都称为耳硬化症。
耳硬化症的传导性听力损失由两个涉及硬化(或疤痕样)病变的主要部位引起。异常骨头生长将镫骨足板固定于耳蜗的卵圆窗。此将减弱镫骨的运动,因此减弱声音传递至内耳中(“听骨耦接”)。另外,耳蜗圆窗也可硬化,并减弱声压波运动穿过内耳(“声耦接”)。耳硬化症也可能引起感觉神经性听力损失,即耳硬化症患者中耳蜗的神经纤维或听觉毛细胞可能受损。水解酶通过海绵水肿性病变释放至内耳结构中可能在耳蜗的听觉细胞损失中起作用。
虽然遗传因素在此疾病的病因中起作用,但麻疹病毒感染和自身免疫也可能起促进作用。耳硬化症的治疗包括除去固定的镫骨骨头的外科手术,称为镫骨切除术。本文揭示用于治疗耳硬化症的非外科手术方法。
胆脂瘤
胆脂瘤是常常在中耳中发现的过度增殖囊肿。胆脂瘤分类为先天性或后天性的。后天性胆脂瘤由耳鼓收缩(原发性)和/或耳鼓撕开(继发性)引起。
最常见的原发性胆脂瘤由松弛部收缩至鼓室上隐窝中引起。当松弛部继续收缩时,鼓室上隐窝的侧壁缓慢腐蚀。此在鼓室上隐窝侧壁中产生缺陷且慢慢扩大。一种不太常见类型的原发性后天性胆脂瘤由鼓膜后象限收缩到中耳后部中所引起。当鼓膜收缩时,扁平上皮包围镫骨并收缩至鼓室窦中。继发性胆脂瘤由鼓膜损伤(例如由中耳炎引起的穿孔;创伤;或外科手术诱发的损伤)引起。
与胆脂瘤生长相关联的并发症包括破骨细胞损伤,以及在一些状况下分离耳朵顶部与脑的薄骨层受损。对破骨细胞的破坏是由胆脂瘤扩大导致压力持久地施加于骨头所引起。另外,胆脂瘤上皮中存在多个细胞因子(例如TNF-α、TGF-β1、TGF-β2、Il-1和IL-6)可引起周围骨头进一步退化。
胆脂瘤患者常常出现耳朵痛、听力损失、脓性粘液溢和/或头晕。身体检查可以证实胆脂瘤的存在。在身体检查后可鉴别的症状包括对小骨的破坏和充满粘液性脓和肉芽组织的耳道。
目前对胆脂瘤没有有效的医学疗法。因为胆脂瘤没有血液供应,所以无法用全身性抗生素治疗。局部投予抗生素常常无法治疗胆脂瘤。
再灌注损伤
缺血是一种特征为器官的血液供应缺乏或不足量的病状。缺血常常因所引起的氧缺乏或不足而导致不可逆的组织破坏(例如坏死)。仅仅20分钟的完全氧丧失即可引起不可逆的器官破坏。
缺血是例如(但不限于)心脏病、短暂性缺血性发作、脑血管意外、破裂动静脉畸形、周围动脉闭塞疾病、中风和头部损伤等病症的后发症。耳蜗的缺血尤其是由脊椎动脉和/或脑动脉闭塞、中风、心血管疾病和听觉损伤引起。
再灌注是在缺血后恢复器官的正常血液供应。在一些情况下,再灌注导致对因缺血事件已受到破坏的组织以及周围组织的额外破坏(再灌注损伤)。在一些情况下,再灌注损伤由恢复的血液供应中的白血球对因缺血而受到破坏的组织起反应所引起。另外,在一些情况下,补体系统(由恢复的血液供应运载)破坏因缺血而受损的组织,和周围组织(例如通过MAC、促进调理作用和多种过敏毒素的存在)。在一些情况下,补体系统损耗或失活可改善再灌注损伤。
骨化性迷路炎
骨化性迷路炎(aka迷路骨化、耳蜗骨化或前庭骨化)是一种特征为骨头发育或生长(例如类骨质沉积,接着矿质化和再组织)到骨迷路的管腔内的空间中的病状。迷路管腔的骨化对内淋巴和外淋巴空间产生破坏,导致耳聋和前庭系统功能障碍。在迷路的蜗区中,鼓阶最常为骨化部位。
最通常是由AIED或存在病原体(例如肺炎链球菌(S.pneumoniae)和流感嗜血杆菌(H.influenzae))所引起的发炎反应导致迷路骨化。关于病原体感染,在感染的几个月内将出现完全骨化。在一些情况下,补体系统损耗或失活可改善骨化性迷路炎的发展。另外,例如耳迷路动脉血管阻塞、颞骨损伤、白血病和颞骨肿瘤等病症也可引起骨化性迷路炎的发展。
治疗潜在的病原体感染(例如脑膜炎、中耳炎和迷路炎)可完全或部分地预防骨化性迷路炎的发展。此外,补体系统失活也可完全或部分地预防骨化性迷路炎的发展。然而,如果此疾病进展,那么一种当前治疗法为经外科手术除去过多的骨头。另外,在骨化性迷路炎的严重病例中,需要耳蜗植入物来恢复听力。
药剂
本文提供调节遭破坏、发育不良、功能失常、受损、脆弱或损失的耳结构的耳结构调节剂组合物或调配物。在一些实施例中,耳结构调节剂组合物或调配物参与遭破坏、发育不良、功能失常、受损、脆弱或损失的耳结构的降解。在一些实施例中,耳结构调节剂组合物或调配物参与遭破坏、发育不良、功能失常、受损、脆弱或损失的耳结构的构造。在一些实施例中,耳结构调节剂为耳结构调节目标的激动剂、耳结构调节目标的部分激动剂、耳结构调节目标的拮抗剂、耳结构调节目标的部分拮抗剂、耳结构调节目标的反向激动剂、耳结构调节目标的竞争性拮抗剂、耳结构调节目标的中性拮抗剂、耳结构调节目标的正位拮抗剂、耳结构调节目标的异位拮抗剂、耳结构调节目标的正向异位调节剂或其组合。
本文提供调节先天性免疫系统组分的先天性免疫系统调节组合物或调配物。在一些实施例中,先天性免疫系统调节剂增强先天性免疫系统组分的活性。在一些实施例中,先天性免疫系统调节剂抑制(部分或完全)先天性免疫系统组分的活性。在一些实施例中,先天性免疫系统为补体系统。
耳部和前庭病症的病因和症状对本文所揭示的药剂或其它药剂起反应。本文中未揭示或例示,但改善或根除耳部病症的耳结构调节剂或先天性免疫系统调节剂明确地包括在并且计划在所呈现的实施例的范围内。
另外,如下药剂可用于本文的一些实施例中,其先前例如通过肝处理后所形成的毒性代谢物,药物在特定器官、组织或系统中的毒性,通过获得功效需要高含量,通过经全身性通路无法释放,或通过不良的pK特征,显示在全身性或局部施加期间在其它器官系统中有毒性、有害或无效。因此,具有限制性或非全身性释放、全身性毒性、不良pK特征或其组合的药剂涵盖在本文所揭示的实施例的范围内。
本文所揭示的耳结构调节剂或先天性免疫系统调节剂调配物任选直接靶向需要治疗的耳结构;举例来说,一实施例涵盖本文所揭示的耳结构调节剂或先天性免疫系统调节剂调配物直接施加于内耳的圆窗膜或蜗窗嵴上,从而直接进入和治疗内耳或内耳组分。在其它实施例中,本文所揭示的耳结构调节剂或先天性免疫系统调节剂调配物直接施加于卵圆窗。在其它实施例中,例如通过耳蜗微灌注术,直接微注射至内耳中,实现直接进入。这些实施例也任选包含药物传递装置,其中此药物传递装置通过使用针和注射器、泵、微注射装置、原位形成的海绵状材料或其任何组合来传递耳结构调节剂或先天性免疫系统调节剂调配物。
一些单独或组合的药剂具有耳毒性。举例来说,包括放线菌素、博来霉素、顺铂、卡铂和长春新碱在内的一些化学治疗剂和包括红霉素、庆大霉素、链霉素(streptomycin)、双氢链霉素(dihydrostreptomycin)、托普霉素、奈替米星(netilmicin)、阿米卡星、新霉素、卡那霉素(kanamycin)、伊替霉素(etiomycin)、万古霉素、甲硝哒唑(metronidizole)、卷曲霉素(capreomycin)在内的抗生素从具有温和毒性到极具毒性,且对前庭和耳蜗结构的影响有差别。然而,在一些情况下,例如顺铂等耳毒性药物与耳保护剂组合,通过减轻此药物的耳毒性作用而具有保护性。另外,局部施加潜在耳毒性药物通过在维持功效下使用较低的量,或使用目标量较短的时间,也可减轻另外通过全身性施加将出现的毒性作用。
另外,一些医药赋形剂、稀释剂或载剂可能具有耳毒性。举例来说,常见的防腐剂苯扎氯铵具有耳毒性,因此,如果将其引入前庭或耳蜗结构中,那么可能引起伤害。在调配控制释放型耳结构调节剂或先天性免疫系统调节剂调配物时,建议避免或组合适当的赋形剂、稀释剂或载剂以减轻或消除调配物的潜在耳毒性组分,或减少这些赋形剂、稀释剂或载剂的量。控制释放型耳结构调节剂或先天性免疫系统调节剂调配物任选包括耳保护剂,例如抗氧化剂、α硫辛酸、钙、磷霉素(fosfomycin)或铁螯合剂,以抵抗可能由于使用具体治疗剂或赋形剂、稀释剂或载剂而引起的潜在耳毒性作用。
耳结构增强剂
欲用于本文所揭示的调配物的药剂为治疗或改善由遭破坏、发育不良、功能失常、受损、脆弱或损失的耳结构(例如组织、膜、细胞、软骨、骨头)所引起的听力损失或降低的药剂。因此,一些实施例包括使用耳结构分子组分。在一些情况下,耳结构的分子组分被身体用以替代或修复遭破坏、发育不良、功能失常、受损、脆弱或损失的耳结构。在一些实施例中,耳结构的组分为多肽或聚糖(polyglycan)。在一些实施例中,耳结构的组分为肌动蛋白、聚集蛋白聚糖、软骨素、胶原蛋白、核心蛋白聚糖、硫酸皮肤素、弹性蛋白、纤维蛋白原、纤维结合蛋白、丝束蛋白、胶质纤维酸性蛋白、硫酸乙酰肝素、透明质酸、角蛋白、层粘连蛋白、巢蛋白、NF-L、NF-M、NF-H、NF66、外周蛋白、α-微管蛋白、β-微管蛋白、绒毛蛋白、波形蛋白、旋转蛋白或其组合。
在一些情况下,肌动蛋白为细胞骨架、静纤毛和/或肌动钳马达(actoclampin motor)的分子组分。在一些情况下,聚集蛋白聚糖为软骨的分子组分。在一些情况下,软骨素为软骨的分子组分。在一些情况下,胶原蛋白为细胞外基质、软骨、韧带、肌腱、骨头和/或血管的主要组分的分子组分。在一些情况下,核心蛋白聚糖为细胞外基质和/或结缔组织的分子组分。在一些情况下,硫酸皮肤素为上皮组织的分子组分。在一些情况下,弹性蛋白为结缔组织的分子组分。在一些情况下,纤维蛋白原为血液的分子组分。在一些情况下,纤维结合蛋白为细胞骨架和/或细胞外基质的分子组分。在一些情况下,丝束蛋白为细胞骨架、静纤毛和/或肌动钳马达的分子组分。在一些情况下,胶质纤维酸性蛋白为胶质细胞的分子组分。在一些情况下,硫酸乙酰肝素为上皮组织和/或细胞骨架的分子组分。在一些情况下,透明质酸为结缔组织、上皮组织和神经组织和/或细胞外基质的分子组分。在一些情况下,角蛋白为上皮组织的分子组分。在一些情况下,层粘连蛋白为细胞外基质的分子组分。在一些情况下,α-微管蛋白为细胞骨架的分子组分。在一些情况下,巢蛋白为神经元的分子组分。在一些情况下,NF-L为神经元的分子组分。在一些情况下,NF-M为神经元的分子组分。在一些情况下,NF-H为神经元的分子组分。在一些情况下,NF66为神经元的分子组分。在一些情况下,外周蛋白为神经元的分子组分。在一些情况下,波形蛋白为神经元的分子组分。在一些情况下,β-微管蛋白为细胞骨架的分子组分。在一些情况下,绒毛蛋白为细胞骨架、静纤毛和/或肌动钳马达的分子组分。在一些情况下,旋转蛋白为静纤毛的分子组分。
在一些情况下,耳结构增强剂为透明质酸(例如(瑞典(Sweden)Q-Med AB和美迪艾斯公司(Medicis Aesthetics))、)。在一些情况下,透明质酸从病原体(例如链球菌属(streptococcus)细菌)中获得。在一些情况下,透明质酸从鸟类来源中获得(例如(健赞公司(Genzyme Corporation)))。在一些情况下,耳结构增强剂为胶原蛋白(例如(依纳美公司(Inamed Corporation)))。在一些情况下,胶原蛋白从人类中获得。在一些情况下,胶原蛋白从动物来源中获得。
耳骨重塑剂
欲用于本文所揭示的调配物的药剂为治疗或改善由遭破坏、发育不良、功能失常、受损、脆弱或损失的耳骨结构所引起的听力损失和/或平衡障碍(例如耳硬化症)的药剂。此外,欲用于本文所揭示的调配物的药剂为调节耳骨重塑的药剂。在一些实施例中,骨重塑调节剂为成骨细胞或破骨细胞的调节剂。在一些情况下,骨重塑调节剂为激素。在一些情况下,骨重塑调节剂为双膦酸盐。在一些实施例中,骨重塑调节剂为基质金属蛋白酶抑制剂。在一些情况下,骨重塑调节剂为腺苷酸环化酶(AC)调节剂。在一些情况下,骨重塑调节剂为蛋白酶抑制剂。在一些实施例中,骨重塑调节剂为抗酒石酸酸性磷酸酶(TRACP)的调节剂。在一些情况下,骨重塑调节剂为雌激素受体调节剂。在一些实施例中,骨重塑调节剂为PPARγ调节剂。在一些情况下,骨重塑调节剂为HMG-CoA还原酶抑制剂。在一些实施例中,骨重塑调节剂为斯他汀。在一些情况下,骨重塑调节剂为碳酸酐酶抑制剂。在一些实施例中,骨重塑调节剂为核κB配体受体活化剂(RANKL)的调节剂。在一些情况下,骨重塑调节剂为COX-2抑制剂。在一些实施例中,骨重塑调节剂为蛋白质异戊烯化抑制剂。在一些情况下,骨重塑调节剂为5-脂肪氧合酶抑制剂。在一些情况下,骨重塑调节剂为TNF抑制剂。在一些实施例中,骨重塑调节剂为白细胞三烯抑制剂。在一些实施例中,骨重塑调节剂为细胞因子调节剂。在一些情况下,骨重塑调节剂为TSG-6抑制剂。在一些实施例中,骨重塑调节剂为TGFβ调节剂。在一些情况下,骨重塑调节剂为一氧化氮合酶抑制剂。在一些实施例中,骨重塑调节剂为乙酰半胱氨酸。在某些实施例中,骨重塑调节剂为芳香化酶调节剂。在一些情况下,骨重塑调节剂为如WO/2008/027880(关于所揭示的主题内容,以引用的方式并入本文中)中所揭示的基于锶的化合物。
耳结构降解剂
欲用于本文所揭示的调配物的药剂为治疗或改善由遭破坏、发育不良、功能失常、受损、脆弱或损失的耳结构所引起的听力损失和/或平衡障碍(例如梅尼埃尔氏病、膜迷路积水、前庭神经元炎)的药剂。此外,欲用于本文所揭示的调配物的药剂为通过降解屏障(例如细胞、脂质基质、细胞外基质、桥粒)促进耳用活性剂穿透至中耳和/或内耳中的药剂。此外,欲用于本文所揭示的调配物的药剂为充当抗微生物剂(例如抑制微生物粘着于耳结构的药剂)的药剂。另外,欲用于本文所揭示的调配物的药剂为治疗或改善由流体(例如粘液和脓液)和/或耳垢累积在耳(例如外耳、中耳和内耳)内所引起的听力损失或降低的药剂。因此,一些实施例包括使用参与降解耳结构(例如神经元、膜、软骨、骨头、内淋巴、外淋巴)的药剂。
在一些实施例中,耳结构调节剂为耳结构降解剂。在一些实施例中,耳结构降解剂降解骨。在一些实施例中,耳结构降解剂降解软骨。在一些实施例中,耳结构降解剂降解神经元。在一些实施例中,耳结构降解剂降解膜(例如鼓膜)。在一些实施例中,耳结构降解剂降解内淋巴。在一些实施例中,耳结构降解剂降解外淋巴。在一些实施例中,耳结构降解剂降解脓清(即脓液)。
在一些实施例中,参与耳结构降解的药剂为醇或烷醇(例如癸醇和乙醇)、香精油(例如罗勒油、玫瑰草油、橙叶油和百里香油)、脂肪酸(癸酸、十二烷酸、亚油酸、十四烷酸和油酸)、二醇(例如聚乙二醇、和丙二醇)、月桂氮酮、吡咯烷酮(例如2-吡咯烷酮、N-甲基吡咯烷酮和N-(2-羟乙基)-2-吡咯烷酮)、亚砜(例如DMSO、正癸基甲基亚砜)、表面活性剂(例如Span 80、月桂基硫酸钠、Tween 20和Tween 80)、胆汁盐(例如甘胆酸钠、脱氧胆酸钠、牛磺胆酸钠、牛磺双氢褐霉素钠、甘油双氢夫西地酸钠等)、螯合剂(例如EDTA、柠檬酸、水杨酸盐等)、酶或其组合。在一些实施例中,酶为蛋白酶、糖苷酶、链丝菌蛋白酶、软骨素酶、胶原酶、皮肤素酶、弹性蛋白酶、明胶酶、肝素酶、透明质酸酶、角蛋白酶、脂肪酶、金属蛋白酶(例如基质金属蛋白酶)、葡激酶、链激酶、胰凝乳蛋白酶、内肽酶V8、胰蛋白酶、嗜热菌蛋白酶、胃蛋白酶、血纤维蛋白溶酶或其组合。
在一些实施例中,酶为链丝菌蛋白酶(例如脆溶素(fragilysin))。在一些情况下,投予或施加链丝菌蛋白酶可降解肌动蛋白。
在一些实施例中,酶降解软骨素、皮肤素和/或透明质酸。在一些情况下,投予或施加软骨素酶(例如N-乙酰半乳糖胺-6-硫酸酯酶;N-乙酰半乳糖胺-4-硫酸酯酶;软骨素AC裂解酶;软骨素B裂解酶;软骨素硫酸盐ABC内裂解酶(Chondroitin-sulfate-ABCendolyase);和软骨素硫酸盐ABC外裂解酶(Chondroitin-sulfate-ABC exolyase))可降解软骨素、皮肤素和/或透明质酸。在一些情况下,投予或施加皮肤素酶可降解硫酸皮肤素。在一些情况下,投予或施加透明质酸酶(透明质酸氨基葡糖苷酶;透明质酸葡糖醛酸酶;透明质酸裂解酶)可降解透明质酸、软骨素和/或皮肤素。在一些情况下,透明质酸酶降解累积在鼓膜造孔管中的流体和/或中耳中所存在的粘液。
在一些情况下,糖苷酶降解中耳中所存在的粘液。
在一些实施例中,酶为肝素酶(类肝素-α-氨基葡糖苷N-乙酰基转移酶;N-乙酰葡糖胺-6-硫酸酯酶;和艾杜糖醛酸-2-硫酸酯酶)。在一些情况下,投予或施加肝素酶可降解硫酸乙酰肝素。在一些情况下,肝素酶降解鼻咽上皮细胞的硫酸肝素部分,从而使肺炎双球菌(pneumococci)与鼻咽上皮细胞脱离。
在一些实施例中,酶为角蛋白酶(例如肽酶K;和念珠菌胃蛋白酶(candidapepsin))。在一些情况下,投予或施加角蛋白酶可降解角蛋白。
在一些实施例中,酶为脂肪酶(例如三酰甘油脂肪酶;酰基甘油脂肪酶;脂蛋白脂肪酶;和激素敏感性脂肪酶)。在一些情况下,投予或施加脂肪酶可降解脂质。在一些情况下,投予或施加脂肪酶可降解耳垢。
在一些实施例中,酶为金属蛋白酶。在一些情况下,投予或施加金属蛋白酶可降解多肽。在一些实施例中,金属蛋白酶为基质金属蛋白酶或嗜热菌蛋白酶。在一些实施例中,基质金属蛋白酶为胶原酶、明胶酶、基质溶素、MT1-MMP、MT2-MMP、MT3-MMP、MT4-MMP、MT5-MMP和MT6-MMP。在一些情况下,投予或施加胶原酶可降解胶原蛋白。在一些情况下,投予或施加胶原酶可降解耳垢。在一些情况下,投予或施加明胶酶可降解明胶和/或IV型胶原蛋白。在一些情况下,投予或施加基质溶素可降解细胞外基质蛋白质。在一些情况下,投予或施加嗜热菌蛋白酶通过在疏水性氨基酸处裂解肽链来降解多肽。
在一些实施例中,酶为血纤维蛋白溶酶、血纤维蛋白溶酶原活化剂和/或其组合。在一些情况下,投予或施加血纤维蛋白溶酶可降解纤维蛋白、纤维结合蛋白、血小板反应素、层粘连蛋白和冯·温维伯氏因子(von Willebrand factor)。在一些实施例中,血纤维蛋白溶酶原活化剂为葡激酶、链激酶和/或其组合。在一些情况下,投予或施加葡激酶可活化血纤维蛋白溶酶原,形成血纤维蛋白溶酶。在一些情况下,投予或施加链激酶可活化血纤维蛋白溶酶原,形成血纤维蛋白溶酶。在一些情况下,血纤维蛋白溶酶降解基底膜。
在一些实施例中,酶为丝氨酸蛋白酶。在一些情况下,投予或施加丝氨酸蛋白酶可降解多肽。在一些情况下,投予或施加丝氨酸蛋白酶可降解耳垢。在一些实施例中,丝氨酸蛋白酶为胰凝乳蛋白酶、弹性蛋白酶、胰蛋白酶和/或V8蛋白酶。在一些情况下,投予或施加胰凝乳蛋白酶通过在酪氨酸、色氨酸和苯丙氨酸的羧基侧裂解肽链来降解多肽。在一些情况下,投予或施加弹性蛋白酶可降解弹性蛋白。在一些情况下,投予或施加胰蛋白酶通过在赖氨酸或精氨酸的羧基侧裂解肽链来降解多肽。在一些情况下,投予或施加V8蛋白酶通过在天冬氨酸和/或谷氨酸的羧基侧裂解肽链来降解多肽。
在一些实施例中,酶为天冬氨酸蛋白酶。在一些情况下,投予或施加天冬氨酸蛋白酶可降解多肽。在一些情况下,投予或施加天冬氨酸蛋白酶可降解耳垢。在一些实施例中,天冬氨酸蛋白酶为胃蛋白酶、天冬氨酸蛋白酶(plasmepsin)或其组合。在一些情况下,投予或施加胃蛋白酶通过在例如苯丙氨酸和酪氨酸等芳族氨基酸的羧基侧裂解肽链来降解多肽。在一些情况下,投予或施加天冬氨酸蛋白酶通过在两个天冬氨酸残基处裂解肽链来降解多肽(例如血红蛋白)。
在一些情况下,耳结构降解剂为透明质酸酶。在一些情况下,透明质酸酶为人类或牛的透明质酸酶。在一些情况下,透明质酸酶为人类透明质酸酶(例如在人类精子中发现的透明质酸酶PH20(海兹美(Halozyme))、(巴克斯特国际公司(BaxterInternational,Inc.)))。在一些情况下,透明质酸酶为牛的透明质酸酶(例如牛睾丸透明质酸酶(美药星制药(Amphastar Pharmaceuticals))、(普瑞制药公司(PrimaPharm,Inc)))。在一些情况下,透明质酸酶为羊的透明质酸酶(ISTA制药(ISTA Pharmaceuticals))。在一些情况下,本文所述的透明质酸酶为重组透明质酸酶。在一些情况下,本文所述的透明质酸酶为人化重组透明质酸酶。在一些情况下,本文所述的透明质酸酶为聚乙二醇化透明质酸酶(例如PEGPH20(海兹美))。
在一些情况下,酶从病原体中获得。在一些情况下,病原体为链球菌且酶为透明质酸酶和/或链激酶。在一些情况下,病原体为葡萄球菌且酶为脂肪酶、V8蛋白酶、弹性蛋白酶、透明质酸酶和/或链激酶。在一些情况下,病原体为炭疽杆菌(Bacillus anthracis)或梭状芽胞杆菌(Clostridium)且酶为金属蛋白酶。在一些情况下,病原体为嗜热蛋白分解杆菌(Bacillus thermoproteolyticus)且酶为嗜热菌蛋白酶。在一些情况下,病原体为白色念珠菌(Candida albicans)且酶为念珠菌胃蛋白酶过敏毒素调节剂。
在一些实施例中,过敏毒素调节剂投予有需要的个体。在一些实施例中,过敏毒素调节剂为C5a拮抗剂。在一些实施例中,C5a拮抗剂为以下的趋化抑制蛋白质:金黄色葡萄球菌(CHIPS)、PMX53(AcF[OP-DCha-WR])、PMX205(HC-[OPdChaWR])、PMX273(AcF[OP-DPhe-WR])、PMX201(AcF[OP-DCha-WCit])、PMX218(HC-[OPdPheWR])、C089(NMePhe-Lys-Pro-dCha-X-dArg)、L-156,602(D-丙氨酸,(RS,2R,5R,6R)-四氢-R,2-二羟基-R,6-二甲基-5-[(2S)-2-甲基丁基]-2H-吡喃-2-乙酰基-(3S)-3-羟基-L-亮氨酰基-(3R)-六氢-3-哒嗪羰基-N-羟基-L-丙氨酰基甘氨酰基-(3S)-六氢-3-哒嗪羰基-N-羟基-,(7f2)-内酯,CAS编号:125228-51-5)、C5aRAM、C5aRAD或其组合。在一些情况下,C5a拮抗剂结合于C5aR,从而拮抗C5a的结合。在一些情况下,CHIPS结合于巨噬细胞上的C5a受体(C5aR),从而抑制C5a诱发的巨噬细胞趋化性。在一些情况下,C5aRAM和C5aRAD衍生自C5a的C端修饰。
在一些实施例中,C5aR活化的拮抗剂为反义肽。在一些实施例中,C5a的反义肽为PR226-MAP(LRTWSRRATRSTKTLKVV)、PL37-MAP(RAARISLGPRCIKAFTE)或其组合。在一些情况下,C5a拮抗剂结合于C5aR,从而拮抗C5a的结合。
在一些实施例中,过敏毒素调节剂投予有需要的个体。在一些实施例中,过敏毒素调节剂为C3a拮抗剂。在一些实施例中,C3a拮抗剂为SB-290157(N(2)-[(2,2-二苯基乙氧基)乙酰基]-L-精氨酸)。在一些情况下,SB-290157结合于C3a受体(C3aR),从而阻断C3a的结合。
补体活化剂
在一些实施例中,补体活化剂投予有需要的个体。在一些实施例中,补体活化剂为GR-2II、果胶阿拉伯半乳聚糖(例如AGIIa和AGIIb-1)、果胶(例如AR-2IIa、AR-2IIb、AR-2IIc和AR-2IId)、CVF或其组合。在一些情况下,AR-2IIa、AR-2IIb和AR-2IIc通过经典途径而非旁路途径来活化补体系统。
眼睛蛇毒因子(CVF)为从爬行动物眼镜蛇属(Naja sp)中提取出的三链(α-链、β-链和γ-链)糖蛋白。CVF为人类补体系统活化蛋白质。其在结构上与C3b同系。在一些情况下,CVF结合于因子B,接着通过因子D裂解。所得复合物CVFBb充当C3转化酶和C5转化酶。CVFBb的半衰期(7.5小时)比C3bBb(1.5分钟)长。此外,CVFBb抵抗被因子H分解,且CVF抵抗被因子I灭活。因此,CVFBb使C3和C5不断地水解。C3和C5不断地水解会引起补体系统在若干小时内耗尽(或用尽)。然而,补体系统组分迅速地开始再合成且整个系统复原要用5-10天。
在一些情况下,CVF在活体内具有高抗原性。因此,已工程改造CVF的若干人化类似物和/或衍生物。在一些情况下,这些衍生物显示与天然CVF类似的活性(例如50%-97%天然CVF的活性);然而,其不能在活体内活化免疫反应或在活体内活化免疫反应的能力降低。在某些类似物和/或衍生物中,从CVF多肽的β-链中除去若干氨基酸。在其它类似物和/或衍生物中,CVF多肽结合于人类抗体(例如针对人类白血病细胞、人类成神经细胞瘤细胞和人类黑色素瘤细胞上的抗原的单克隆抗体)。在一些类似物和/或衍生物中,人类C3衍生物和/或类似物(例如重组C3、rC3、人化CVF)经工程改造,使得人类C3衍生物和/或类似物包含CVF多肽序列的一部分。在其它类似物和/或衍生物中,人类C3多肽的一部分(例如α-链;或羧基端的一部分)经CVF多肽的相应部分置换。在某些衍生物和/或类似物中,人类C3的α-链经CVF多肽的相应羧基端氨基酸置换。在一些实施例中,CVF类似物和/或衍生物为HC3-1496、HC3-1496-2、HC3-1496-3、HC3-1496-4、HC3-1496/1617、HC3-1496-8、HC3-1496-9、HC3-1496-10、HC3-1496-11、HC3-1496-12、HC3-1496-13、HC3-1496-14、HC3-1496-15、HC3-1496-16、HC3-1496-17或其组合。关于上述CVF类似物和/或衍生物的揭示内容,参见PCT公开案第WO2005/003159号;和PCT公开案第WO 2008/060634号,所述公开案中的这些揭示内容以引用的方式并入本文中。关于CVF衍生物和/或类似物的其它揭示内容,参见美国专利第5,714,344号,所述专利中的这些揭示内容以引用的方式并入本文中。
在一些实施例中,CVF投予有需要的个体(例如受益于补体耗尽的个体)。在一些实施例中,CVF衍生物投予有需要的个体。
补体成分1调节剂
在一些实施例中,补体成分1(C1)调节剂投予有需要的个体。在一些实施例中,补体C1调节剂为C1抑制剂。在一些情况下,C1抑制剂预防流体相C1活化。在一些情况下,投予C1抑制剂可预防再灌注损伤。在一些实施例中,硫酸葡聚糖投予有需要的个体。在一些实施例中,C1抑制剂在硫酸葡聚糖之前、之后或与其同时投予。在一些情况下,硫酸葡聚糖强化C1抑制剂。
在一些实施例中,补体成分1q受体(C1qR)投予有需要的个体。在一些情况下,C1q调节内皮细胞上粘着分子的呈现。在一些情况下,C1q受体(例如cC1qR、C1qRp和gC1qR)预防C1q致敏红血球在补体介导下溶解。在一些情况下,投予C1抑制剂可预防再灌注损伤。
在一些实施例中,C1q结合的拮抗剂投予有需要的个体。在一些实施例中,C1q结合的拮抗剂为C1q抑制剂、核心蛋白聚糖、CSPG(硫酸软骨素蛋白聚糖)、CBP2(补体结合肽2)或其组合。在一些情况下,CSPG部分或完全地抑制C1q与C1s和C1r的结合,从而干扰酶C1的形成。在一些情况下,CBP2干扰C1q与抗原或抗原结合抗体的结合。
补体受体1
在一些实施例中,补体受体1(CR1)投予有需要的个体。通过结合于C3b和C4b,CR1促进抗原抗体复合物的吞噬和清除。此外,其抑制经典与旁路途径。在一些情况下,CR1充当C3与C5的衰变促进剂。另外,在一些情况下,CR1充当因子I辅因子。
在一些实施例中,可溶性CR1(sCR1)投予有需要的个体。可溶性CR1缺乏CR1的跨膜域和细胞质域。在一些情况下,sCR1减少补体系统所产生的MAC的量。在一些情况下,sCR1改善缺血/再灌注损伤。在一些情况下,sCR1减少患有急性或慢性发炎性病症的动物模型中的细胞和组织损伤。在一些实施例中,sCR1为APT070(麦克特(Mirococept))、TP10(艾文免疫疗法公司(Avant Immunotherapeutics))、TP20(艾文免疫疗法公司)或其组合。
在一些实施例中,缺乏长同源重复序列A(LHR-A)域的可溶性CR1(sCR1)(sCR1[desLHR-A])投予有需要的个体。sCR1[desLHR-A]缺乏CR1的跨膜域和细胞质域、和C4b结合域。在一些情况下,sCR1[desLHR-A]抑制旁路途径,但显示抑制经典途径的能力相较于sCR1降低。
在一些实施例中,经SLex部分结合的可溶性CR1(sCR1)投予有需要的个体。SLex为选择素的碳水化合物配体,其在一些情况下可抑制E-选择素和P-选择素介导的嗜中性白血球粘着。在一些情况下,sCR1-SLex抑制补体活化并抑制嗜中性白血球募集至发炎部位。
补体受体1相关基因/蛋白质
在一些实施例中,补体受体1相关基因/蛋白质y(Crry)投予有需要的个体。在一些实施例中,重组Crry(Crry-Ig)投予有需要的个体。Crry抑制经典与旁路途径。在一些情况下,Crry充当C3与C5的衰变促进剂。另外,在一些情况下,Crry充当因子I辅因子。
补体成分3转化酶调节剂
在一些实施例中,C3转化酶调节剂投予有需要的个体。在一些实施例中,C3转化酶调节剂为岩藻聚糖。在一些实施例中,岩藻聚糖从褐海藻(例如褐藻纲(Phaeophyceae)、球型褐藻(Ascophyllum nodosum)和苦目昆布(Ecklonia kurome))中提取出。在一些情况下,岩藻聚糖部分或完全地抑制经典途径。在一些情况下,岩藻聚糖部分或完全地抑制旁路途径。在一些实施例中,岩藻聚糖为BS8。在一些情况下,BS8通过干扰C1活化,部分或完全地抑制C4bC2a的形成。在一些情况下,BS8通过干扰C4裂解,部分或完全地抑制C4bC2a的形成。在一些情况下,BS8通过干扰因子B与C3b的结合并通过干扰备解素的结合,部分或完全地抑制C3Bb。
在一些实施例中,C3转化酶调节剂投予有需要的个体。在一些实施例中,C3转化酶调节剂为补体结合抑制素。在一些情况下,补体结合抑制素干扰C4b和C2b的结合,因此拮抗经典C3转化酶(C4bC2b)的形成。
在一些实施例中,C3转化酶调节剂投予有需要的个体。在一些实施例中,C3转化酶调节剂为细胞外补体结合蛋白(Ecb)。在一些情况下,Ecb从金黄色葡萄球菌分离而得。在一些情况下,其通过阻断含有C3b的分子(例如另一个C3转化酶C3bB3,和C5转化酶C4bC2aC3b和C3bBbC3b)使其底物(例如C3和C5)裂解的能力来调节含有C3b的分子。
在一些实施例中,C3转化酶调节剂投予有需要的个体。在一些实施例中,C3转化酶调节剂为细胞外纤维蛋白原结合蛋白(Efb)。在一些情况下,Efb从金黄色葡萄球菌分离而得。在一些情况下,Efb通过阻断C3bBb使C3裂解的能力来调节含有C3b的分子(例如另一个C3转化酶C3bB3)。
在一些实施例中,C3转化酶调节剂投予有需要的个体。在一些实施例中,C3转化酶调节剂为补体抑制素。在一些情况下,补体抑制素通过结合于C3且部分或完全地抑制C3转化酶结合于C3并使C3裂解的能力来拮抗C3转化酶。
在一些实施例中,C3转化酶调节剂投予有需要的个体。在一些实施例中,C3转化酶调节剂为迷迭香酸。在一些情况下,迷迭香酸与亚稳C3b的活化硫酯反应。在一些情况下,迷迭香酸与亚稳C3b的活化硫酯的反应使迷迭香酸共价连接于C3转化酶。在一些情况下,迷迭香酸共价连接于C3转化酶可预防C3转化酶结合于宿主细胞或病原体。
在一些实施例中,C3转化酶调节剂投予有需要的个体。在一些实施例中,C3转化酶调节剂为CRIT。在一些实施例中,C3转化酶调节剂为包含第一CRIT胞外域(CRIT-H17)的C端11个氨基酸的肽序列。在一些情况下,CRIT抑制C3转化酶的形成。在一些情况下,CRIT结合于C2,因此抑制C4b结合于C2和形成C3转化酶。
在一些实施例中,C3转化酶调节剂投予有需要的个体。在一些实施例中,C3转化酶调节剂为甘草次酸。在一些情况下,甘草次酸调节C2,因此调节经典途径C3转化酶的形成。
补体成分5转化酶调节剂
在一些实施例中,C5转化酶调节剂投予有需要的个体。在一些实施例中,C5转化酶调节剂为抗补体成分5(C5)鼠类单克隆抗体。在一些情况下,抗C5 mAb部分或完全地抑制C5被C5转化酶裂解。在一些情况下,抗C5 mAB抑制C5a的形成。在一些情况下,抗C5 mAb部分或完全地抑制C5b的形成,因此抑制MAC的形成。在一些情况下,抗C5 mAB不抑制C3的裂解。在一些实施例中,抗C5 mAB来源于N19/8 mAb的可变区。在一些情况下,投予抗C5 mAB可改善自身免疫疾病。在一些情况下,抗C5 mAB部分或完全地抑制CD11b上调。在一些情况下,减少P-选择素呈现血小板的数目。在一些情况下,抗C5 mAB减少白血球-血小板聚集体的形成。在一些实施例中,C5抗体为培克珠单抗。
在一些实施例中,抗C5鼠类单链抗体投予有需要的个体。在一些实施例中,抗C5鼠类单链抗体来源于N19/8 mAb的可变区。在一些情况下,抗C5鼠类单链抗体抑制C5裂解和C5a产生。在一些情况下,抗C5鼠类单链抗体部分或完全地抑制C5b-9介导的红血球溶血。在一些实施例中,抗C5人化单链抗体(例如5G1.1-SC)投予有需要的个体。
在一些实施例中,C5转化酶调节剂投予有需要的个体。在一些实施例中,C5转化酶调节剂为K76(6,7-二甲酰基-3',4',4a',5',6',7',8',8a'-八氢-4,6',7'-三羟基-2',5',5',8a'-四甲基螺[1'(2'H)-萘-2(3M)-苯并呋喃])或其衍生物(例如TKIXc和K76COOH)。在一些情况下,K76通过干扰C5转化酶结合于C5和/或使C5裂解的能力来拮抗C5转化酶。
在一些实施例中,C5转化酶调节剂投予有需要的个体。在一些实施例中,C5转化酶调节剂为葡萄球菌补体抑制剂(例如SCIN、SCIN-B和SCIN-C)。在一些情况下,葡萄球菌补体抑制剂从金黄色葡萄球菌中分离而得。在一些情况下,SCIN结合于C3转化酶(例如C4bC2a和C3bBb)且使其稳定。在一些情况下,SCIN的结合预防C3b亚基结合于复合物;因此预防C5转化酶由C3转化酶形成。
CD55
在一些实施例中,CD55投予有需要的个体。CD55又称为衰变加速因子(DAF),结合C4b与C3b。在一些情况下,CD55结合于C4b可使经典途径的C3转化酶脱离,因此也抑制经典C5转化酶的形成。在一些情况下,CD55结合于C3b使旁路途径的C3和C5转化酶脱离。在一些实施例中,CD55蛋白质为可溶性蛋白质(sCD55)。在一些实施例中,sCD55投予有需要的个体。
CD59
在一些实施例中,CD59蛋白质投予有需要的个体。在一些情况下,CD59通过结合于C8和C9,从而预防其结合于C5bC6C7复合物,来抑制MAC的形成。在一些实施例中,可溶性CD59(sCD59)蛋白质投予有需要的个体。
CD55/CD59融合蛋白
在一些实施例中,CD59/CD55融合蛋白投予有需要的个体。在一些情况下,CD59亚基通过结合于C8和C9,从而预防其结合于C5bC6C7复合物,来抑制MAC的形成。在一些情况下,CD59/CD55融合蛋白预防MAC的形成,并预防C5转化酶的形成或抑制C5转化酶的活性。在一些情况下,CD55亚基结合于C4b,从而使经典途径的C3转化酶脱离,并抑制经典C5转化酶的形成。在一些情况下,CD55亚基结合于C3b,从而使旁路途径的C5转化酶脱离。
CD55/MCP融合蛋白
在一些实施例中,CD55/MCP融合蛋白投予有需要的个体。在一些情况下,CD55亚基结合于C4b,从而使经典途径的C3转化酶脱离,并抑制经典C5转化酶的形成。在一些情况下,CD55亚基结合于C3b,从而使旁路途径的C5转化酶脱离。在一些情况下,MCP(膜辅因子蛋白(Membrane Cofactor Protein)或CD46)亚基为因子I的辅因子。在一些情况下,MCP亚基活化因子I,导致经典途径的C3转化酶和/或旁路途径的C3转化酶失活。在一些实施例中,CD55/MCP融合蛋白为可溶性蛋白质sCD55/MCP(补体活化阻断剂-2,CAB-2)。在一些情况下,相较于单独投予的CD55、单独投予的MCP或者组合投予的CD55与MCP,CAB-2显示对转化酶(例如C3和C5)更大的拮抗作用。在一些情况下,CAB-2活体内抑制补体活化。
因子D调节剂
在一些实施例中,因子D调节剂投予有需要的个体。在一些实施例中,因子D调节剂为因子D拮抗剂。在一些实施例中,因子D拮抗剂为BCX-1470(2-脒基-6-(2-噻吩羧基)苯并噻吩甲烷磺酸酯)、FUT-175(对胍基苯甲酸6-脒基-2-萘酯二甲烷-磺酸酯)或其组合。在一些情况下,因子D拮抗剂通过拮抗因子D结合于因子B并使因子B裂解的能力,来抑制旁路途径流体相C3转化酶的形成。
因子I和因子I辅因子
在一些实施例中,因子I蛋白酶和其辅因子投予有需要的个体。在一些情况下,因子I在结合于辅因子时,可使C3b和/或C4b裂解;因此使其失活。C4b的失活(iC4b)抑制经典途径的C3转化酶的活性,因此也抑制经典C5转化酶的形成。此外,C3b的失活(iC3b)抑制旁路途径的C3和C5转化酶的活性。
在一些实施例中,膜辅因子蛋白(MCP或CD46)投予有需要的个体。MCP为因子I的辅因子。在一些实施例中,MCP以可溶形式(sMCP)投予有需要的个体。在一些实施例中,sMCP和/或MCP在因子I之前、之后或与其同时投予。在一些实施例中,sMCP和/或MCP与CD55一起投予。在一些情况下,投予sMCP可抑制补体介导的发炎。在一些情况下,投予MCP可活化因子I,导致经典途径的C3转化酶和/或旁路途径的C3转化酶失活。在一些情况下,投予MCP可活化因子I,导致经典途径的C5转化酶的产生减少和/或旁路途径的C5转化酶失活。
肝素
在一些实施例中,肝素或其衍生物(例如LU 51198)投予有需要的个体。在一些情况下,肝素与C1、C2、C3、C4、C5、C6、C7、C8、C9、C1INH、因子I、因子H、因子B和因子P相互作用。在一些情况下,肝素部分或完全地抑制旁路途径C3转化酶(C3Bb)和经典途径C3转化酶(C4bC2a)的形成。
MAC调节剂
在一些实施例中,MAC调节剂投予有需要的个体。在一些实施例中,MAC调节剂为凝聚素、玻连蛋白。在一些情况下,凝聚素部分或完全地抑制流体相MAC的形成。在一些情况下,玻连蛋白部分或完全地抑制流体相MAC的形成。
MIF调节剂
在一些实施例中,MIF调节剂投予有需要的个体。在一些实施例中,MIF调节剂为MIF的抑制剂和/或拮抗剂。在一些实施例中,MIF调节剂减少发炎。在一些实施例中,MIF调节剂下调细胞因子(例如TNF-α和IL-8)的产生。在一些实施例中,MIF调节剂改善OME的症状。在一些实施例中,MIF的抑制剂和/或拮抗剂为抗MIF抗体。在一些情况下,投予抗MIF抗体可减少TNF-α和IL-8产生。在一些实施例中,MIF的抑制剂和/或拮抗剂为二甲双胍。在一些情况下,投予二甲双胍可降低血浆MIF浓度。在一些实施例中,MIF的抑制剂和/或拮抗剂为ISO-1((S,R)-3(4-羟苯基)-4,5-二氢-5-异噁唑乙酸甲酯)。在一些情况下,投予ISO-1可减少TNF-α和IL-8的产生。在一些实施例中,MIF的抑制剂和/或拮抗剂为2-[(4-羟基苯亚甲基)氨基]-3(1H-吲哚-3-基)丙酸甲酯。在一些实施例中,MIF的抑制剂和/或拮抗剂为NAPQI(N-乙酰基-对苯醌亚胺)。在一些实施例中,MIF的抑制剂和/或拮抗剂为AVP-28225(艾纳制药(Avanir Pharmaceuticals))。
备解素抗体
在一些实施例中,抗备解素抗体投予有需要的个体。在一些实施例中,抗备解素抗体为单克隆抗体。在一些情况下,抗备解素抗体抑制旁路途径不稳定C3转化酶(C3Bb)的稳定。在一些情况下,抗备解素抗体抑制旁路途径C5转化酶(C3BbC3)的形成。在一些情况下,抗备解素抗体抑制MAC的形成。
混杂的补体调节剂
在一些实施例中,补体调节剂为甘草皂苷(glycyrrhizin)、甘草次酸或其组合。在一些情况下,甘草次酸调节C2,因此调节经典途径C3转化酶的形成。
活性剂的浓度
在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约1重量%的组合物。在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约2重量%的组合物。在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约3重量%的组合物。在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约4重量%的组合物。在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约5重量%的组合物。在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约10重量%的组合物。在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约15重量%的组合物。在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约20重量%的组合物。在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约25重量%的组合物。在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约30重量%的组合物。在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约40重量%的组合物。在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约50重量%的组合物。在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约60重量%的组合物。在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约70重量%的组合物。在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约80重量%的组合物。在一些实施例中,本文所述的医药组合物或装置中耳结构调节剂或先天性免疫系统调节剂的浓度为约90重量%的组合物。
在一些实施例中,本文所述组合物的活性医药成分或其医药学上可接受的前药或盐的浓度为以组合物的体积计,约0.1至约70mg/mL之间、约0.5mg/mL至约70mg/mL之间、约0.5mg/mL至约50mg/mL之间、约0.5mg/mL至约20mg/mL之间、约1mg至约70mg/mL之间、约1mg至约50mg/mL之间、约1mg/mL至约20mg/mL之间、约1mg/mL至约10mg/mL之间或约1mg/mL至约5mg/mL之间的活性剂或其医药学上可接受的前药或盐。
组合疗法
在一些实施例中,本文所揭示的调配物与另一耳用活性剂组合投予。在一些实施例中,本文所揭示的调配物在另一活性剂投予前、投予期间或投予后投予。在一些实施例中,另一耳用活性剂为抗组胺药、GABA受体调节剂、神经传递素再摄取抑制剂、抗胆碱能药、局部麻醉剂、MAPK/JNK级联抑制剂、钙通道阻断剂、钠通道阻断剂、HO激动剂、卡斯蛋白酶拮抗剂、钙蛋白酶拮抗剂、去乙酰化酶激动剂、Src拮抗剂、氨基甲酸酯、γ-分泌酶抑制剂、谷氨酸受体调节剂、生长因子、耳毒性药剂、甲状腺激素受体调节剂、TRPV调节剂、止吐剂、抗微生物剂、消毒剂、抗氧化剂、TNF拮抗剂、TNF-α转化酶抑制剂、IKK抑制剂、钙调神经磷酸酶抑制剂、toll样受体抑制剂、白细胞介素抑制剂、NOS抑制剂、血小板活化因子拮抗剂或其组合。
在一些情况下,本文所揭示的耳结构降解剂和组合物通过降解耳结构(例如细胞、脂质基质、细胞外基质、桥粒)促进耳用活性剂穿透至中耳和/或内耳中。在一些情况下,当耳用活性剂与本文所揭示的耳结构降解剂和组合物一起投予时,较小剂量的另一活性剂投予有需要的个体。在一些情况下,当耳用活性剂与本文所揭示的耳结构降解剂和组合物一起投予时,耳用活性剂的药物动力学概况获得改善。
抗胆碱能药
抗胆碱能药任选用于本文所揭示的调配物。抗胆碱能药包括甘罗溴铵(glycopyrrolate)、后马托品(homatropine)、莨菪碱或阿托品(atropine)。
止吐剂
止吐剂任选用于本文所揭示的调配物。例示性止吐剂包括异丙嗪(promethazine)、丙氯拉嗪、曲美苄胺(trimethobenzamide)和三乙拉嗪(triethylperazine)。其它止吐剂包括5HT3拮抗剂,例如多拉司琼(dolasetron)、格拉司琼(granisetron)、昂丹司琼(ondansetron)、托烷司琼(tropisetron)和帕洛诺司琼(palonosetron);和精神安定药,例如氟哌利多(droperidol)。其它止吐剂包括抗组胺药,例如美克利嗪;吩噻嗪,例如奋乃静(perphenazine)和硫乙哌丙嗪(thiethyl perazine);多巴胺拮抗剂,包括多潘立酮(domperidone)、丙哌啶醇(properidol)、氟哌啶醇(haloperidol)、氯丙嗪(chlorpromazine)、异丙嗪、丙氯拉嗪、甲氧氯普胺(metoclopramide)和其组合;大麻碱(cannabinoid),包括屈大麻酚(dronabinol)、大麻隆(nabilone)、沙替维斯和其组合;抗胆碱能药,包括莨菪碱;和类固醇,包括地塞米松(dexamethasone);曲盐酸美苄胺(trimethobenzamine)、愈吐宁(emetrol)、丙泊酚(propofol)、蝇蕈醇(muscimol)和其组合。
抗组胺药
抗组胺药任选用于本文所揭示的调配物。抗组胺药包括且不限于美克利嗪、苯海拉明、茶苯海明、洛拉他定(loratadine)、喹硫平(quetiapine)、美吡拉敏(mepyramine)、哌罗克生(piperoxan)、安他唑啉(antazoline)、卡比沙明(carbinoxamine)、多西拉敏(doxylamine)、氯马斯汀(clemastine)、非尼拉敏(pheniramine)、氯苯那敏(chlorphenamine)、氯苯那敏(chlorpheniramine)、右氯苯那敏(dexchlorpheniramine)、溴苯那敏(brompheniramine)、曲普立定(triprolidine)、赛克利嗪(cyclizine)、氯环嗪(chlorcyclizine)、羟嗪(hydroxyzine)、异丙嗪、阿利马嗪(alimemazine)、异丁嗪(trimeprazine)、赛庚啶(cyproheptadine)、阿扎他定(azatadine)、酮替酚(ketotifen)、奥沙米特(oxatomide)、盐酸倍他司汀(betahistine dihydrochloride)。
抗微生物剂
抗微生物剂也欲用于本文所揭示的调配物。抗微生物剂的一些实例包括用以抑制或根除包括细菌、真菌或寄生虫在内的微生物的药剂。具体的抗微生物剂可用以对抗具体的微生物。因此,有经验的执业医生将知道,根据所鉴别的微生物或所显示的症状,何种抗微生物剂为相关的或适用的。抗微生物剂包括抗生素、抗病毒剂、抗真菌剂和抗寄生虫药。
抗生素也可包括阿米卡星、庆大霉素、卡那霉素(kanamycin)、新霉素、奈替米星、链霉素、托普霉素、巴龙霉素(paromomycin)、格尔德霉素(geldanmycin)、除莠霉素(herbimycin)、氯碳头孢(loracarbef)、厄他培南(ertapenem)、多尼培南(doripenem)、亚胺培南(imipenem)、西司他丁(cilastatin)、美罗培南(meropenem)、头孢羟氨苄(cefadroxil)、头孢唑啉(cefazolin)、头孢噻吩(cefalotin)、头孢氨苄(cefalexin)、头孢克洛(cefaclor)、头孢羟唑(cefamandole)、头孢西丁(cefoxitin)、头孢丙烯、头孢呋肟、头孢克肟、头孢地尼(cefdinir)、头孢托仑(cefditoren)、头孢哌酮(cefoperazone)、头孢噻肟(cefotaxime)、头孢泊肟(cefpodoxime)、头孢他啶(ceftazidime)、头孢布烯(ceftibuten)、头孢唑肟(ceftizoxime)、头孢曲松、头孢吡肟(cefepime)、头孢吡普(ceftobiprole)、替考拉宁(teicoplanin)、万古霉素、阿奇霉素、克拉霉素、地红霉素(dirithromycin)、红霉素、罗红霉素(roxithromycin)、醋竹桃霉素(troleandomycin)、泰利霉素(telithromycin)、大观霉素(spectinomycin)、胺曲南(aztreonam)、阿莫西林、胺苄西林(ampicillin)、阿洛西林(azlocillin)、羧苄青霉素(carbenicillin)、氯唑西林(cloxacillin)、双氯西林(dicloxacillin)、氟氯西林(flucloxacillin)、美洛西林(mezlocillin)、甲氧西林(meticillin)、萘夫西林(nafcillin)、苯唑西林(oxacillin)、青霉素、哌拉西林(piperacillin)、替卡西林(ticarcillan)、杆菌肽(bacitracin)、粘菌素(colistin)、多粘菌素B、环丙沙星、依诺沙星(enoxacin)、加替沙星(gatifloxacin)、左氧氟沙星(levofloxacin)、洛美沙星(lomefloxacin)、莫西沙星(moxifloxacin)、诺氟沙星(norfloxacin)、氧氟沙星、曲伐沙星(trovfloxacin)、磺胺米隆(mafenide)、偶氮磺胺(prontosil)、乙酰磺胺(sulfacetamide)、磺胺甲二唑(sulfamethizole)、氨苯磺胺(sulfanimilimde)、柳氮磺吡啶(sulfsalazine)、磺胺异噁唑(sulfsioxazole)、甲氧苄啶(trimethoprim)、地美环素(demeclocycline)、多西环素(doxycycline)、二甲胺四环素(minocycline)、氧四环素(oxtetracycline)、四环素(tetracycline)、胂凡纳明(arsphenamine)、氯霉素(chloramphenicol)、克林达霉素(clindamycin)、林可霉素(lincomycin)、乙胺丁醇(ethambutol)、磷霉素、夫西地酸(fusidic acid)、呋喃唑酮(furazolidone)、异烟肼(isoniazid)、利奈唑德(linezolid)、甲硝哒唑(metronidazole)、莫匹罗星(mupirocin)、硝化呋喃妥因(nitrofurantoin)、平板霉素(platensimycin)、吡嗪酰胺(pyrazinamide)、奎奴普丁(quinuspristin)/达福普丁(dalfopristin)、利福平(rifampin)、替硝唑(tinidazole)和其组合。
抗病毒剂可包括阿昔洛韦、泛昔洛韦和发昔洛韦。其它抗病毒剂包括阿巴卡韦(abacavir)、阿昔洛韦、阿德福韦(adfovir)、金刚烷胺(amantadine)、安普那韦(amprenavir)、阿比朵尔(arbidol)、阿扎那韦(atazanavir)、阿提法(artipla)、溴夫定(brivudine)、西道法韦(cidofovir)、考姆法韦(combivir)、依度尿苷(edoxudine)、依发韦仑(efavirenz)、恩曲他滨(emtricitabine)、恩福韦地(enfuvirtide)、因提弗(entecavir)、福姆韦森(fomvirsen)、福沙那韦(fosamprenavir)、膦甲酸(foscarnet)、膦乙醇(fosfonet)、更昔洛韦(ganciclovir)、加德西(gardasil)、伊巴他滨(ibacitabine)、伊姆诺韦(imunovir)、碘苷(idoxuridine)、咪喹莫特(imiquimod)、茚地那韦(indinavir)、肌苷(inosine)、整合酶抑制剂、干扰素(包括干扰素III型、干扰素II型、干扰素I型)、拉米夫定(lamivudine)、洛匹那韦(lopinavir)、洛韦胺(loviride)、MK-0518、吗拉维诺(maraviroc)、吗啉胍(moroxydine)、奈非那韦(nelfinavir)、奈韦拉平(nevirapine)、奈韦(nexavir)、核苷类似物、奥司他韦(oseltamivir)、喷昔洛韦(penciclovir)、帕拉米韦(peramivir)、普来可那利(pleconaril)、鬼臼毒素(podophyllotoxin)、蛋白酶抑制剂、逆转录酶抑制剂、利巴韦林(ribavirin)、金刚乙胺(rimantadine)、利托那韦(ritonavir)、沙奎那韦(saquinavir)、司他夫定(stavudine)、替诺福韦(tenofovir)、替诺福韦酯(tenofovirdisoproxil)、替拉那韦(tipranavir)、曲氟尿苷(trifluridine)、三协唯(trizivir)、曲金刚胺(tromantadine)、特鲁瓦达(truvada)、缬更昔洛韦(valganciclovir)、维克利诺(vicriviroc)、阿糖腺苷(vidarabine)、韦拉米定(viramidine)、扎西他滨(zalcitabine)、扎那米韦(zanamivir)、齐多夫定(zidovudine)和其组合。
抗真菌剂可包括阿姆若芬(amrolfine)、戊特纳芬(utenafine)、萘替芬(naftifine)、特比萘芬(terbinafine)、氟胞嘧啶(flucytosine)、氟康唑(fluconazole)、伊曲康唑(itraconazole)、酮康唑(ketoconazole)、泊沙康唑(posaconazole)、雷夫康唑(ravuconazole)、伏立康唑(voriconazole)、克霉唑(clotrimazole)、益康唑(econazole)、咪康唑(miconazole)、奥昔康唑(oxiconazole)、硫康唑(sulconazole)、特康唑(terconazole)、噻康唑(tioconazole)、尼柯霉素Z(nikkomycin Z)、卡泊芬净(caspofungin)、米卡芬净(micafungin)、阿尼芬净(anidulafungin)、两性霉素B(amphotericin B)、脂质体制霉菌素(liposomal nystastin)、匹马菌素(pimaricin)、灰黄霉素(griseofulvin)、环吡酮胺(ciclopirox olamine)、卤普罗近(haloprogin)、托萘酯(tolnaftate)、十一碳烯酸酯(undecylenate)和其组合。抗寄生虫药可包括三亚螨(amitraz)、硝硫氰胺(amoscanate)、阿维菌素(avermectin)、卡巴氧(carbadox)、乙胺嗪(diethylcarbamizine)、地美硝唑(dimetridazole)、二脒那秦(diminazene)、伊维菌素(ivermectin)、马菲利德(macrofilaricide)、马拉硫磷(malathion)、米他伴(mitaban)、奥沙尼喹(oxamniquine)、百灭宁(permethrin)、吡喹酮(praziquantel)、双羟萘酸吡喃特(prantel pamoate)、塞拉菌素(selamectin)、葡萄糖酸锑钠(sodium stibogluconate)、噻苯咪唑(thiabendazole)和其组合。
抗氧化剂
抗氧化剂也欲用于本文所揭示的调配物,其为调节耳神经元和/或毛细胞的退化的药剂。因此,一些实施例包括使用抗氧化剂。在一些实施例中,抗氧化剂为维生素C、N-乙酰半胱氨酸、维生素E、依布硒啉(Ebselen)(2-苯基-1,2-苯并异硒唑-3(2H)-酮)(又称为PZ 51或DR3305)、L-甲硫氨酸、艾地苯醌(Idebenone)(2-(10-羟基癸基)-5,6-二甲氧基-3-甲基-环己-2,5-二烯-1,4-二酮)。
消毒剂
消毒剂也欲用于本文所揭示的调配物。消毒剂包括(但不限于)乙酸、硼酸、龙胆紫、过氧化氢、过氧化脲、氯己定(chlorhexidine)、生理盐水、汞溴红(mercurochrome)、聚维酮碘(povidone iodine)、聚羟碘(polyhyroxine iodine)、甲酚盐和乙酸铝,和其混合物。
钙通道阻断剂
钙通道阻断剂任选用于本文所揭示的调配物。例示性钙通道阻断剂包括维拉帕米(verapamil)、尼莫地平(nimodipine)、地尔硫卓(diltiazem)、ω-芋螺毒素(omega-conotoxin)、GVIA、氨氯地平(amlodipine)、非洛地平(felodipine)、拉西地平(lacidipine)、米贝拉地尔(mibefradil)、NPPB(5-硝基-2-(3-苯基丙基氨基)苯甲酸)、氟桂利嗪(flunarizine)或其组合。
卡斯蛋白酶拮抗剂
卡斯蛋白酶拮抗剂任选用于本文所揭示的调配物。卡斯蛋白酶拮抗剂包括(但不限于)z-VAD-FMK(苄氧羰基-Val-Ala-Asp(OMe)-氟甲基酮);z-LEHD-FMK(苄氧羰基-Leu-Glu(OMe)-His-Asp(OMe)-氟甲基酮);B-D-FMK(boc-天冬氨酰基(Ome)-氟甲基酮);Ac-LEHD-CHO(N-乙酰基-Leu-Glu-His-Asp-CHO);Ac-IETD-CHO(N-乙酰基-Ile-Glu-Thr-Asp-CHO);z-IETD-FMK(苄氧羰基-Ile-Glu(OMe)-Thr-Asp(OMe)-氟甲基酮);FAM-LEHD-FMK(苄氧羰基Leu-Glu-His-Asp-氟甲基酮);FAM-LETD-FMK(苄氧羰基Leu-Glu-Thr-Asp-氟甲基酮);Q-VD-OPH(喹啉-Val-Asp-CH2-O-Ph);或其组合。
钙调神经磷酸酶抑制剂
钙调神经磷酸酶抑制剂任选用于本文所揭示的调配物。钙调神经磷酸酶抑制剂的一些实例包括环孢素(cyclosporine)、他克莫司(tacrolimus)和吡美莫司(pimecrolimus)。
钙蛋白酶拮抗剂
钙蛋白酶拮抗剂任选用于本文所揭示的调配物。钙蛋白酶拮抗剂包括(但不限于)抑蛋白酶醛肽(leupeptine);PD-150606(3-(4-碘苯基)-2-巯基-(Z)-2-丙烯酸);MDL-28170(Z-Val-Phe-CHO);钙蛋白酶抑素(calpeptin);乙酰基-钙蛋白酶抑制蛋白(acetyl-calpastatin);MG 132(N-[(苯基甲氧基)羰基]-L-亮氨酰基-N-[(1S)-1-甲酰基-3-甲基丁基]-L-亮氨酰胺);MYODUR;BN 82270(易普森(Ipsen));BN 2204(易普森);或其组合。
氨基甲酸酯
氨基甲酸酯任选用于本文所揭示的调配物。氨基甲酸酯的实例包括2-苯基-1,2-乙二醇单氨基甲酸酯和二氨基甲酸酯、其衍生物和/或其组合。
GABA受体调节剂
GABA受体调节剂任选用于本文所揭示的调配物。举例来说,GABA受体调节剂包括阿普唑仑(alprazolam)、溴西泮(bromazepam)、溴替唑仑(brotizolam)、氯氮卓(chlordiazepoxide)、氯硝西泮(clonazepam)、氯氮平酸盐(clorazepate)、安定、艾司唑仑(estazolam)、氟硝西泮(flunitrazepam)、氟西泮(flurazepam)、氯普唑仑(loprazolam)、劳拉西泮、氯甲西泮(lormetazepam)、伊达唑仑(idazolam)、尼美西泮(nimetazepam)、硝西泮(nitrazepam)、奥沙西泮(oxazepam)、普拉西泮(prazepam)、替马西泮(temazepam)、三唑仑(triazolam)、呋塞米、布美他尼(bumetanide)、依他尼酸(ethacrynicacid)、加巴喷丁(gabapentin)、普瑞巴林(pregabalin)、蝇蕈醇或巴氯芬。
γ-分泌酶抑制剂
γ-分泌酶抑制剂任选用于本文所揭示的调配物。γ-分泌酶抑制剂包括(但不限于)LY450139(羟基戊酰基单苯并己内酰胺)、L685458(1S-苯甲基-4R[1-[1-S-氨甲酰基-2-苯乙基氨甲酰基)-1S-3-甲基丁基氨甲酰基]-2R-羟基-5-苯基戊基}氨基甲酸第三丁酯);LY411575(N2-[(2S)-2-(3,5-二氟苯基)-2-羟基乙酰基]-N1[(7S)-5-甲基-6-氧代-6,7-二氢-5H-二苯并[bid]氮呯-7基]-L-丙氨酰胺)、MK-0752(默克(Merck))、塔夫比尔(tarenflurbil)和/或BMS-299897(2-[(1R)-l-[[(4-氯苯基)磺酰基](2,5-二氟苯基)氨基]乙基]-5-氟苯丙酸)。
谷氨酸受体调节剂
谷氨酸受体调节剂任选用于本文所揭示的调配物。在一些实施例中,谷氨酸受体调节剂包括CNQX(6-氰基-7-硝基喹喔啉-2,3-二酮);NBQX(2,3-二羟基-6-硝基-7-氨磺酰基-苯并[f]喹喔啉-2,3-二酮);DNQX(6,7-二硝基喹喔啉-2,3-二酮);犬尿喹啉酸;2,3-二羟基-6-硝基-7-氨磺酰基苯并-[f]喹喔啉;1-氨基金刚烷、右美沙芬(dextromethorphan)、右羟吗喃(dextrorphan)、伊波加因(ibogaine)、氯胺酮(ketamine)、一氧化氮、苯环利定(phencyclidine)、利鲁唑(riluzole)、替来他明(tiletamine)、美金刚(memantine)、地佐环平(dizocilpine)、阿替加奈(aptiganel)、瑞吗米德(remacimide)、7-氯犬尿氨酸(7-chlorokynurenate)、DCKA(5,7-二氯犬尿喹啉酸)、犬尿喹啉酸、1-氨基环丙甲酸(ACPC)、AP7(2-氨基-7-膦酸基庚酸)、APV(R-2-氨基-5-膦酸基戊酸酯)、CPPene(3-[(R)-2-羰基哌嗪-4-基]-丙-2-烯基-1-膦酸);(+)-(1S,2S)-1-(4-羟基-苯基)-2-(4-羟基-4-苯基(N-哌啶基))-1-丙醇;(1S,2S)-1-(4-羟基-3-甲氧基苯基)-2-(4-羟基-4-苯基(N-哌啶基))-1-丙醇;(3R,4S)-3-(4-(4-氟苯基)-4-羟基哌啶-1-基-)-色满-4,7-二醇;(1R*,2R*)-1-(4-羟基-3-甲基苯基)-2-(4-(4-氟-苯基)-4-羟基哌啶-1-基)-丙-1-醇-甲磺酸酯;LY389795((-)-2-硫-4-氨基二环-己烷-4,6-二甲酸酯);LY379268((-)-2-氧-4-氨基二环-己烷-4,6-二甲酸酯);LY354740((+)-2-氨基二环-己烷-2,6-二甲酸酯);DCG-IV((2S,2'R,3'R)-2-(2',3'-二羧基环丙基)甘氨酸);2R,4R-APDC(2R,4R-4-氨基吡咯烷-2,4-二甲酸酯)、(S)-3C4HPG((S)-3-羧基-4-羟基苯基甘氨酸);(S)-4C3HPG((S)-4-羧基-3-羟基苯基甘氨酸);L-CCG-I((2S,1'S,2'S)-2-(羧基环丙基)甘氨酸);ACPT-I((1S,3R,4S)-1-氨基环戊烷-1,3,4-三甲酸);L-AP4(L-(+)-2-氨基-4-膦酸基丁酸);(S)-3,4-DCPG((S)-3,4-二羧基苯基甘氨酸);(RS)-3,4-DCPG((RS)-3,4-二羧基苯基甘氨酸);(RS)-4-膦酸基苯基甘氨酸((RS)PPG);AMN082(,N'-双(二苯基甲基)-1,2-乙二胺二盐酸盐);DCG-IV((2S,2'R,3'R)-2-(2',3'-二羧基环丙基)甘氨酸);3,5-二甲基吡咯-2,4-二甲酸2-丙酯4-(1,2,2-三甲基-丙基)酯(3,5-二甲基PPP);3,3'-二氟苄连氮(DFB)、3,3'-二甲氧基苄连氮(DMeOB)、3,3'-二氯苄连氮(DCB)和在分子药理学(Mol.Pharmacol.)2003,64,731-740中揭示的其它mGluR5异位调节剂;(E)-6-甲基-2-(苯基二氮烯基)吡啶-3-醇(SIB 1757);(E)-2-甲基-6-苯乙烯基吡啶(SIB 1893);2-甲基-6-(苯基乙炔基)吡啶(MPEP)、2-甲基-4-((6-甲基吡啶-2-基)乙炔基)噻唑(MTEP);7-(羟基亚氨基)环丙[b]色烯-1-甲酸乙酯(CPCCOEt)、N-环己基-3-甲基苯并[d]噻唑并[3,2-a]咪唑-2-甲酰胺(YM-298198)、三环[3.3.3.1]壬基喹喔啉-2-甲酰胺(NPS 2390);6-甲氧基-N-(4-甲氧基苯基)喹唑啉-4-胺(LY 456239);WO2004/058754和WO2005/009987中揭示的mGluR1拮抗剂;2-(4-(2,3-二氢-1H-茚-2-基氨基)-5,6,7,8-四氢喹唑啉-2-基硫基)乙醇;3-(5-(吡啶-2-基)-2H-四唑-2-基)苯甲腈、2-(2-甲氧基-4-(4-(吡啶-2-基)噁唑-2-基)苯基)乙腈;2-(4-(苯并[d]噁唑-2-基)-2-甲氧基苯基)乙腈;6-(3-甲氧基-4-(吡啶-2-基)苯基)咪唑并[2,1-b]噻唑;(S)-(4-氟苯基)(3-(3-(4-氟苯基)-l,2,4-噁二唑-5-基)哌啶-1-基)甲酮(ADX47273)和/或其组合。
生长因子
生长因子任选用于本文所揭示的调配物。例示性生长因子包括脑衍生神经营养因子(BDNF)、睫状神经营养因子(CNTF)、胶质细胞系衍生神经营养因子(GDNF)、神经营养素-3、神经营养素-4和/或其组合。在一些实施例中,生长因子为成纤维细胞生长因子(FGF)、胰岛素样生长因子(IGF)、表皮生长因子(EGF)、血小板衍生生长因子(PGF)和/或其激动剂。
HO-1激动剂
HO-1激动剂任选用于本文所揭示的调配物。HO-1激动剂包括(但不限于)胡椒碱、氯高铁血红素(hemin)和/或巴西木素(brazilin)。
IKK抑制剂
IKK抑制剂任选用于本文所揭示的调配物。IKK抑制剂的实例包括SPC-839、PS-1145、BMS-345541和SC-514。
白细胞介素抑制剂
白细胞介素抑制剂任选用于本文所揭示的调配物。在一些实施例中,白细胞介素抑制剂包括WS-4(针对IL-8的抗体);[Ser IL-8]72;或[Ala IL-8]77(参见美国专利第5,451,399号,所述专利中与这些肽有关的揭示内容以引用的方式并入本文中);IL-1RA;SB 265610(N-(2-溴苯基)-N'-(7-氰基-1H-苯并三唑-4-基)脲);SB 225002(N-(2-溴苯基)-N'-(2-羟基-4-硝基苯基)脲);SB203580(4-(4-氟苯基)-2-(4-甲基亚磺酰基苯基)-5-(4-吡啶基)1H-咪唑);SB272844(葛兰素史克(GlaxoSmithKline));SB517785(葛兰素史克);SB656933(葛兰素史克);Sch527123(2-羟基-N,N-二甲基-3-{2-[[(R)-1-(5-甲基-呋喃-2-基)-丙基]氨基]-3,4-二氧代-环丁-1-烯基氨基}-苯甲酰胺);PD98059(2-(2-氨基-3-甲氧基苯基)-4H-1-苯并吡喃-4-酮);瑞帕克星(reparixin);N-[4-氯-2-羟基-3-(哌嗪-1-磺酰基)苯基]-N'-(2-氯-3-氟苯基)脲对甲苯磺酸酯(参见WO/2007/150016,其中与此化合物有关的揭示内容以引用的方式并入本文中);西维来司(sivelestat);bG31P(CXCL8((3-74))K11R/G31P);巴利昔单抗(basiliximab);环孢素A(cyclosporin A);SDZ RAD(40-O-(2-羟乙基)-雷帕霉素(40-O-(2-hydroxyethyl)-rapamycin));FR235222(安斯泰来制药公司(Astellas Pharma));达利珠单抗(daclizumab);阿那白滞素(anakinra);AF12198(Ac-Phe-Glu-Trp-Thr-Pro-Gly-Trp-Tyr-Gln-L-氮杂环丁烷-2-羰基-Tyr-Ala-Leu-Pro-Leu-NH2);或其组合。
局部麻醉剂
局部麻醉剂任选用于本文所揭示的调配物。局部麻醉剂包括且不限于苯佐卡因、卡铁卡因(carticaine)、辛可卡因(cinchocaine)、环美卡因(cyclomethycaine)、利多卡因、丙胺卡因(prilocaine)、丙氧卡因(propxycaine)、丙美卡因(proparacaine)、丁卡因(tetracaine)、妥卡尼(tocainide)和三甲卡因(trimecaine)。
MAPK/JNK信号传导级联抑制剂
MAPK/JNK信号传导级联抑制剂任选用于本文所揭示的调配物。例示性的MAPK/JNK信号传导级联抑制剂包括米诺环素(minocycline);SB-203580(4-(4-氟苯基)-2-(4-甲基亚磺酰基苯基)-5-(4-吡啶基)1H-咪唑);PD 169316(4-(4-氟苯基)-2-(4-硝基苯基)-5-(4-吡啶基)-1H-咪唑);SB 202190(4-(4-氟苯基)-2-(4-羟基苯基)-5-(4-吡啶基)1H-咪唑);RWJ 67657(4-[4-(4-氟苯基)-1-(3-苯基丙基)-5-(4-吡啶基)-1H-咪唑-2-基]-3-丁炔-1-醇);SB 220025(5-(2-氨基-4-嘧啶基)-4-(4-氟苯基)-1-(4-哌啶基)咪唑);或其组合。米诺环素通过抑制诱导p38MAPK磷酸化,来预防经耳毒性抗生素庆大霉素治疗后耳毛细胞的细胞凋亡。在一些实施例中,拮抗MAPK/JNK信号传导级联的药剂为D-JNKI-1((D)-hJIP175-157-DPro-DPro-(D)-HIV-TAT57-48)、SP600125(蒽[1,9-cd]吡唑-6(2H)-酮)、JNK抑制剂I((L)-HIV-TAT48-57-PP-JBD20)、JNK抑制剂III((L)-HIV-TAT47-57-gaba-c-Junδ33-57)、AS601245(1,3-苯并噻唑-2-基(2-[[2-(3-吡啶基)乙基]氨基]-4-嘧啶基)乙腈)、JNK抑制剂VI(H2N-RPKRPTTLNLF-NH2)、JNK抑制剂VIII(N-(4-氨基-5-氰基-6-乙氧基吡啶-2-基)-2-(2,5-二甲氧基苯基)乙酰胺)、JNK抑制剂IX(N-(3-氰基-4,5,6,7-四氢-1-苯并噻吩-2-基)-1-萘甲酰胺)、双香豆素(dicumarol)(3,3'-亚甲基双(4-羟基香豆素))、SC-236(4-[5-(4-氯苯基)-3-(三氟甲基)-1H-吡唑-1-基]苯-磺酰胺)、CEP-1347(塞法隆(Cephalon))、CEP-11004(塞法隆);或其组合。
神经传递素再摄取抑制剂
神经传递素再摄取抑制剂任选用于本文所揭示的调配物。仅举例来说,神经传递素再摄取抑制剂包括阿米替林(amitriptyline)、去甲替林、曲米帕明(trimipramine)、氟西汀(fluoxetine)、帕罗西汀、舍曲林。
一氧化氮合酶抑制剂
一氧化氮合酶(NOS)抑制剂欲用于本文所揭示的免疫调节调配物。NOS抑制剂也欲作为听囊中骨头塑造的抑制剂。NOS抑制剂包括(仅举例来说)氨基胍、对甲苯磺酸1-氨基-2-羟基胍、胍基乙基二硫化物(GED)、甲磺酸溴隐亭(Bromocriptine Mesylate)、地塞米松、NG,NG-二甲基-L-精氨酸、二盐酸盐、氯化二亚苯基碘鎓、2-乙基-2-硫假脲、氟哌啶醇、L-N5-(1-亚氨基乙基)鸟氨酸、MEG、S-甲基异硫脲硫酸盐(SMT)、S-甲基-L-硫瓜氨酸、NG-单乙基-L-精氨酸、NG-单甲基-D-精氨酸、NG-硝基-L-精氨酸甲酯、L-NIL、NG-硝基-L-精氨酸(L-NNA)、7-硝基吲唑、nNOS抑制剂I、1,3-PBITU、L-硫瓜氨酸、NG-丙基-L-精氨酸、SKF-525A、TRIM、NG-硝基-L-精氨酸甲酯(L-NAME)、MTR-105、L-NMMA、BBS-2、ONO-1714和其组合。
耳毒性药剂
耳毒性药剂任选用于本文所揭示的调配物。例示性耳毒性药剂包括氨基糖苷抗生素(例如庆大霉素和阿米卡星)、大环内脂抗生素(例如红霉素)、糖肽抗生素(例如万古霉素)、袢利尿剂(例如呋塞米)、水杨酸和烟碱。
血小板活化因子拮抗剂
血小板活化因子拮抗剂也欲用于本文所揭示的免疫调节调配物。血小板活化因子拮抗剂包括(仅举例来说)海风藤酮(kadsurenone)、丰吗汀G(phomactin G)、人参皂苷(ginsenosides)、阿帕泛(apafant)(4-(2-氯苯基)-9-甲基-2[3(4-吗啉基)-3-丙醇-1-基[6H-噻吩并[3.2-f[[1.2.4]三唑并]4,3-1]]1.4]二氮呯)、A-85783、BN-52063、BN-52021、BN-50730(四氢-4,7,8,10-甲基-1(氯-1-苯基)-6-(甲氧基-4-苯基-氨甲酰基)-9-吡啶并[4',3'-4,5]噻吩并[3,2-f]三唑并-1,2,4[4,3-a]二氮呯-1,4)、BN 50739、SM-12502、RP-55778、Ro 24-4736、SR27417A、CV-6209、WEB 2086、WEB 2170、14-脱氧穿心莲内酯、CL 184005、CV-3988、TCV-309、PMS-601、TCV-309和其组合。
去乙酰化酶激动剂
去乙酰化酶激动剂任选用于本文所揭示的调配物。去乙酰化酶激动剂的实例包括反芪、顺芪、白藜芦醇(resveratrol)、白皮杉醇(piceatannol)、土大黄甙(rhapontin)、脱氧土大黄甙(deoxyrhapontin)、紫铆花素(butein)、查耳酮(chalcon);异甘草根糖精宁(isoliquirtigen);紫铆花素;4,2',4'-三羟基查耳酮;3,4,2',4',6'-五羟基查耳酮;黄酮(flavone);桑色素(morin);漆树黄酮(fisetin);四羟黄酮(luteolin);槲皮酮(quercetin);堪非醇(kaempferol);芹菜素(apigenin);棉花素(gossypetin);杨梅黄酮(myricetin);6-羟基芹菜素;5-羟基黄酮;5,7,3',4',5'-五羟基黄酮;3,7,3',4',5'-五羟基黄酮;3,6,3',4'-四羟基黄酮;7,3',4',5'-四羟基黄酮;3,6,2',4'-四羟基黄酮;7,4'-二羟基黄酮;7,8,3',4'-四羟基黄酮;3,6,2',3'-四羟基黄酮;4'-羟基黄酮;5-羟基黄酮;5,4'-二羟基黄酮;5,7-二羟基黄酮;黄豆苷元(daidzein)、染料木素(genistein)、柚皮素(naringenin);黄烷酮;3,5,7,3',4'-五羟基黄烷酮;氯化天竺葵色素(pelargonidin chloride)、氯化氰定(cyanidinchloride)、氯化翠雀啶(delphinidin chloride)、(-)-表儿茶素(羟基部位:3,5,7,3',4');(-)-儿茶素(羟基部位:3,5,7,3',4');(-)-没食子儿茶素(羟基部位:3,5,7,3',4',5');(+)-儿茶素(羟基部位:3,5,7,3',4');(+)-表儿茶素(羟基部位:3,5,7,3',4');日本扁柏油(Hinokitiol)(b-崖柏素(b-Thujaplicin);2-羟基-4-异丙基-2,4,6-环庚三烯-1-酮);L-(+)-麦角硫因(L-(+)-Ergothioneine)((S)-a-羧基-2,3-二氢-N,N,N-三甲基-2-硫酮基-1H-咪唑4-乙铵内盐);咖啡酸苯酯;MCI-186(3-甲基-1-苯基-2-吡唑啉-5-酮);HBED(N,N'-二-(2-羟基苯甲基)乙二胺-N,N'-二乙酸●H2O);氨溴素(Ambroxol)(反式-4-(2-氨基-3,5-二溴苯甲基氨基)环己烷-HCl);和U-83836E((-)-2-((4-(2,6-二-1-吡咯烷基-4-嘧啶)-1-哌嗪基)甲基)-3,4-二氢-2,5,7,8-四甲基-2H-1-苯并吡喃-6-醇●2HCl);β-1'-5-甲基-烟酰胺-2'-脱氧核糖;β-D-1'-5-甲基-烟酰-2'-脱氧呋喃核糖苷;β-1'-4,5-二甲基-烟酰胺-2'-脱氧核糖;或β-D-1'-4,5-二甲基-烟酰胺-2'-脱氧呋喃核糖苷;双嘧达莫(dipyridamole)、ZM 336372(3-(二甲基氨基)-N-[3-[(4-羟基苯甲酰基)-氨基]-4-甲基苯基]苯甲酰胺)、喜树碱(camptothecin)、拟雌内酯(coumestrol)、去甲二氢愈创木酸(nordihydroguaiaretic acid)、七叶亭(esculetin)、SRT-1720(斯曲思(Sirtris))、SRT-1460(斯曲思)、SRT-2183(斯曲思)、其类似物或其组合。
钠通道阻断剂
钠通道阻断剂任选用于本文所揭示的调配物。钠通道阻断剂包括(但不限于)长春西丁(vinpocetine)((3a,16a)-埃那美宁-14-甲酸乙酯((3a,16a)-Eburnamenine-14-carboxylic acid ethyl ester));西帕曲近(sipatrigine)(2-(4-甲基哌嗪-1-基)-5-(2,3,5-三氯苯基)-嘧啶-4-胺);阿米洛利(amiloride)(3,5-二氨基-N-(氨基亚氨基甲基)-6-氯吡嗪甲酰胺盐酸盐);卡巴西平(carbamazepine)(5H-二苯并[b,f]氮呯-5-甲酰胺);TTX(八氢-12-(羟基甲基)-2-亚氨基-5,9:7,10a-二甲桥-10aH-[1,3]二噁辛并[6,5-d]嘧啶-4,7,10,11,12-戊醇(octahydro-12-(hydroxymethyl)-2-imino-5,9:7,10a-dimethano-10aH-[l,3]dioxocino[6,5-d]pyrimidine-4,7,10,11,12-pentol));RS100642(1-(2,6-二甲基-苯氧基)-2-乙基氨基丙烷盐酸盐);美西律(mexiletine)((1-(2,6-二甲基苯氧基)-2-氨基丙烷盐酸盐));QX-314(溴化N-(2,6-二甲基苯基氨甲酰基甲基)三乙基铵);苯妥英(phenytoin)(5,5-二苯基咪唑烷-2,4-二酮);拉莫三嗪(lamotrigine)(6-(2,3-二氯苯基)-1,2,4-三嗪-3,5-二胺);4030W92(2,4-二氨基-5-(2,3-二氯苯基)-6-氟甲基嘧啶);BW1003C87(5-(2,3,5-三氯苯基)嘧啶-2,4-1.1-乙烷磺酸盐);QX-222(氯化2-[(2,6-二甲基苯基)氨基]-N,N,N-三甲基-2-氧代乙铵);氨溴索(ambroxol)(反式-4-[[(2-氨基-3,5-二溴苯基)甲基]氨基]环己醇盐酸盐);R56865(N-[1-(4-(4-氟苯氧基)丁基]-4-哌啶基-N-甲基-2-苯并-噻唑胺);芦贝鲁唑(lubeluzole);阿吗灵(ajmaline)((17R,21α)-;阿吗兰-17,21-二醇((17R,21alpha)-ajmalan-17,21-diol));普鲁卡因胺(procainamide)(4-氨基-N-(2-二乙基氨基乙基)苯甲酰胺盐酸盐);氟卡胺(flecainide);瑞唑乐(riluzoleor);或其组合。
Src拮抗剂
SRC拮抗剂任选用于本文所揭示的调配物。Src拮抗剂也欲作为听囊中的骨重塑调节剂。SRC拮抗剂包括且不限于1-萘基PP1(1-(1,1-二甲基乙基)-3-(1-萘基)-lH-吡唑并[3,4-d]嘧啶-4-胺);薰草菌素A(Lavendustin A)(5-[[(2,5-二羟基苯基)甲基][(2-羟基苯基)甲基]氨基]-2-羟基苯甲酸);MNS(3,4-亚甲基二氧基-b-硝基苯乙烯);PP1(1-(1,1-二甲基乙基)-l-(4-甲基苯基)-1H-吡唑并[3,4-d]嘧啶-4-胺);PP2(3-(4-氯苯基)-1-(1,1-二甲基乙基)-1H-吡唑并[3,4-d]嘧啶-4-胺);KX1-004(克尼斯(Kinex));KX1-005(克尼斯);KX1-136(克尼斯);KX1-174(克尼斯);KX1-141(克尼斯);KX2-328(克尼斯);KX1-306(克尼斯);KX1-329(克尼斯);KX2-391(克尼斯);KX2-377(克尼斯);ZD4190(阿斯康利(Astra Zeneca);N-(4-溴-2-氟苯基)-6-甲氧基-7-(2-(1H-l,2,3-三唑-1-基)乙氧基)喹唑啉-4-胺);AP22408(阿瑞德制药(Ariad Pharmaceuticals));AP23236(阿瑞德制药);AP23451(阿瑞德制药);AP23464(阿瑞德制药);AZD0530(阿斯康利);AZM475271(M475271;阿斯康利);达沙替尼(Dasatinib)(N-(2-氯-6-甲基苯基)-2-(6-(4-(2-羟基乙基)-哌嗪-1-基)-2-甲基嘧啶-4-基氨基)噻唑-5-甲酰胺);GN963(反式-4-(6,7-二甲氧基喹喔啉-2-基氨基)环己醇硫酸酯);博舒替尼(Bosutinib)(4-((2,4-二氯-5-甲氧基苯基)氨基)-6-甲氧基-7-(3-(4-甲基-1-哌嗪基)丙氧基)-3-喹啉甲腈);CPG-77675;或其组合。关于Src激酶家族的其它拮抗剂的揭示内容,参见美国公开案第2006/0172971号,此案中的这些揭示内容以引用的方式并入本文中。
TACE抑制剂
TACE抑制剂任选用于本文所揭示的调配物。TACE抑制剂的实例包括硝基精氨酸(Nitroarginine)类似物A、GW3333、TMI-1、BMS-561392、DPC-3333、TMI-2、BMS-566394、TMI-005、阿普斯特(apratastat)、GW4459、W-3646、IK-682、GI-5402、GI-245402、BB-2983、DPC-A38088、DPH-067517、R-618和CH-138。
甲状腺激素受体调节
甲状腺激素受体调节剂任选用于本文所揭示的调配物。在一些情况下,甲状腺激素受体调节剂包括T3(3,5,3'-三碘-L-甲状腺原氨酸);KB-141(3,5-二氯-4-(4-羟基-3-异丙基苯氧基)苯基乙酸);GC-1(3,5-二甲基-4-(4'-羟基-3'-异丙基苯甲基)-苯氧基乙酸);GC-24(3,5-二甲基-4-(4'-羟基-3'-苯甲基)苯甲基苯氧基乙酸);索布替姆(sobetirome)(QRX-431);4-OH-PCB106(4-OH-2',3,3',4',5'-五氯联苯);MB07811((2R,4S)-4-(3-氯苯基)-2-[(3,5-二甲基-4-(4-羟基-3-异丙基苯甲基)苯氧基)甲基]-2-氧离子基-[1,3,2]-二氧膦烷);MB07344(3,5-二甲基-4-(4-羟基-3-异丙基苯甲基)苯氧基)甲基膦酸);和其组合。在一些情况下,KB-141、GC-1、索布替姆和GC-24对TRβ具有选择性。
Toll样受体抑制剂
Toll样受体(TLR)抑制剂任选用于本文所揭示的调配物。举例来说,TLR抑制剂包括:ST2抗体;sST2-Fc(功能鼠类可溶性ST2-人类IgG1Fc融合蛋白;参见生物化学与生物物理学研究通讯(Biochemical and Biophysical Research Communications),2006年12月29日,第351卷,第4期,940-946,其中与sST2-Fc相关的揭示内容以引用的方式併入本文中);CRX-526(克瑞沙(Corixa));脂质IVA;RSLA(球形红细菌(Rhodobactersphaeroides)脂质A);E5531((6-O-{2-脱氧-6-O-甲基-4-O-膦酸基-3-O-[(R)-3-Z-十二-5-烯酰基氧基癸基]-2-[3-氧代-十四烷酰基氨基]-β-O-膦酸基-α-D-吡喃葡萄糖四钠盐);E5564(3-O-癸基-2-脱氧-6-O-[2-脱氧-3-O-[(3R)-3-甲氧基癸基]-6-O-甲基-2-[[(11Z)-1-氧代-11-十八烯基]氨基]-4-O-膦酸基-β-D-吡喃葡萄糖基]-2-[(1,3-二氧代十四烷基)氨基]-1-(二氢磷酸酯)α-D-吡喃葡萄糖四钠盐);化合物4a(氢化肉桂酰基-L-缬氨酰基吡咯烷;参见PNAS,2003年6月24日,第100卷,第13期,7971-7976,其中与化合物4a相关的揭示内容以引用的方式并入本文中);CPG 52364(考利制药公司(ColeyPharmaceutical Group));LY294002(2-(4-吗啉基)-8-苯基-4H-1-苯并吡喃-4-酮);PD98059(2-(2-氨基-3-甲氧基苯基)-4H-1-苯并吡喃-4-酮);氯喹(chloroquine);和免疫调节寡核苷酸(与IRO相关的揭示内容,参见美国专利申请公开案第2008/0089883号)。
TNF拮抗剂
抗TNF剂也欲用于本文所揭示的调配物。抗TNF剂也欲用于听囊中的骨重塑调节。抗TNF剂包括例如依那西普英利昔单抗阿达木单抗和戈利木单抗(CNTO 148)、TNF受体(聚乙二醇化可溶性TNF受体1型;安进(Amgen));TNF结合因子(奥那西普(Onercept);雪兰诺(Serono));TNF抗体(美国专利申请案第2005/0123541号;美国专利申请案第2004/0185047号);针对p55TNF受体的单域抗体(美国专利申请案第2008/00088713号);可溶性TNF受体(美国专利申请案第2007/0249538号);结合于TNF的融合多肽(美国专利申请案第2007/0128177号);TNF转化酶抑制剂(斯科特尼茨基(Skotnicki)等人,药物化学年度报告(Annual Reports in Medicinal Chemistry)(2003),38,153-162);IKK抑制剂(卡林(Karin)等人,自然药物发现综述(Nature Reviews Drug Discovery)(2004),3,17-26)和黄酮衍生物(美国专利申请案第2006/0105967号),所有申请案的这些揭示内容都以引用的方式并入本文中。
雌激素受体调节剂
雌激素受体调节剂任选用于本文所揭示的调配物且也欲作为听囊中的骨重塑调节剂。雌激素受体调节剂包括且不限于阿非昔芬(afimoxifene)(4-羟基他莫昔芬)(4-hydroxytamoxifen);阿佐昔芬(arzoxifene);巴多昔芬(bazedoxifene)、克罗米芬(clomifene)、芬吗瑞乐(femarelle)(DT56a)、拉索昔芬(lasofoxifene)、奥美昔芬(ormeloxifene)、欧喷米芬(ospemifine)、雷洛昔芬(raloxifene)、他莫昔芬(tamoxifen);GW5638;LY353381;ICI 182,780(氟维司群(fulvestrant),)、异黄酮(isoflavone)和SR16234。
双膦酸盐
双膦酸盐任选用于本文所揭示的调配物。双膦酸盐欲作为听囊中的骨重塑调节剂。双膦酸盐的实例包括依替膦酸盐(Etidronate)氯屈膦酸盐(Clodronate)替鲁膦酸盐(Tiludronate)帕米膦酸盐(Pamidronate)(APD,);奈立膦酸盐(Neridronate);奥帕膦酸盐(Olpadronate);阿仑膦酸盐(Alendronate)伊班膦酸盐(Ibandronate)利塞膦酸盐(Risedronate)唑来膦酸盐(Zoledronate)
碳酸酐酶抑制剂
碳酸酐酶抑制剂任选用于本文所揭示的调配物。碳酸酐酶抑制剂也欲作为听囊中的骨重塑调节剂。例示性碳酸酐酶抑制剂包括乙酰唑胺(Acetazolamide)、布林佐胺(Brinzolamide)、醋甲唑胺(Methazolamide)、多佐胺(Dorzolamide)、司佐胺(Sezolamide)、托吡酯(Topiramate)、MK-927、MK-417和MK-507。
基质金属蛋白酶调节剂
基质金属蛋白酶抑制剂任选用于本文所揭示的调配物。基质金属蛋白酶抑制剂也欲作为听囊中的骨重塑调节剂。基质金属蛋白酶抑制剂包括且不限于Ro 28-2653;MMI-166;MMI270(CGS27023A)、COL-3(NSC-683551)、PG-530742、S-3304和ACZ885。
组织蛋白酶K抑制剂和蛋白酶抑制剂
组织蛋白酶K抑制剂任选用于本文所揭示的调配物。组织蛋白酶K抑制剂和其它蛋白酶抑制剂也欲作为听囊中的骨重塑调节剂。组织蛋白酶K抑制剂的实例包括巴利卡替(balicatib)、奥当卡替(odanacatib)(MK-0822)、CRA-013783/L-006235、AAE581和MK886。其它的蛋白酶抑制剂包括例如沙奎那韦利托那韦茚地那韦尼非那韦(Nelfinavir)安普那韦洛匹那韦阿扎那韦福沙那韦替拉那韦达芦那韦(Darunavir)和半胱氨酸蛋白酶抑制剂B(cystatin B)。
白细胞三烯抑制剂
白细胞三烯抑制剂任选用于本文所揭示的调配物。白细胞三烯抑制剂也欲作为听囊中的骨重塑调节剂,且包括例如BAYX 1005、孟鲁司特(montelukast)、扎鲁司特(zafirlukast)、LY-171,883(托鲁司特(tomelukast))和齐留通(zileuton)。
脂肪氧合酶抑制剂和蛋白质异戊烯化抑制剂
脂肪氧合酶抑制剂任选用于本文所揭示的调配物且也欲作为听囊中的骨重塑调节剂。脂肪氧合酶抑制剂包括且不限于氮拉斯汀(azelastine)、乙胺嗪、降二氢愈疮酸、齐留通、A63162和A-64077。其它的蛋白质异戊烯化抑制剂也欲作为听囊中的骨重塑调节剂,包括法尼基转移酶抑制剂R115777(替吡法尼(tipifarnib))、BMS-214662、CP-609,754和SCH66336(洛那法尼(lonafarnib))。
RANKL调节剂
RANKL抑制剂任选用于本文所揭示的调配物且欲作为听囊中的骨重塑调节剂。例示性RANKL调节剂包括地诺单抗(denosumab)(AMG-162)和SCIO-469。
芳香化酶抑制剂
芳香化酶抑制剂任选用于本文所揭示的调配物且欲作为听囊中的骨重塑调节剂。芳香化酶抑制剂包括例如40H雄烯二酮、(依西美坦(exemestane));(来曲唑(letrozole));和(阿那曲唑(anastrozole))。
COX-2抑制剂
COX-2抑制剂任选用于本文所揭示的调配物且欲作为听囊中的骨重塑调节剂。COX-2抑制剂的实例包括且不限于塞内昔布(celecoxib)罗非昔布(rofecoxib)伐地昔布(valdecoxib)阿司匹林(aspirin)、布洛芬、美洛昔康(meloxicam)和萘普生(naproxen)。
腺苷酸环化酶(AC)调节剂
AC抑制剂任选用于本文所揭示的调配物且欲作为听囊中的骨重塑调节剂。AC调节剂包括激素,例如甲状旁腺激素和其类似物,包括美国专利第6,541,450号(以引用的方式并入本文中)中所揭示的类似物。
激素
激素任选用于本文所揭示的调配物且欲作为听囊中的骨重塑调节剂。例示性激素包括甲状旁腺激素(PTH)和其类似物;维生素D和其类似物;降血钙素(calcitonin);生长因子,包括IL-6、CSF;和雌激素。
PPARγ调节剂
PPARγ调节剂任选用于本文所揭示的调配物且欲作为听囊中的骨重塑调节剂。PPARγ调节剂的非限制性实例包括罗格列酮(rosiglitazone)、吡格列酮(pioglitazone)、GW9662、SR-202、环格列酮(ciglitazone)、曲格列酮(troglitazone)、GW1929、GW7647。
RNAi
在一些实施例中,如果需要抑制或下调目标(例如MAPK/JNK级联中的基因、卡斯蛋白酶基因、Src基因、钙蛋白酶基因、Ca2+通道基因),那么可利用RNA干扰。在一些实施例中,抑制或下调目标的药剂为siRNA分子。在一些情况下,siRNA分子通过RNA干扰(RNAi)来抑制目标转录。在一些实施例中,产生序列与目标互补的双链RNA(dsRNA)分子(例如通过PCR)。在一些实施例中,产生序列与目标互补的20-25bp siRNA分子。在一些实施例中,所述20-25bp siRNA分子在每一条链的3'端具有2-5bp突出端,且具有5'磷酸酯基端和3'羟基端。在一些实施例中,20-25bp siRNA分子具有钝端。关于产生RNA序列的技术,参见分子克隆实验指南(Molecular Cloning:A LaboratoryManual),第2版(萨姆布鲁克(Sambrook)等人,1989)和分子克隆实验指南,第3版(萨姆布鲁克(Sambrook)和拉塞尔(Russel),2001),本文中联合称为“萨姆布鲁克”);分子生物学现行规范(Current Protocols in Molecular Biology)(奥苏贝尔(F.M.Ausubel)等人编辑,1987,包括2001的增刊);核酸化学现行规范(Current Protocols in Nucleic AcidChemistry),约翰威立父子出版公司(John Wiley&Sons,Inc.),纽约(New York),2000,其中的这些揭示内容以引用的方式并入本文中。
在一些实施例中,dsRNA或siRNA分子并入控制释放型耳可接受的微球体或微粒、水凝胶、脂质体或热致可逆凝胶中。在一些实施例中,耳可接受的微球体、水凝胶、脂质体、涂料、发泡体、原位形成的海绵状材料、纳米囊或纳米球或热致可逆凝胶注射至内耳中。在一些实施例中,耳可接受的微球体或微粒、水凝胶、脂质体或热致可逆凝胶。在一些实施例中,耳可接受的微球体、水凝胶、脂质体、涂料、发泡体、原位形成的海绵状材料、纳米囊或纳米球或热致可逆凝胶注射至耳蜗、柯蒂氏器、前庭迷路或其组合中。
在一些情况下,投予dsRNA或siRNA分子后,投予部位的细胞(例如耳蜗、柯蒂氏器和/或前庭迷路的细胞)经dsRNA或siRNA分子转化。在一些情况下,在转化后,dsRNA分子裂解成多个约20-25bp的片段,得到siRNA分子。在一些情况下,这些片段在每一条链的3'端上具有约2bp突出端。
在一些情况下,siRNA分子通过RNA诱导的沉默复合物(RISC)分成两条链(引导链和反引导链)。在一些情况下,引导链并入RISC的催化组分(即阿格诺蛋白(argonaute))中。在一些情况下,引导链结合于互补目标mRNA序列。在一些情况下,RISC使目标mRNA裂解。在一些情况下,目标基因的表达下调。
在一些实施例中,与目标互补的序列接合至载体中。在一些实施例中,序列位于两个启动子之间。在一些实施例中,启动子在相反方向上定向。在一些实施例中,载体与细胞接触。在一些情况下,细胞经载体转化。在一些情况下,在转化后,产生序列的有义链与反义链。在一些情况下,有义链与反义链杂交形成dsRNA分子,dsRNA分子裂解成siRNA分子。在一些情况下,这些链杂交形成siRNA分子。在一些实施例中,载体为质粒(例如pSUPER;pSUPER.neo;pSUPER.neo+gfp)。
在一些实施例中,载体并入控制释放型耳可接受的微球体或微粒、水凝胶、脂质体或热致可逆凝胶中。在一些实施例中,耳可接受的微球体、水凝胶、脂质体、涂料、发泡体、原位形成的海绵状材料、纳米囊或纳米球或热致可逆凝胶注射至内耳中。在一些实施例中,耳可接受的微球体或微粒、水凝胶、脂质体或热致可逆凝胶。在一些实施例中,耳可接受的微球体、水凝胶、脂质体、涂料、发泡体、原位形成的海绵状材料、纳米囊或纳米球或热致可逆凝胶注射至耳蜗、柯蒂氏器、前庭迷路或其组合中。
斯他汀
斯他汀(或HMG-CoA还原酶抑制剂)任选用于本文所揭示的调配物且欲作为听囊中的骨重塑调节剂。斯他汀包括例如阿托伐他汀(Atorvastatin) 西立伐他汀(Cerivastatin)氟伐他汀(Fluvastatin)洛伐他汀(Lovastatin) 美伐他汀(Mevastatin);匹伐他汀(Pitavastatin)普伐他汀(Pravastatin)罗素他汀(Rosuvastatin)辛伐他汀(Simvastatin)辛伐他汀+依泽替米贝(Ezetimibe)洛伐他汀+尼克酸(Niacin)(组合疗法);阿托伐他汀+氨氯地平(Amlodipine)(组合疗法);辛伐他汀+尼克酸(组合疗法)。)
TRACP调节剂
TRACP调节剂任选用于本文所揭示的调配物且欲作为听囊中的骨重塑调节剂。TRACP调节剂包括(仅举例来说)半胱氨酸蛋白酶抑制剂B。
TGFβ调节剂
TGFβ抑制剂任选用于本文所揭示的调配物且欲作为听囊中的骨重塑调节剂。TGFβ抑制剂包括且不限于CAT-192(人类抗TGF-β1单克隆抗体);GC1008(人类抗转化生长因子-β(TGFβ)单克隆抗体);和尹林(Yingling)等人,自然综述(Nature Reviews),2004,3,1011-1022(其以引用的方式并入本文中)中所揭示的TGFβ的其它小分子调节剂。
TRPV调节
TRPV调节剂任选用于本文所揭示的调配物。TRPV调节剂的实例包括辣椒素、超强辣素(resiniferatoxin)、在美国申请公开案2005/0277643、2005/0215572、2006/0194801、2006/0205773、2006/0194801、2008/0175794、2008/0153857、2008/0085901、2008/0015183、2006/0030618、2005/0277646、2005/0277631、2005/0272931、2005/0227986、2005/0153984、2006/0270682、2006/0211741、2006/0205980和2006/0100490中所揭示的TRPV调节剂、和/或其组合。
以下(表1)呈现欲用于本文所揭示的组合物和装置的活性剂的实例。在一些实施例中,表1中所揭示的一种或一种以上活性剂用于本文所述的组合物或装置。
耳部病状 治疗剂
良性阵发性位置性眩晕 苯海拉明
良性阵发性位置性眩晕 劳拉西泮
良性阵发性位置性眩晕 美克利嗪
良性阵发性位置性眩晕 昂丹司琼(Oldansetron)
听力损失 雌激素
AIED 依那西普(Enbrel)
AIED GW3333
AIED 克帕松
听力损失 雌激素和孕酮(E+P)
听力损失 叶酸
听力损失 具有0.03%氧氟沙星的乳酸林格氏溶液(Lactated Ringer's)
听力损失 甲氨蝶呤
听力损失 N-乙酰半胱氨酸
梅尼埃尔氏病 倍他司汀
梅尼埃尔氏病 西地那非(Sildenafil)
梅尼埃尔氏病 他克莫司
中耳积液 肺炎双球菌疫苗
外耳炎 双氯芬酸钠(Diclofenac sodium);戴克特(dexotc)
急性外耳炎 AL-15469A/AL-38905
中耳炎 阿莫西林/克拉维酸盐
中耳炎 α链道酶
中耳炎 紫松果菊(Echinacea purpurea)
中耳炎 法罗培南酯(Faropenem medoxomil)
中耳炎 左氧氟沙星
中耳炎 PNCRM9
中耳炎 肺炎双球菌疫苗
中耳炎 泰利霉素
耳部病状 治疗剂
中耳炎 兹玛斯(Zmax)
渗出性中耳炎 兰索拉唑(Lansoprazole)
急性中耳炎 AL-15469A;AL-38905
急性中耳炎 阿莫西林
急性中耳炎 阿莫西林-克拉维酸盐
急性中耳炎 阿奇霉素
急性中耳炎 阿奇霉素SR
急性中耳炎 头孢地尼
急性中耳炎 海兰德氏耳痛滴剂(Hyland's earache drop)
急性中耳炎 孟鲁司特
急性中耳炎 肺炎双球菌疫苗
具有鼓膜切开管的急性中耳炎 AL-15469A/AL38905
慢性中耳炎 磺胺甲恶唑-甲氧苄啶
化脓性中耳炎 阿奇霉素
化脓性中耳炎 泰利霉素
耳硬化症 乙酰半胱氨酸
耳毒性 阿司匹林
耳鸣 阿坎酸(Acamprosate)
耳鸣 加巴喷丁
耳鸣 莫达非尼(Modafinil)
耳鸣 奈美胺(Neramexane)
耳鸣 甲磺酸奈美胺
耳鸣 吡贝地尔(Piribedil)
耳鸣 伐地那非(Vardenafil)
耳鸣 维替皮塔(Vestipitant)+帕罗西汀
耳鸣 维替皮塔(Vestiplitant)
耳鸣 硫酸锌
(表1)
在一些实施例中,另一种治疗剂为立即释放型药剂。在一些实施例中,另一种治疗剂为控制释放型药剂。
一般灭菌方法
本文提供改善或减轻本文所述的耳部病症的耳用组合物。在一些实施例中,本文另外提供包含投予所述耳用组合物的方法。在一些实施例中,组合物或装置经灭菌。本文所揭示的实施例中包括对用于人类的本文所揭示的医药组合物或装置进行灭菌的方法和工艺。目标是提供相对不含引起感染的微生物的安全医药产品。美国食品与药物管理局(U.S.Food and Drug Administration)在出版物“工业指南:利用无菌处理所产生的灭菌药物产品(Guidance for Industry:Sterile Drug Products Produced by AsepticProcessing)”中提供管理指南,可从http://www.fda.gov/cder/guidance/5882fnl.htm获得,其以全文引用的方式并入本文中。
如本文所使用,灭菌意指用于破坏或去除产品或包装中所存在的微生物的工艺。任何适用于物体和组合物灭菌的方法都欲用于本文所揭示的组合物和装置。可用于使微生物失活的方法包括(但不限于)应用极热、致命化学品或γ辐射。在一些实施例中,本文揭示制备耳部治疗组合物的工艺,其包含对组合物进行选自热灭菌、化学灭菌、辐射灭菌或过滤灭菌的灭菌方法。所使用的方法主要取决于待灭菌的装置或组合物的性质。许多灭菌方法的详细描述提供于利平科特(Lippincott)、威廉姆斯(Williams)和威尔金斯(Wilkins)出版的雷明顿:药学科学与实践(Remington:The Science and Practice ofPharmacy)第40章中,且关于这一主题,以引用的方式并入本文中。
热灭菌
许多方法可以用于通过应用极热来灭菌。一种方法是通过使用饱和蒸汽高压灭菌器。在这一方法中,使温度为至少121℃的饱和蒸汽接触待灭菌的物体。在物体待灭菌的情况下,热直接转移到微生物,或通过加热待灭菌的水溶液整体,间接转移到微生物。这一方法得到广泛实施,因为其在灭菌过程中灵活、安全且经济。
干热灭菌是一种用于杀死微生物且在高温下去除热原的方法。这一工艺在适于将经HEPA过滤的无微生物空气加热到用于灭菌工艺的至少130-180℃的温度和用于去除热原工艺的至少230-250℃的温度的设备中进行。复原浓缩或粉末组合物的水也用高压灭菌器灭菌。在一些实施例中,本文所述的组合物包含通过干式加热(例如在130-140℃的内部粉末温度下加热约7-11小时,或在150-180℃的内部温度下加热1-2小时)灭菌的微粉化药剂。
化学灭菌
化学灭菌方法是用于经不起极热灭菌的产品的替代方法。在这一方法中,使用多种具有杀菌性质的气体和蒸气(例如环氧乙烷、二氧化氯、甲醛或臭氧)作为抗细胞凋亡剂。环氧乙烷的杀菌活性是例如从它能够用作反应性烷化剂的能力中产生。因此,灭菌工艺需要环氧乙烷蒸气与待灭菌的产品直接接触。
辐射灭菌
辐射灭菌的一个优点在于能够在无热降解或其它损害的情况下对许多类型的产品进行灭菌。常采用的辐射是β辐射或来自60Co源的γ辐射。γ辐射的穿透能力使其可用于包括溶液、组合物和不均匀混合物在内的许多产品类型的灭菌。照射的杀菌作用是从γ辐射与生物大分子的相互作用中产生。这一相互作用产生带电荷的物质和自由基。例如重排和交联过程等后续化学反应可导致这些生物大分子丧失正常功能。本文所述的组合物还任选使用β照射灭菌。
过滤
过滤灭菌是一种用于从溶液中去除微生物但不破坏微生物的方法。膜过滤器用于过滤对热敏感的溶液。所述过滤器为混合纤维素酯(MCE)、聚偏氟乙烯(PVF;也称为PVDF)或聚四氟乙烯(PTFE)的薄而坚固的均匀聚合物,且孔径在0.1至0.22μm的范围内。具有各种特征的溶液任选地使用不同的过滤膜过滤。举例来说,PVF和PTFE膜非常适于过滤有机溶剂,而水溶液则通过PVF或MCE膜来过滤。过滤设备可在许多规模下使用,从连接于注射器的单点使用一次性过滤器到用于制造厂的商业规模过滤器。膜过滤器利用高压灭菌器或化学灭菌来灭菌。膜过滤系统的验证按照标准化方案(用于对液体进行灭菌的过滤器的微生物评估(Microbiological Evaluation of Filters forSterilizing Liquids),第4卷第3期,华盛顿特区(Washington,D.C):健康工业制造商协会(Health Industry Manufacturers Association),1981)进行且涉及用已知量(约107/cm2)的例如缺陷短波单胞菌(Brevundimonas diminuta)(ATCC 19146)等异常小微生物来激发膜过滤器。
医药组合物任选地通过穿过膜过滤器来灭菌。包含纳米粒子(美国专利第6,139,870号)或多层微脂粒(理查德(Richard)等人,国际药学杂志(International Journal ofPharmaceutics)(2006),312(1-2):144-50)的组合物可通过经由0.22μm过滤器过滤来灭菌而不破坏其组织结构。
在一些实施例中,本文所揭示的方法包含借助于过滤灭菌来对组合物(或其组分)进行灭菌。在另一实施例中,耳可接受的耳部治疗剂组合物包含粒子,其中所述粒子组合物适于过滤灭菌。在另一实施例中,所述粒子组合物包含尺寸小于300nm、尺寸小于200nm、尺寸小于100nm的粒子。在另一实施例中,耳可接受的组合物包含粒子组合物,其中粒子的无菌性可通过无菌过滤前驱组分溶液来确保。在另一实施例中,耳可接受的组合物包含粒子组合物,其中粒子组合物的无菌性通过低温无菌过滤来确保。在另一实施例中,低温无菌过滤在0℃与30℃之间、0℃与20℃之间、0℃与10℃之间、10℃与20℃之间或20℃与30℃之间的温度下进行。
在另一实施例中,制备耳可接受的粒子组合物的工艺包含:在低温下通过灭菌过滤器过滤含有粒子组合物的水溶液;冻干无菌溶液;和在投予前用无菌水复原粒子组合物。在一些实施例中,本文所述的组合物制造成呈悬浮液形式的含微粉化活性医药成分的单一小瓶组合物。通过将无菌泊洛沙姆溶液与无菌微粉化活性成分(例如PD98059)无菌混合和将组合物转移到无菌医药容器中来制备单一小瓶组合物。在一些实施例中,在分配和/或投予前,将含有呈悬浮液形式的本文所述组合物的单一小瓶再悬浮。
在具体实施例中,过滤和/或填充程序在低于本文所述组合物的胶凝温度(T胶凝)约5℃的温度下且在粘度低于理论值100cP下进行,以允许在合理时间内使用蠕动泵过滤。
在另一实施例中,耳可接受的耳部治疗剂组合物包含纳米粒子组合物,其中所述纳米粒子组合物适于过滤灭菌。在另一实施例中,所述纳米粒子组合物包含尺寸小于300nm、尺寸小于200nm或尺寸小于100nm的纳米粒子。在另一实施例中,耳可接受的组合物包含微球体组合物,其中微球体的无菌性通过无菌过滤前驱有机溶液和水溶液来确保。在另一实施例中,耳可接受的组合物包含热可逆性凝胶组合物,其中凝胶组合物的无菌性通过低温无菌过滤来确保。在另一实施例中,低温无菌过滤在0℃与30℃之间、或0℃与20℃之间、或0℃与10℃之间、或10℃与20℃之间、或20℃与30℃之间的温度下进行。在另一实施例中,制备耳可接受的热可逆性凝胶组合物的工艺包含:在低温下经由灭菌过滤器过滤含有热可逆性凝胶组分的水溶液;冻干无菌溶液;和在投予之前用无菌水复原热可逆性凝胶组合物。
在某些实施例中,将活性成分溶解于适合的媒剂(例如缓冲液)中且分开灭菌(例如通过热处理、过滤、γ辐射)。在一些情况下,活性成分在干燥状态下分开灭菌。在一些情况下,活性成分以悬浮液或胶状悬浮液形式灭菌。在另一步骤中利用适合的方法(例如过滤和/或照射冷却的赋形剂混合物)对其余赋形剂(例如耳用组合物中所存在的流体凝胶组分)进行灭菌;然后将分开灭菌的两种溶液无菌混合以得到最终耳用组合物。在一些情况下,最终无菌混合在即将投予本文所述的组合物前进行。
在一些情况下,通常使用的灭菌方法(例如热处理(例如在高压灭菌器中)、γ照射、过滤)会导致组合物中的聚合物组分(例如热固性、胶凝或粘膜粘附聚合物组分)和/或活性剂不可逆地降解。在一些情况下,如果组合物包含在过滤过程中会胶凝的触变聚合物,那么不可能通过膜过滤(例如0.2微米膜)对耳用组合物进行灭菌。
因此,本文提供耳用组合物的灭菌方法,其防止聚合物组分(例如热固性和/或胶凝和/或粘膜粘附聚合物组分)和/或活性剂在灭菌过程中降解。在一些实施例中,通过使用缓冲液组分的特定pH值范围和组合物中胶凝剂的特定比例来降低或消除活性剂(例如本文所述的任何耳部治疗剂)的降解。在一些实施例中,选择适当胶凝剂和/或热固性聚合物可允许通过过滤对本文所述的组合物进行灭菌。在一些实施例中,适当热固性聚合物和适当共聚物(例如胶凝剂)与组合物的特定pH值范围组合使用,可允许对所述组合物进行高温灭菌而治疗剂或聚合物赋形剂实质上不发生降解。本文提供的灭菌法的优点在于,在一些情况下,经由高压灭菌处理对组合物进行最终灭菌而活性剂和/或赋形剂和/或聚合物组分在灭菌步骤期间无任何损失,并使组合物实质上不含微生物和/或热原。
微生物
本文提供改善或减轻本文所述的耳部病症的耳可接受的组合物或装置。本文另外提供包含投予所述耳用组合物的方法。在一些实施例中,组合物或装置实质上不含微生物。可接受的无菌程度是基于定义治疗上可接受的耳用组合物的适用标准,包括(但不限于)美国药典(United States Pharmacopeia)第<1111>章和后续内容。举例来说,可接受的无菌程度包括每克组合物约10个菌落形成单位(cfu),每克组合物约50cfu,每克组合物约100cfu,每克组合物约500cfu或每克组合物约1000cfu。在一些实施例中,组合物的可接受的无菌程度包括小于10cfu/mL、小于50cfu/mL、小于500cfu/mL或小于1000cfu/mL微生物剂。另外,可接受的无菌程度包括除掉指定的有害微生物剂。举例来说,指定的有害微生物剂包括(但不限于)大肠杆菌(Escherichia coli/E.coli)、沙门氏菌属(Salmonella sp.)、绿脓杆菌和/或其它特定微生物剂。
耳可接受的耳用治疗剂组合物的无菌性可根据美国药典第<61>、<62>和<71>章由无菌性保证程序确认。无菌性保证品质控制、品质保证和验证过程的关键组成部分是无菌性测试的方法。仅举例来说,利用两种方法进行无菌性测试。第一是直接接种,其中将待测试的组合物的样品添加到生长培养基中并培育长达21天的时间。生长培养基的混浊度指示污染。这种方法的缺点包括整体材料的取样规模小,这会降低灵敏度;和基于目测检测微生物生长。一种替代方法是膜过滤无菌性测试。在这种方法中,使一定体积的产品穿过小膜滤纸。然后,将滤纸放在培养基中以促进微生物生长。这一方法的优点在于灵敏度较高,因为对整个产品进行取样。任选使用可自市面上购得的密理博(Millipore)Steritest无菌测试系统,通过膜过滤无菌性测试进行测定。对于乳膏或软膏的过滤测试,使用TLHVSL210号Steritest过滤系统。对于乳液或粘性产品的过滤测试,使用TLAREM210或TDAREM210号Steritest过滤系统。对于预填充注射器的过滤测试,使用TTHASY210号Steritest过滤系统。对于分配成气雾剂或发泡体的材料的过滤测试,使用TTHVA210号Steritest过滤系统。对于安瓿或小瓶中的可溶性粉末的过滤测试,使用TTHADA210或TTHADV210号Steritest过滤系统。
大肠杆菌和沙门氏菌的测试包括使用在30-35℃下培育24-72小时的乳糖肉汤,在麦康基(MacConkey)和/或EMB琼脂中培育18-24小时,和/或使用拉帕波特(Rappaport)培养基。检测绿脓杆菌的测试包括使用NAC琼脂。美国药典第<62>章另外列举用于指定有害微生物的测试程序。
在某些实施例中,本文所述的任何控制释放型组合物在每克组合物中都具有少于约60个菌落形成单位(CFU)、少于约50个菌落形成单位、少于约40个菌落形成单位、或少于约30个菌落形成单位的微生物剂。在某些实施例中,本文所述的耳用组合物经调配以与内淋巴和/或外淋巴等张。
内毒素
本文提供改善或减轻本文所述的耳部病症的耳用组合物。本文另外提供包含投予所述耳用组合物的方法。在一些实施例中,组合物或装置实质上不含内毒素。灭菌工艺的另一方面是在杀死微生物(下文称为“产品”)时去除副产物。去除热原工艺从样品中去除热原。热原是诱发免疫反应的内毒素或外毒素。内毒素的一个实例是革兰氏阴性细菌细胞壁中可见的脂多糖(LPS)分子。当例如高压灭菌处理或用环氧乙烷处理等灭菌程序杀死细菌时,LPS残余物诱发促发炎免疫反应,例如败血性休克。因为内毒素的分子尺寸可广泛变化,所以内毒素的存在以“内毒素单位”(EU)表示。1EU相当于100皮克大肠杆菌LPS。人类可对少至每千克体重5EU产生反应。无菌性以所属领域中认可的任何单位表示。在某些实施例中,与通常可接受的内毒素含量(例如每千克个体体重5EU)相比,本文所述的耳用组合物含有较低内毒素含量(例如每千克个体体重<4EU)。在一些实施例中,耳可接受的耳部治疗剂组合物具有每千克个体体重小于约5EU。在其它实施例中,耳可接受的耳部治疗剂组合物具有每千克个体体重小于约4EU。在其它实施例中,耳可接受的耳部治疗剂组合物具有每千克个体体重小于约3EU。在其它实施例中,耳可接受的耳部治疗剂组合物具有每千克个体体重小于约2EU。
在一些实施例中,耳可接受的耳部治疗剂组合物或装置具有每千克组合物小于约5EU。在其它实施例中,耳可接受的耳部治疗剂组合物具有每千克组合物小于约4EU。在其它实施例中,耳可接受的耳部治疗剂组合物具有每千克组合物小于约3EU。在一些实施例中,耳可接受的耳部治疗剂组合物具有每千克产品小于约5EU。在其它实施例中,耳可接受的耳部治疗剂组合物具有每千克产品小于约1EU。在其它实施例中,耳可接受的耳部治疗剂组合物具有每千克产品小于约0.2EU。在一些实施例中,耳可接受的耳部治疗剂组合物具有每克单位或产品小于约5EU。在其它实施例中,耳可接受的耳部治疗剂组合物具有每克单位或产品小于约4EU。在其它实施例中,耳可接受的耳部治疗剂组合物具有每克单位或产品小于约3EU。在一些实施例中,耳可接受的耳部治疗剂组合物具有每毫克单位或产品小于约5EU。在其它实施例中,耳可接受的耳部治疗剂组合物具有每毫克单位或产品小于约4EU。在其它实施例中,耳可接受的耳部治疗剂组合物具有每毫克单位或产品小于约3EU。在某些实施例中,本文所述的耳用组合物每毫升组合物中含有约1至约5EU。在某些实施例中,本文所述的耳用组合物每毫升组合物中含有约2至约5EU,每毫升组合物中含有约3至约5EU,或每毫升组合物中含有约4至约5EU。
在某些实施例中,与通常可接受的内毒素含量(例如每毫升组合物0.5EU)相比,本文所述的耳用组合物或装置含有较低内毒素含量(例如每毫升组合物<0.5EU)。在一些实施例中,耳可接受的耳部治疗剂组合物或装置具有每毫升组合物小于约0.5EU。在其它实施例中,耳可接受的耳部治疗剂组合物具有每毫升组合物小于约0.4EU。在其它实施例中,耳可接受的耳部治疗剂组合物具有每毫升组合物小于约0.2EU。
仅举例来说,利用若干方法进行热原检测。适合的无菌性测试包括美国药典(UnitedStates Pharmacopoeia,USP)<71>无菌性测试(Sterility Tests)(第23版,1995)中所述的测试。美国药典第<85>和<151>章(USP23/NF 18,生物测试(Biological Tests),美国药典规范(The United States Pharmacopeial Convention),马里兰州罗克维尔(Rockville,MD),1995)中详细说明了兔子热原测试与鲎变形细胞溶解物测试(Limulus amebocytelysate test)。已基于单核细胞活化-细胞因子分析开发出替代性热原分析。已开发出适于品质控制应用的均一细胞系且已证明能够检测已通过兔子热原测试和鲎变形细胞溶解物测试的样品中的热原性(塔克塔克(Taktak)等人,药学与药理学杂志(J.Pharm.Pharmacol.)(1990),43:578-82)。在另一实施例中,对耳可接受的耳部治疗剂组合物进行去热原操作。在另一实施例中,耳可接受的耳部治疗剂组合物的制造工艺包含测试组合物的热原性。在某些实施例中,本文所述的组合物实质上不含热原。
pH值和实际容量渗透摩尔浓度
在一些实施例中,本文所述的耳用组合物或装置经调配以提供与内耳流体(例如内淋巴和/或外淋巴)相容的离子平衡。
在一些情况下,内淋巴和外淋巴的离子组成调节毛细胞的电化学脉冲,因而调节听力。在一些情况下,电化学脉冲沿耳毛细胞传导的变化会导致听力损失。在一些情况下,内淋巴或外淋巴的离子平衡的变化会导致听力完全损失。在一些情况下,内淋巴或外淋巴的离子平衡的变化会导致听力部分损失。在一些情况下,内淋巴或外淋巴的离子平衡的变化会导致听力永久损失。在一些情况下,内淋巴或外淋巴的离子平衡的变化会导致听力暂时损失。
在一些实施例中,本文所揭示的组合物或装置经调配,以不破坏内淋巴的离子平衡。在一些实施例中,本文所揭示的组合物或装置具有与内淋巴相同或实质上相同的离子平衡。在一些实施例中,本文所揭示的组合物或装置不破坏内淋巴的离子平衡,从而不会导致听力部分或完全损失。在一些实施例中,本文所揭示的组合物或装置不破坏内淋巴的离子平衡,从而不会导致听力暂时或永久损失。
在一些实施例中,本文所揭示的组合物或装置实质上不会破坏外淋巴的离子平衡。在一些实施例中,本文所揭示的组合物具有与外淋巴相同或实质上相同的离子平衡。在一些实施例中,由于本文所揭示的组合物或装置不破坏外淋巴的离子平衡,所以所述组合物或装置不会导致听力部分或完全损失。在一些实施例中,由于本文所揭示的组合物或装置不破坏外淋巴的离子平衡,所以所述组合物或装置不会导致听力暂时或永久损失。
如本文所用,“实际容量渗透摩尔浓度/重量渗透摩尔浓度”或“可传递的容量渗透摩尔浓度/重量渗透摩尔浓度”意指如通过测量活性剂和除胶凝剂和/或增稠剂(例如聚氧化乙烯-聚氧化丙烯共聚物、羧甲基纤维素等)以外的所有赋形剂的容量渗透摩尔浓度/重量渗透摩尔浓度所测得的组合物或装置的容量渗透摩尔浓度/重量渗透摩尔浓度。本文所揭示的组合物或装置的实际容量渗透摩尔浓度通过适合的方法测量,例如维嘎斯(Viegas)等人,国际药学杂志(Int.J.Pharm.),1998,160,157-162所述的冰点下降法。在一些情况下,本文所揭示的组合物或装置的实际容量渗透摩尔浓度通过允许测定组合物或装置在较高温度下的容量渗透摩尔浓度的蒸气压渗透压测定法(例如蒸气压下降法)来测量。在一些情况下,蒸气压下降法允许测定包含胶凝剂(例如热可逆性聚合物)的组合物或装置在胶凝剂呈凝胶形式的较高温度下的容量渗透摩尔浓度。
在一些实施例中,目标作用部位(例如外淋巴)的容量渗透摩尔浓度与本文所述的组合物或装置的传递的容量渗透摩尔浓度(即,穿过或穿透圆窗膜的物质的容量渗透摩尔浓度)大致相同。在一些实施例中,本文所述的组合物或装置的可传递容量渗透摩尔浓度为约150mOsm/L至约500mOsm/L、约250mOsm/L至约500mOsm/L、约250mOsm/L至约350mOsm/L、约280mOsm/L至约370mOsm/L、或约250mOsm/L至约320mOsm/L。
本文所揭示的耳用组合物或装置的实际重量渗透摩尔浓度为约100mOsm/kg至约1000mOsm/kg、约200mOsm/kg至约800mOsm/kg、约250mOsm/kg至约500mOsm/kg、或约250mOsm/kg至约320mOsm/kg、或约250mOsm/kg至约350mOsm/kg、或约280mOsm/kg至约320mOsm/kg。在一些实施例中,本文所述的组合物或装置的实际容量渗透摩尔浓度为约100mOsm/L至约1000mOsm/L、约200mOsm/L至约800mOsm/L、约250mOsm/L至约500mOsm/L、约250mOsm/L至约350mOsm/L、约250mOsm/L至约320mOsm/L、或约280mOsm/L至约320mOsm/L。
内淋巴中所存在的主要阳离子是钾。另外,内淋巴具有高浓度的带正电氨基酸。外淋巴中所存在的主要阳离子是钠。在一些情况下,内淋巴和外淋巴的离子组成调节毛细胞的电化学脉冲。在一些情况下,内淋巴或外淋巴的离子平衡的任何变化都会因电化学脉冲沿耳部毛细胞传导发生变化而导致听力损失。在一些实施例中,本文所揭示的组合物不破坏外淋巴的离子平衡。在一些实施例中,本文所揭示的组合物具有与外淋巴相同或实质上相同的离子平衡。在一些实施例中,本文所揭示的组合物不破坏内淋巴的离子平衡。在一些实施例中,本文所揭示的组合物具有与内淋巴相同或实质上相同的离子平衡。在一些实施例中,本文所述的耳用组合物经调配以提供与内耳流体(例如内淋巴和/或外淋巴)相容的离子平衡。
内淋巴和外淋巴的pH值接近血液的生理pH值。内淋巴的pH值范围为约7.2-7.9;外淋巴的pH值范围为约7.2-7.4。近端内淋巴的原位pH值为约7.4,而远端内淋巴的pH值为约7.9。
在一些实施例中,将本文所述的组合物的pH值调节(例如通过使用缓冲液)到约5.5至9.0的内淋巴相容的pH值范围。在具体实施例中,将本文所述的组合物的pH值调节到约5.5至约9.0的外淋巴适合的pH值范围。在一些实施例中,将本文所述的组合物的pH值调节到约5.5至约8.0、约6至约8.0、或约6.6至约8.0的外淋巴适合的范围。在一些实施例中,将本文所述的组合物的pH值调节到约7.0-7.6的外淋巴适合的pH值范围。
在一些实施例中,适用的组合物还包括一种或一种以上pH值调节剂或缓冲剂。适合的pH值调节剂或缓冲剂包括(但不限于)乙酸盐、碳酸氢盐、氯化铵、柠檬酸盐、磷酸盐、其医药学上可接受的盐和其组合或混合物。
在一个实施例中,当本发明组合物中使用一种或一种以上缓冲剂时,所述缓冲剂组合(例如与医药学上可接受的媒剂)且存在于最终组合物中(例如量在约0.1%至约20%、约0.5%至约10%范围内)。在本发明的某些实施例中,凝胶组合物中所包括的缓冲剂的量是使凝胶组合物的pH值不干扰身体天然缓冲系统的量。
在一个实施例中,还使用稀释剂来稳定化合物,因为其可提供更稳定的环境。在所属领域中使用溶解于缓冲溶液中的盐(还可提供pH值控制或维持)作为稀释剂,包括(但不限于)磷酸盐缓冲生理盐水溶液。
在一些实施例中,本文所述的任何凝胶组合物的pH值允许在医药剂或构成凝胶的聚合物不降解的情况下对凝胶组合物进行灭菌(例如通过过滤或无菌混合或热处理和/或高压灭菌处理(例如最终灭菌))。为减少灭菌期间耳用药剂和/或凝胶聚合物的水解和/或降解,缓冲液的pH值经设计以将组合物的pH值在灭菌(例如高温高压灭菌处理)过程中维持在7-8范围内。
在具体实施例中,本文所述的任何凝胶组合物的pH值允许在医药剂或构成凝胶的聚合物不降解的情况下对凝胶组合物进行最终灭菌(例如通过热处理和/或高压灭菌处理)。举例来说,为减少高压灭菌处理期间耳用药剂和/或凝胶聚合物的水解和/或降解,缓冲液的pH值经设计以将组合物的pH值在高温下维持在7-8范围内。视组合物中所用的耳用药剂而定,可使用任何适当的缓冲液。在一些情况下,因为TRIS的pKa以约-0.03/℃随温度增加而降低,且PBS的pKa以约0.003/℃随温度增加而增加,所以在250℉(121/℃)下进行高压灭菌处理使得TRIS缓冲液的pH值显著向下偏移(即,酸性更大),而PBS缓冲液的pH值相对程度小得多地向上偏移,因此耳用药剂在TRIS中的水解和/或降解的增加比在PBS中多得多。通过使用如本文所述的缓冲液与聚合物添加剂(例如P407、CMC)的适当组合可减少耳用药剂的降解。
在一些实施例中,适于本文所述的耳用组合物灭菌(例如通过过滤或无菌混合或热处理和/或高压灭菌处理(例如最终灭菌))的组合物pH值在约5.0与约9.0之间、在约5.5与约8.5之间、在约6.0与约7.6之间、在约7与约7.8之间、在约7.0与约7.6之间、在约7.2与7.6之间、或在约7.2与约7.4之间。在具体实施例中,适于本文所述的任何组合物灭菌(例如通过过滤或无菌混合或热处理和/或高压灭菌处理(例如最终灭菌))的组合物pH值为约6.0、约6.5、约7.0、约7.1、约7.2、约7.3、约7.4、约7.5或约7.6。
在一些实施例中,组合物具有如本文所述的pH值,且包括增稠剂(例如粘度增强剂),作为非限制性实例,例如本文所述的基于纤维素的增稠剂。在一些情况下,第二聚合物(例如增稠剂)的添加和如本文所述的组合物的pH值允许对本文所述的组合物进行灭菌而耳用组合物中的耳用药剂和/或聚合物组分无任何实质性降解。在一些实施例中,具有如本文所述的pH值的组合物中热可逆性泊洛沙姆与增稠剂的比率为约40:1、约35:1、约30:1、约25:1、约20:1、约15:1、约10:1或约5:1。举例来说,在某些实施例中,本文所述的持续释放型和/或延长释放型组合物包含泊洛沙姆407(泊洛尼克F127)与羧甲基纤维素(CMC)的组合,两者的比率为约40:1、约35:1、约30:1、约25:1、约20:1、约15:1、约10:1或约5:1。
在一些实施例中,本文所述的任何组合物中热可逆性聚合物的量为组合物总重量的约10%、约15%、约20%、约25%、约30%、约35%或约40%。在一些实施例中,本文所述的任何组合物中热可逆性聚合物的量为组合物总重量的约10%、约11%、约12%、约13%、约14%、约15%、约16%、约17%、约18%、约19%、约20%、约21%、约22%、约23%、约24%或约25%。在一些实施例中,本文所述的任何组合物中热致可逆性聚合物(例如泊洛尼克F127)的量为组合物总重量的约7.5%。在一些实施例中,本文所述的任何组合物中热致可逆性聚合物(例如泊洛尼克F127)的量为组合物总重量的约10%。在一些实施例中,本文所述的任何组合物中热致可逆性聚合物(例如泊洛尼克F127)的量为组合物总重量的约11%。在一些实施例中,本文所述的任何组合物中热致可逆性聚合物(例如泊洛尼克F127)的量为组合物总重量的约12%。在一些实施例中,本文所述的任何组合物中热致可逆性聚合物(例如泊洛尼克F127)的量为组合物总重量的约13%。在一些实施例中,本文所述的任何组合物中热致可逆性聚合物(例如泊洛尼克F127)的量为组合物总重量的约14%。在一些实施例中,本文所述的任何组合物中热致可逆性聚合物(例如泊洛尼克F127)的量为组合物总重量的约15%。在一些实施例中,本文所述的任何组合物中热致可逆性聚合物(例如泊洛尼克F127)的量为组合物总重量的约16%。在一些实施例中,本文所述的任何组合物中热致可逆性聚合物(例如泊洛尼克F127)的量为组合物总重量的约17%。在一些实施例中,本文所述的任何组合物中热致可逆性聚合物(例如泊洛尼克F127)的量为组合物总重量的约18%。在一些实施例中,本文所述的任何组合物中热致可逆性聚合物(例如泊洛尼克F127)的量为组合物总重量的约19%。在一些实施例中,本文所述的任何组合物中热致可逆性聚合物(例如泊洛尼克F127)的量为组合物总重量的约20%。在一些实施例中,本文所述的任何组合物中热致可逆性聚合物(例如泊洛尼克F127)的量为组合物总重量的约21%。在一些实施例中,本文所述的任何组合物中热致可逆性聚合物(例如泊洛尼克F127)的量为组合物总重量的约23%。在一些实施例中,本文所述的任何组合物中热致可逆性聚合物(例如泊洛尼克F127)的量为组合物总重量的约25%。
在一些实施例中,本文所述的任何组合物中增稠剂(例如胶凝剂)的量为组合物总重量的约1%、约5%、约10%或约15%。在一些实施例中,本文所述的任何组合物中增稠剂(例如胶凝剂)的量为组合物总重量的约0.5%、约1%、约1.5%、约2%、约2.5%、约3%、约3.5%、约4%、约4.5%或约5%。
在一些实施例中,本文所述的医药组合物就pH值来说在任何以下时期内是稳定的:至少约1天、至少约2天、至少约3天、至少约4天、至少约5天、至少约6天、至少约1周、至少约2周、至少约3周、至少约4周、至少约5周、至少约6周、至少约7周、至少约8周、至少约1月、至少约2月、至少约3月、至少约4月、至少约5月或至少约6月。在其它实施例中,本文所述的组合物就pH值来说在至少约1周的时期内是稳定的。本文还描述就pH值来说在至少约1月的时期内是稳定的组合物。
张力剂
一般来说,内淋巴的重量渗透摩尔浓度高于外淋巴。举例来说,内淋巴的重量渗透摩尔浓度为约304mOsm/kg H2O,而外淋巴的重量渗透摩尔浓度为约294mOsm/kg H2O。在某些实施例中,向本文所述的组合物中添加一定量的张力剂以提供耳用组合物的实际重量渗透摩尔浓度为约100mOsm/kg至约1000mOsm/kg、约200mOsm/kg至约800mOsm/kg、约250mOsm/kg至约500mOsm/kg、或约250mOsm/kg至约350mOsm/kg、或约280mOsm/kg至约320mOsm/kg。在一些实施例中,本文所述的组合物的实际容量渗透摩尔浓度为约100mOsm/L至约1000mOsm/L、约200mOsm/L至约800mOsm/L、约250mOsm/L至约500mOsm/L、约250mOsm/L至约350mOsm/L、约280mOsm/L至约320mOsm/L、或约250mOsm/L至约320mOsm/L。
在一些实施例中,任何本文所述组合物的可传递的容量渗透摩尔浓度经设计以与目标耳部结构(例如内淋巴、外淋巴等)等张。在具体实施例中,本文所述的耳用组合物经调配以在目标作用部位提供约250至约320mOsm/L(约250至约320mOsm/kg H2O重量渗透摩尔浓度)且优选约270至约320mOsm/L(约270至约320mOsm/kg H2O重量渗透摩尔浓度)的传递的外淋巴适合的容量渗透摩尔浓度。在具体实施例中,在传递到目标部位后,例如通过使用适当的盐浓度(例如钾盐或钠盐的浓度)或使用使组合物与内淋巴相容和/或与外淋巴相容(即,与内淋巴和/或外淋巴等张)的张力剂来调节组合物的可传递的容量渗透摩尔浓度/重量渗透摩尔浓度(即,在无胶凝剂或增稠剂(例如热可逆性凝胶聚合物)存在下组合物的容量渗透摩尔浓度/重量渗透摩尔浓度)。由于不同的水量与聚合物的单体单元有关联,所以包含热可逆性凝胶聚合物的组合物的容量渗透摩尔浓度是不可靠的量度。组合物的实际容量渗透摩尔浓度是可靠的量度,且可通过任何适合的方法(例如冰点下降法、蒸气下降法)来测量。在一些情况下,本文所述的组合物提供在投予后,对内耳环境干扰最小且哺乳动物的不适最低(例如眩晕和/或恶心)的可传递的容量渗透摩尔浓度(例如目标部位(例如外淋巴))。
在一些实施例中,本文所述的任何组合物与外淋巴和/或内淋巴等张。等张组合物通过添加张力剂来提供。适合的张力剂包括(但不限于)任何医药学上可接受的糖、盐或其任何组合或混合物,例如但不限于右旋糖、甘油、甘露糖醇、山梨糖醇、氯化钠和其它电解质。
适用的耳用组合物包括一种或一种以上使组合物的重量渗透摩尔浓度在可接受范围内所需的量的盐。所述盐包括具有钠、钾或铵阳离子和氯离子、柠檬酸根、抗坏血酸根、硼酸根、磷酸根、碳酸氢根、硫酸根、硫代硫酸根或亚硫酸氢根阴离子的盐;适合的盐包括氯化钠、氯化钾、硫代硫酸钠、亚硫酸氢钠和硫酸铵。
在一些实施例中,本文所述的组合物具有如本文所述的pH值和/或实际容量渗透摩尔浓度,且活性医药成分的浓度在约1μM与约10μM之间,在约1mM与约100mM之间,在约0.1mM与约100mM之间,在约0.1mM与约100nM之间。在一些实施例中,本文所述的组合物具有如本文所述的pH值和/或实际容量渗透摩尔浓度,且活性医药成分的浓度为以组合物的重量计约0.01-约20%之间、约0.01-约10%之间、约0.01-约7.5%之间、约0.01-6%之间、约0.01-5%之间、约0.1-约10%之间、约0.1-约6%之间的活性成分。在一些实施例中,本文所述的组合物具有如本文所述的pH值和/或实际容量渗透摩尔浓度,且活性医药成分的浓度为以组合物的体积计约0.1与约70mg之间、约1mg与约70mg/mL之间、约1mg与约50mg/mL之间、约1mg/mL与约20mg/mL之间、约1mg/mL至约10mg/mL之间、约1mg/mL至约5mg/mL之间、或约0.5mg/mL至约5mg/mL之间的活性剂。在一些实施例中,本文所述的组合物具有如本文所述的pH值和/或实际容量渗透摩尔浓度,且活性医药成分的浓度为以组合物的体积计约1μg/mL与约500μg/mL之间、约1μg/mL与约250μg/mL之间、约1μg与约100μg/mL之间、约1μg/mL与约50μg/mL之间、或约1μg/mL与约20μg/mL之间的活性剂。
粒径
尺寸减小可用于增加表面积和/或调节组合物溶解性质。其还用于维持本文所述的任何组合物的一致平均粒径分布(PSD)(例如微米尺寸化粒子、纳米尺寸化粒子等)。在一些实施例中,本文所述的任何组合物为多颗粒(即,包含多个粒子尺寸(例如微粉化粒子、纳米尺寸化粒子、非尺寸化粒子(non-sized particle)、胶体粒子))。在一些实施例中,本文所述的任何组合物包含一种或一种以上多颗粒(例如微粉化)治疗剂。微粉化是降低固体材料粒子的平均直径的工艺。微粉化粒子是指直径为约微米尺寸到直径为约纳米尺寸。在一些实施例中,微粉化固体中的粒子的平均直径为约0.5μm至约500μm。在一些实施例中,微粉化固体中的粒子的平均直径为约1μm至约200μm。在一些实施例中,微粉化固体中的粒子的平均直径为约2μm至约100μm。在一些实施例中,微粉化固体中的粒子的平均直径为约3μm至约50μm。在一些实施例中,颗粒微粉化固体包含小于约5微米、小于约20微米和/或小于约100微米的粒子尺寸。在一些实施例中,与包含非多颗粒(例如非微粉化)耳结构调节剂或先天性免疫系统调节剂的组合物相比,使用耳结构调节剂或先天性免疫系统调节剂颗粒(例如微粉化粒子)允许耳结构调节剂或先天性免疫系统调节剂从本文所述的任何组合物中延长释放和/或持续释放。在一些情况下,含有多颗粒(例如微粉化)耳结构调节剂或先天性免疫系统调节剂的组合物从配有无任何堵塞或阻塞的27G针的1mL注射器中喷出。
在一些情况下,本文所述的任何组合物中的任何粒子为经过涂布的粒子(例如经过涂布的微粉化粒子、纳米粒子)和/或微球体和/或脂质体粒子。粒径减小技术包括例如碾磨、研磨(例如空气盘磨研磨(喷射研磨)、球磨研磨)、凝聚、复合凝聚、高压均质化、喷雾干燥和/或超临界流体结晶。在一些情况下,粒子通过机械冲击(例如锤磨机、球磨机和/或针磨机)进行尺寸化。在一些情况下,粒子经由流体能量(例如螺旋喷射研磨机、环流喷射研磨机和/或流化床喷射研磨机)进行尺寸化。在一些实施例中,本文所述的组合物包含结晶粒子和/或各向同性粒子。在一些实施例中,本文所述的组合物包含非晶粒子和/或各向异性粒子。在一些实施例中,本文所述的组合物包含治疗剂粒子,其中治疗剂是治疗剂的中性分子、游离酸、游离碱、或盐、或前药、或其任何组合。
在一些实施例中,本文所述的组合物包含耳结构调节剂或先天性免疫系统调节剂,其中耳结构调节剂或先天性免疫系统调节剂包含纳米颗粒。在一些实施例中,本文所述的组合物包含任选地经过控制释放赋形剂涂布的耳结构调节剂或先天性免疫系统调节剂珠粒(例如他克莫司珠粒)。在一些实施例中,本文所述的组合物包含颗粒化和/或尺寸减小且经过控制释放赋形剂涂布的耳结构调节剂或先天性免疫系统调节剂;颗粒化的经过涂布的耳结构调节剂或先天性免疫系统调节剂颗粒然后任选进行微粉化和/或调配于本文所述的任何组合物中。
在一些情况下,通过利用本文所述的程序,使用呈耳结构调节剂或先天性免疫系统调节剂的中性分子、游离酸、游离碱和盐形式的耳结构调节剂或先天性免疫系统调节剂的组合来制备脉冲式释放型耳用药剂组合物。在一些组合物中,通过利用本文所述的任何程序,使用微粉化耳结构调节剂或先天性免疫系统调节剂(和/或其盐或前药)与经过涂布的粒子(例如纳米粒子、脂质体、微球体)的组合来制备脉冲式释放型耳用药剂组合物。或者,通过借助于环糊精、表面活性剂(例如泊洛沙姆407、338、188)、吐温(80、60、20、81)、PEG-氢化蓖麻油、辅溶剂(如N-甲基-2-吡咯烷酮)等将多达20%传递剂量的耳结构调节剂或先天性免疫系统调节剂(例如微粉化耳结构调节剂或先天性免疫系统调节剂、其中性分子、游离碱、游离酸或盐或前药;多颗粒耳结构调节剂或先天性免疫系统调节剂、其中性分子、游离碱、游离酸或盐或前药)且使用本文所述的任何程序来制备脉冲式释放型组合物来达成脉冲式释放曲线。
在具体实施例中,本文所述的任何耳相容性组合物包含一种或一种以上微粉化医药剂(例如耳结构调节剂或先天性免疫系统调节剂)。在一些所述实施例中,微粉化医药剂包含微粉化粒子、经过涂布(例如经过延长释放涂层涂布)的微粉化粒子或其组合。在一些所述实施例中,包含微粉化粒子、经过涂布的微粉化粒子或其组合的微粉化医药剂包含呈其中性分子、游离酸、游离碱、盐、前药或任何组合形式的耳结构调节剂或先天性免疫系统调节剂。在某些实施例中,本文所述的医药组合物包含呈微粉化粉末形式的耳结构调节剂或先天性免疫系统调节剂。
本文所述的多颗粒和/或微粉化耳结构调节剂或先天性免疫系统调节剂借助于任何类型的基质(包括固体、液体或凝胶基质)传递到耳结构(例如内耳)。在一些实施例中,本文所述的多颗粒和/或微粉化耳结构调节剂或先天性免疫系统调节剂借助于任何类型的基质(包括
固体、液体或凝胶基质)经由鼓室内注射传递到耳结构(例如内耳)。
医药组合物
本文提供医药组合物或装置,其包括耳结构调节剂或先天性免疫系统调节剂和医药上可接受的稀释剂、赋形剂或载剂。在一些实施例中,医药组合物包括其它医学或医药剂、载剂、佐剂,例如防腐剂、稳定剂、润湿剂或乳化剂、溶解促进剂、用于调节渗透压的盐和/或缓冲剂。在其它实施例中,医药组合物还含有其它治疗物质。
一些医药赋形剂、稀释剂或载剂可能具有耳毒性。举例来说,苯扎氯铵,一种常见防腐剂,其具有耳毒性,因此如果引入前庭或耳蜗结构中,那么可能有害。在调配控制释放型耳结构调节组合物时,建议避免或组合适当的赋形剂、稀释剂或载剂以从组合物中减少或消除可能的耳毒性组分或减小所述赋形剂、稀释剂或载剂的量。控制释放型耳结构调节组合物任选包括耳保护剂,例如抗氧化剂、α硫辛酸、钙、磷霉素、或铁螯合剂,以抵消因使用特定治疗剂或赋形剂、稀释剂或载剂而造成的可能耳毒性作用。
在一些实施例中,本文所述的组合物或装置包括染料以在施加时帮助增强对凝胶的观测。在一些实施例中,与本文所述的耳可接受的组合物或装置相容的染料包括伊文思蓝(Evans blue)(例如耳用组合物总重量的0.5%)、亚甲基蓝(Methylene blue)(例如耳用组合物总重量的1%)、异硫蓝(Isosulfan blue)(例如耳用组合物总重量的1%)、台盼蓝(Trypan blue)(例如耳用组合物总重量的0.15%)和/或吲哚菁绿(indocyanine green)(例如每小瓶25mg)。其它常见染料,例如FD&C红40、FD&C红3、FD&C黄5、FD&C黄6、FD&C蓝1、FD&C蓝2、FD&C绿3、荧光染料(例如异硫氰酸荧光素(Fluoresceinisothiocyanate)、若丹明(rhodamine)、亚历克斯荧光(Alexa Fluors)、染料光荧光(DyLightFluors))和/或可结合例如MRI、CAT扫描、PET扫描等非侵入性成像技术观测的染料。钆基MRI染料、碘基染料、钡基染料等也欲用于本文所述的任何耳用组合物。西格玛-阿尔德里奇(Sigma-Aldrich)目录的染料条目下列出与本文所述的任何组合物相容的其它染料(关于所述揭示内容,以引用的方式包括在本文中)。
本文所述的任何医药组合物或装置通过使组合物或装置与蜗窗嵴、圆窗、鼓室、鼓膜、中耳或外耳接触来投予。
在本文所述的耳可接受的控制释放型耳结构调节剂或先天性免疫系统调节剂医药组合物的一个具体实施例中,耳结构调节剂或先天性免疫系统调节剂提供于凝胶基质中,凝胶基质在本文中也称为“耳可接受的凝胶组合物”、“内耳可接受的凝胶组合物”、“中耳可接受的凝胶组合物”、“外耳可接受的凝胶组合物”、“耳用凝胶组合物”或其变化形式。凝胶组合物的所有组分都必须与目标耳结构相容。另外,凝胶组合物提供耳结构调节剂或先天性免疫系统调节剂控制释放到目标耳结构的所要部位;在一些实施例中,凝胶组合物还具有用于将耳结构调节剂或先天性免疫系统调节剂传递到所要目标部位的立即或快速释放组分。在其它实施例中,组合物具有用于传递耳结构调节剂或先天性免疫系统调节剂的持续释放组分。在一些实施例中,凝胶组合物包含多颗粒(例如微粉化)耳结构调节剂或先天性免疫系统调节剂。在一些实施例中,耳用凝胶组合物是生物可降解的。在其它实施例中,耳用凝胶组合物包括粘膜粘着赋形剂,以允许粘着于圆窗膜的外部粘膜层。在其它实施例中,耳用凝胶组合物包括穿透增强剂赋形剂;在其它实施例中,耳用凝胶组合物含有足以提供以下粘度的粘度增强剂:约500与1,000,000厘泊之间;约750与1,000,000厘泊之间;约1000与1,000,000厘泊之间;约1000与400,000厘泊之间;约2000与100,000厘泊之间;约3000与50,000厘泊之间;约4000与25,000厘泊之间;约5000与20,000厘泊之间;或约6000与15,000厘泊之间。在一些实施例中,耳用凝胶组合物含有足以提供约50,0000与1,000,000厘泊之间的粘度的粘度增强剂。
在其它实施例中,本文所述的内耳医药组合物另外提供耳可接受的水凝胶;在其它实施例中,耳用医药组合物提供耳可接受的微球体或微粒;在其它实施例中,耳用医药组合物提供耳可接受的脂质体。在一些实施例中,耳用医药组合物提供耳可接受的发泡体;在其它实施例中,耳用医药组合物提供耳可接受的涂料;在其它实施例中,耳用医药组合物提供耳可接受的原位形成的海绵状材料。在一些实施例中,耳用医药组合物提供耳可接受的溶剂释放凝胶。在一些实施例中,耳用医药组合物提供光化辐射可固化的凝胶。其它实施例包括耳用医药组合物中的热致可逆凝胶,使得在室温或低于室温下制备凝胶后,组合物为流体,但在凝胶施加至包括鼓室、圆窗膜或蜗窗嵴在内的内耳和/或中耳目标部位中或附近时,耳用医药组合物僵化或硬化成凝胶状物质。
在其它或替代实施例中,耳用凝胶组合物能够通过鼓室内注射投在圆窗膜上或附近。在其它实施例中,通过耳后切开和外科手术操作进入圆窗或蜗窗嵴区域中或附近,将耳用凝胶组合物投予圆窗或蜗窗嵴上或附近。另外,耳用凝胶组合物经由注射器和针施加,其中针插穿鼓膜并导向圆窗或蜗窗嵴区域。然后耳用凝胶组合物沉积于圆窗或蜗窗嵴上或附近以供局部治疗。在其它实施例中,耳用凝胶组合物通过植入患者体内的微导管来施加,且在其它实施例中,组合物通过泵装置投予圆窗膜上或附近。在其它实施例中,耳用凝胶组合物通过微注射装置施加在圆窗膜上或附近。在其它实施例中,耳用凝胶组合物施加于鼓室中。在一些实施例中,耳用凝胶组合物施加在鼓膜上。在其它实施例中,耳用凝胶组合物施加在耳道上或耳道中。
在其它具体实施例中,本文所述的任何医药组合物或装置包含多颗粒耳结构调节剂或先天性免疫系统调节剂于液体基质中(例如用于鼓室内注射的液体组合物或耳用滴剂)。在某些实施例中,本文所述的任何医药组合物包含多颗粒耳结构调节剂或先天性免疫系统调节剂于固体基质中。
控制释放型组合物
一般来说,控制释放型药物组合物控制药物释放的释放部位和在体内的释放时间。如本文所论述,控制释放是指立即释放、延迟释放、持续释放、延长释放、可变释放、脉冲式释放和双模释放。控制释放有许多优点。首先,医药剂的控制释放可允许给药频率较低,因此重复治疗减至最少。其次,控制释放型治疗使药物利用更有效且化合物更少地以残余物形式残留。第三,控制释放通过将传递装置或组合物置于疾病部位,可局部药物传递。另外,控制释放借助于单一剂量单元,可投予和释放两种或两种以上各具有独特的释放曲线的不同药物,或以不同速率或不同持续时间释放相同药物。
因此,本文所揭示的实施例的一个方面在于提供耳可接受的控制释放型耳结构调节组合物。本文所揭示的组合物和/或组合物和/或装置的控制释放方面可通过多种试剂赋予,包括(但不限于)可为内耳或其它耳部结构中使用所接受的赋形剂、试剂或材料。仅举例来说,所述赋形剂、试剂或材料包括耳可接受的聚合物、耳可接受的粘度增强剂、耳可接受的凝胶、耳可接受的涂料、耳可接受的发泡体、耳可接受的干凝胶、耳可接受的微球体或微粒、耳可接受的水凝胶、耳可接受的原位形成的海绵状材料、耳可接受的光化辐射可固化的凝胶、耳可接受的溶剂释放凝胶、耳可接受的脂质体、耳可接受的纳米囊或纳米球、耳可接受的热致可逆凝胶或其组合。
耳可接受的凝胶
凝胶,有时称为凝胶剂(jellies),已以多种方式加以定义。举例来说,美国药典定义凝胶为由小无机粒子构成的悬浮液或穿插有液体的大有机分子组成的半固体系统。凝胶包括单相或两相系统。单相凝胶由有机大分子以分散的大分子与液体之间不存在明显边界的方式均匀地分布在整个液体中组成。一些单相凝胶由合成大分子(例如卡波姆)或由天然胶(例如黄芪胶)制备。在一些实施例中,虽然单相凝胶一般是水性的,但还将使用醇和油制备。两相凝胶由小的个别粒子的网络组成。
凝胶还可分类成疏水性的或亲水性的。在某些实施例中,疏水性凝胶的基质由液体石蜡与聚乙烯、或脂肪油用胶体二氧化硅胶凝、或铝或锌皂组成。相比之下,疏水性凝胶的基质通常由水、甘油或丙二醇用适合的胶凝剂(例如黄芪胶、淀粉、纤维素衍生物、羧乙烯基聚合物和硅酸镁铝)胶凝组成。在某些实施例中,本文所揭示的组合物或装置的流变学是假塑性、塑性、触变性或膨胀性。
在一个实施例中,本文所述的粘度增强的耳可接受的组合物在室温下不是液体。在某些实施例中,粘度增强的组合物的特征在于在室温与体温(包括重度发烧的个体,例如高达约42℃)之间发生相变。在一些实施例中,相变在低于体温1℃、低于体温2℃、低于体温3℃、低于体温4℃、低于体温6℃、低于体温8℃或低于体温10℃下发生。在一些实施例中,相变在低于体温约15℃、低于体温约20℃或低于体温约25℃下发生。在具体实施例中,本文所述的组合物的胶凝温度(T凝胶)为约20℃、约25℃或约30℃。在某些实施例中,本文所述的组合物的胶凝温度(T凝胶)为约35℃或约40℃。在一个实施例中,在近乎体温下投予本文所述的任何组合物可减少或抑制与鼓室内投予耳用组合物相关的眩晕。体温的定义包括健康个体或包括发烧个体(高达约42℃)在内的不健康个体的体温。在一些实施例中,本文所述的医药组合物或装置在近乎室温下是液体且在室温下或在近乎室温下投予,以减少或改善例如眩晕等副作用。
由聚氧化丙烯和聚氧化乙烯构成的聚合物在并入水溶液中时形成热可逆性凝胶。这些聚合物能够在接近体温的温度下从液态变成凝胶状态,从而得到施用于目标耳部结构的适用组合物。液态到凝胶状态的相变取决于溶液中的聚合物浓度和成分。
泊洛沙姆407(PF-127)是由聚氧化乙烯-聚氧化丙烯共聚物构成的非离子型表面活性剂。其它泊洛沙姆包括188(F-68级)、237(F-87级)、338(F-108级)。泊洛沙姆水溶液在酸、碱金属和金属离子存在下是稳定的。PF-127是具有通式E106 P70 E106的市售聚氧化乙烯-聚氧化丙烯三嵌段共聚物,平均摩尔质量为13,000。所述聚合物可另外利用可增强聚合物的胶凝性质的适合方法纯化。其含有约70%环氧乙烷,这是其具有亲水性的原因。其是一系列泊洛沙姆ABA嵌段共聚物中的一种,泊洛沙姆ABA嵌段共聚物成员共有如下所示的化学式。
PF-127受到特别关注,是因为共聚物的浓溶液(>20%w/w)在加热到体温时从低粘度透明溶液转变成固体凝胶。因此,这一现象表明当与身体接触时,凝胶制剂会形成半固体结构和持续释放型储积库(depot)。此外,PF-127具有良好的溶解能力,低毒,因此视为药物传递系统的良好介质。
在一替代实施例中,热敏凝胶(thermogel)是PEG-PLGA-PEG三嵌段共聚物(郑(Jeong)等人,自然(Nature)(1997),388:860-2;郑(Jeong)等人,控制释放杂志(J.Control.Release)(2000),63:155-63;郑(Jeong)等人,先进药物传递评论(Adv.Drug Delivery Rev.)(2002),54:37-51)。聚合物在约5%w/w至约40%w/w浓度内展现溶胶-凝胶特性。取决于所想要的性质,PLGA共聚物中丙交酯/乙交酯的摩尔比在约1:1至约20:1范围内。所得共聚物可溶于水中,且在室温下形成自由流动的液体,但在体温下形成水凝胶。市售PEG-PLGA-PEG三嵌段共聚物是由勃林格殷格翰(Boehringer Ingelheim)制造的RESOMER RGP t50106。这一材料由50:50聚(DL-丙交酯-共-乙交酯)的PGLA共聚物构成,并含10%w/w PEG,且分子量为约6000。
是麦克罗公司(MacroMed Incorporated)的一类低分子量生物可降解嵌段共聚物的商品名称,其具有如美国专利第6,004,573号、第6,117949号、第6,201,072号和第6,287,588号所述的逆转热胶凝性质。其还包括申请中的美国专利申请案第09/906,041号、第09/559,799号和第10/919,603号中揭示的生物可降解聚合物药物载剂。生物可降解的药物载剂包含ABA型或BAB型三嵌段共聚物或其混合物,其中A嵌段具有相对疏水性且包含生物可降解的聚酯或聚(原酸酯),且B嵌段具有相对亲水性且包含聚乙二醇(PEG),所述共聚物的疏水性含量在50.1重量%至83重量%之间且亲水性含量在17重量%至49.9重量%之间,并且总嵌段共聚物分子量在2000道尔顿(Dalton)与8000道尔顿之间。药物载剂在低于正常哺乳动物体温的温度下展现水溶性且在等于生理学哺乳动物体温的温度下经历可逆的热胶凝,因此以凝胶形式存在。生物可降解的疏水性A聚合物嵌段包含聚酯或聚(原酸酯),其中聚酯由选自由以下组成的群组的单体合成:D,L-丙交酯、D-丙交酯、L-丙交酯、D,L-乳酸、D-乳酸、L-乳酸、乙交酯、乙醇酸、ε-己内酯、ε-羟基己酸、γ-丁内酯、γ-羟基丁酸、δ-戊内酯、δ-羟基戊酸、羟基丁酸、苹果酸和其共聚物,且平均分子量在约600道尔顿与3000道尔顿之间。亲水性B嵌段节段优选是聚乙二醇(PEG),平均分子量在约500道尔顿与2200道尔顿之间。
其它生物可降解的热塑性聚酯包括(由阿特里克斯实验室(AtrixLaboratories,Inc.)提供)和/或例如美国专利第5,324,519号、第4,938,763号、第5,702,716号、第5,744,153号和第5,990,194号中揭示的热塑性聚酯;其中适合的生物可降解的热塑性聚酯作为热塑性聚合物揭示。适合的生物可降解热塑性聚酯的实例包括聚乳酸、聚乙交酯、聚己酸内酯、其共聚物、其三元共聚物和其任何组合。在一些所述实施例中,适合的生物可降解热塑性聚酯是聚乳酸、聚乙交酯、其共聚物、其三元共聚物或其组合。在一个实施例中,生物可降解的热塑性聚酯是具有羧基末端基团的50/50聚(DL-丙交酯-共-乙交酯);占组合物的约30wt.%至约40wt.%;且平均分子量为约23,000至约45,000。或者,在另一实施例中,生物可降解的热塑性聚酯是无羧基末端基团的75/25聚(DL-丙交酯-共-乙交酯);占组合物的约40wt.%至约50wt.%;且平均分子量为约15,000至约24,000。在其它或替代实施例中,取决于聚合方法,聚(DL-丙交酯-共-乙交酯)的末端基团是羟基、羧基或酯。乳酸或乙醇酸的聚缩合提供含末端羟基和羧基的聚合物。环状丙交酯或乙交酯单体与水、乳酸或乙醇酸的开环聚合提供含相同末端基团的聚合物。然而,用单官能醇(例如甲醇、乙醇或1-十二烷醇)进行环状单体的开环提供含一个羟基和一个酯末端基团的聚合物。环状单体与二醇(例如1,6-己二醇或聚乙二醇)的开环聚合提供仅含羟基末端基团的聚合物。
因为热可逆性凝胶的聚合物系统在低温下更完全溶解,所以溶解方法包括在降低的温度下向待使用的量的水中添加所需量的聚合物。一般来说,在通过振荡润湿聚合物之后,盖上混合物且置于冷室中或约0-10℃的恒温容器中以使聚合物溶解。搅拌或振荡混合物以使热可逆性凝胶聚合物更快速地溶解。接着添加耳结构调节剂或先天性免疫系统调节剂和例如缓冲剂、盐和防腐剂等各种添加剂并溶解。在一些情况下,如果耳结构调节剂或先天性免疫系统调节剂和/或其它医药活性剂不溶于水,那么其将悬浮。通过添加适当的缓冲剂调节pH值。任选地通过在组合物中并入圆窗膜粘膜粘着剂卡波姆(例如934P)使热可逆性凝胶具有圆窗膜粘膜粘着特征(麻吉提亚(Majithiya)等人,美国药学科学家学会医药科技(AAPS PharmSciTech)(2006),7(3),第E1页;EP0551626,关于所述揭示内容,两者以引用的方式并入本文中)。
一个实施例为不需要使用添加的粘度增强剂的耳可接受的医药凝胶组合物。这些凝胶组合物合并有至少一种医药学上可接受的缓冲剂。一方面是包含耳结构调节剂或先天性免疫系统调节剂和医药学上可接受的缓冲剂的凝胶组合物。在另一实施例中,医药学上可接受的赋形剂或载剂是胶凝剂。
在其它实施例中,适用的耳可接受的耳结构调节剂或先天性免疫系统调节剂医药组合物还包括一种或一种以上pH值调节剂或缓冲剂以提供适合于内淋巴或外淋巴的pH值。适合的pH值调节剂或缓冲剂包括(但不限于)乙酸盐、碳酸氢盐、氯化铵、柠檬酸盐、磷酸盐、其医药学上可接受的盐和其组合或混合物。所包括的这些pH值调节剂和缓冲剂的量是维持组合物的pH值在约pH 5与约pH 9之间所需的量,在一个实施例中,pH值在约6.5至约7.5之间,且在又一实施例中,pH值为约6.5、6.6、6.7、6.8、6.9、7.0、7.1、7.2、7.3、7.4、7.5。在一个实施例中,当本发明组合物中使用一种或一种以上缓冲剂时,所述缓冲剂例如与医药学上可接受的媒剂组合且于最终组合物中的存在量例如在约0.1%至约20%、约0.5%至约10%范围内。在本发明的某些实施例中,凝胶组合物中所包括的缓冲剂的量是使得凝胶组合物的pH值不干扰中耳或内耳的天然缓冲系统或不干扰内淋巴或外淋巴的天然pH值的量:取决于耳结构调节剂或先天性免疫系统调节剂组合物以耳蜗中的何处为目标。在一些实施例中,凝胶组合物中存在约10mM至约200mM浓度的缓冲剂。在某些实施例中,存在约5mM至约200mM浓度的缓冲剂。在某些实施例中,存在约20mM至约100mM浓度的缓冲剂。一个实施例是例如呈微酸性pH值的乙酸盐或柠檬酸盐等缓冲剂。在一个实施例中,缓冲剂是pH值为约4.5至约6.5的乙酸钠缓冲剂。在一个实施例中,缓冲剂是pH值为约5.0至约8.0或约5.5至约7.0的柠檬酸钠缓冲剂。
在替代性实施例中,所用的缓冲剂是呈微碱性pH值的三(羟基甲基)氨基甲烷、碳酸氢盐、碳酸盐或磷酸盐。在一个实施例中,缓冲剂是pH值为约6.5至约8.5、或约7.0至约8.0的碳酸氢钠缓冲剂。在另一实施例中,缓冲剂是pH值为约6.0至约9.0的磷酸二钠缓冲剂。
本文还描述包含耳结构调节剂或先天性免疫系统调节剂和粘度增强剂的控制释放型组合物或装置。仅举例来说,适合的粘度增强剂包括胶凝剂和悬浮剂。在一个实施例中,粘度增强的组合物不包括缓冲剂。在其它实施例中,粘度增强的组合物包括医药学上可接受的缓冲剂。必要时,任选使用氯化钠或其它张力剂来调节张力。
仅举例来说,耳可接受的粘度剂包括羟丙基甲基纤维素、羟乙基纤维素、聚乙烯吡咯烷酮、羧甲基纤维素、聚乙烯醇、硫酸软骨素钠、透明质酸钠。与目标耳结构相容的其它粘度增强剂包括(但不限于)阿拉伯胶、琼脂、硅酸铝镁、褐藻酸钠、硬脂酸钠、墨角藻(bladderwrack)、膨土、卡波姆、角叉菜胶、卡波普(Carbopol)、黄原酸烷、纤维素、微晶纤维素(MCC)、长角豆(ceratonia)、几丁质、羧甲基化聚葡萄胺糖、皱波角叉菜(chondrus)、右旋糖、红藻胶(furcellaran)、明胶、茄替胶(Ghatti gum)、瓜尔胶、锂蒙脱石(hectorite)、乳糖、蔗糖、麦芽糖糊精、甘露糖醇、山梨糖醇、蜂蜜、玉米淀粉、小麦淀粉、稻米淀粉、马铃薯淀粉、明胶、苹婆胶(sterculia gum)、黄原胶、黄芪胶、乙基纤维素、乙基羟乙基纤维素、乙基甲基纤维素、甲基纤维素、羟乙基纤维素、羟乙基甲基纤维素、羟丙基纤维素、聚(甲基丙烯酸羟乙酯)、氧化聚明胶(oxypolygelatin)、果胶、聚明胶肽(polygeline)、聚维酮、碳酸丙二酯、甲基乙烯基醚/马来酸酐共聚物(PVM/MA)、聚(甲基丙烯酸甲氧基乙基酯)、聚(甲基丙烯酸甲氧基乙氧基乙基酯)、羟丙基纤维素、羟丙基甲基纤维素(HPMC)、羧甲基纤维素钠(CMC)、二氧化硅、聚乙烯吡咯烷酮(PVP:聚维酮)、(右旋糖、麦芽糖糊精和蔗糖素)或其组合。在具体实施例中,粘度增强赋形剂是MCC与CMC的组合。在另一实施例中,粘度增强剂是羧甲基化壳聚糖或几丁质与褐藻酸盐的组合。几丁质和褐藻酸盐与本文所揭示的耳结构调节剂或先天性免疫系统调节剂的组合以控制释放型组合物形式起作用,限制耳结构调节剂或先天性免疫系统调节剂从组合物中扩散。此外,任选使用羧甲基化壳聚糖与褐藻酸盐的组合以帮助增加耳结构调节剂或先天性免疫系统调节剂穿过圆窗膜的穿透性。
一些实施例为粘度增强的组合物,其包含约0.1mM至约100mM的耳结构调节剂或先天性免疫系统调节剂、医药学上可接受的粘度剂和注射用水,粘度剂于水中的浓度足以提供最终粘度为约100至约100,000cP的粘度增强的组合物。在某些实施例中,凝胶的粘度在约100至约50,000cP、约100cP至约1,000cP、约500cP至约1500cP、约1000cP至约3000cP、约2000cP至约8,000cP、约4,000cP至约50,000cP、约10,000cP至约500,000cP、约15,000cP至约1,000,000cP的范围内。在其它实施例中,当需要甚至更粘的介质时,生物相容的凝胶包含以重量计至少约35%、至少约45%、至少约55%、至少约65%、至少约70%、至少约75%或甚至至少约80%左右的耳结构调节剂或先天性免疫系统调节剂。在高度浓缩的样品中,生物相容的粘度增强组合物包含以重量计至少约25%、至少约35%、至少约45%、至少约55%、至少约65%、至少约75%、至少约85%、至少约90%或至少约95%或95%以上的耳结构调节剂或先天性免疫系统调节剂。
在一些实施例中,本文呈示的凝胶组合物的粘度由任何描述的方式测量。举例来说,在一些实施例中,使用LVDV-II+CP锥板式粘度计和锥轴式CPE-40计算本文所述的凝胶组合物的粘度。在其它实施例中,使用博力飞(Brookfield)(轴式和杯式)粘度计计算本文所述的凝胶组合物的粘度。在一些实施例中,本文所提及的粘度范围是在室温下测量。在其它实施例中,本文提及的粘度范围是在体温(例如健康人类的平均体温)下测量。
在一个实施例中,医药学上可接受的粘度增强的耳可接受的组合物包含耳结构调节剂或先天性免疫系统调节剂和至少一种胶凝剂。用于制备凝胶组合物的适合胶凝剂包括(但不限于)纤维素、纤维素衍生物、纤维素醚(例如羧甲基纤维素、乙基纤维素、羟乙基纤维素、羟甲基纤维素、羟丙基甲基纤维素、羟丙基纤维素、甲基纤维素)、瓜尔胶、黄原胶、刺槐豆胶、褐藻酸盐(例如褐藻酸)、硅酸盐、淀粉、黄芪胶、羧乙烯基聚合物、角叉菜胶、石蜡、凡士林和其任何组合或混合物。在一些其它实施例中,利用羟丙基甲基纤维素作为胶凝剂。在某些实施例中,还利用本文所述的粘度增强剂作为本文呈示的凝胶组合物的胶凝剂。
在一些实施例中,本文所揭示的耳用治疗剂以耳可接受的涂料形式分配。如本文所用,涂料(也称为成膜剂)为包含溶剂、单体或聚合物、活性剂和任选一种或一种以上医药学上可接受的赋形剂的溶液。在施用于组织后,溶剂蒸发,留下包含单体或聚合物和活性剂的薄涂层。涂层保护活性剂并维持活性剂在施用部位处于固定状态。此可减少活性剂可能损失的量,并相应增加传递至个体的量。以非限制性实例说明,涂料包括火棉胶(例如柔性火棉胶,USP)和包含糖硅氧烷共聚物和交联剂的溶液。火棉胶为含有火棉(一种硝酸纤维素)的乙醚/乙醇溶液。施用后,乙醚/乙醇溶液蒸发,留下火棉薄膜。在包含糖硅氧烷共聚物的溶液中,在溶剂蒸发引发糖硅氧烷共聚物交联后,糖硅氧烷共聚物形成涂层。关于涂料的其它揭示内容,参见雷明顿:药学科学与实践,关于所述主题内容,并入本文中。欲用于本文中的涂料具有柔性,使得其不干扰气压波传播通过耳朵。此外,涂料可以液体(即溶液、悬浮液或乳液)、半固体(即凝胶、发泡体、糊剂或凝胶剂)或气雾剂形式施用。
在一些实施例中,本文所揭示的耳用治疗剂以控制释放型发泡体形式分配。适用于本文所揭示的组合物中的可发泡载剂的实例包括(但不限于)褐藻酸盐和其衍生物、羧甲基纤维素和其衍生物、胶原蛋白、多糖(包括例如葡聚糖、葡聚糖衍生物、果胶、淀粉、变性淀粉(例如具有额外羧基和/或羧酰胺基团和/或具有亲水性侧链的淀粉)、纤维素和其衍生物、琼脂和其衍生物(例如经聚丙烯酰胺稳定的琼脂)、聚氧化乙烯、甲基丙烯酸乙二醇酯、明胶、树胶(例如黄原胶、瓜尔胶、刺梧桐树胶、结冷胶(gellan)、阿拉伯胶、黄芪胶和刺槐豆胶)或其组合。同样适合的有上述载剂的盐,例如褐藻酸钠。此外,组合物任选包含发泡剂,其促进泡沫的形成,包括表面活性剂或外部推进剂。适合的发泡剂的实例包括西曲溴铵(cetrimide)、卵磷脂、肥皂、聚硅氧等。例如等市售表面活性剂也是适合的。
在一些实施例中,取决于特定耳结构调节剂或先天性免疫系统调节剂、所用的其它医药剂或赋形剂/添加剂,其它凝胶组合物也适用,因而视为在本发明的范围内。举例来说,预期其它市售的基于甘油的凝胶、甘油衍生的化合物、结合或交联的凝胶、基质、水凝胶和聚合物、以及明胶和其衍生物、褐藻酸盐和基于褐藻酸盐的凝胶、和甚至各种天然和合成水凝胶和水凝胶衍生的化合物全部适用于本文所述的耳结构调节组合物中。在一些实施例中,耳可接受的凝胶包括(但不限于)褐藻酸盐水凝胶凝胶(康复宝(ConvaTec),新泽西州普林斯顿(Princeton,N.J.));水凝胶(康复宝(ConvaTec))、(强生医学(Johnson&Johnson Medical),德克萨斯州阿灵顿(Arlington,Tex.));醋孟南水凝胶(Acemannan Hydrogel)(卡灵顿实验室公司(Carrington Laboratories,Inc.),德克萨斯州欧文(Irving,Tex.));甘油凝胶水凝胶(瑞士-美国产物公司(Swiss-American Products,Inc.),德克萨斯州达拉斯(Dallas,Tex.))和无菌(强生(Johnson&Johnson))。在其它实施例中,生物可降解的生物相容性凝胶还表示存在于本文所揭示和描述的耳可接受的组合物中的化合物。
在一些开发用于投予哺乳动物和用于调配投予人类的组合物的组合物中,耳可接受的凝胶占组合物重量的实质上全部。在其它实施例中,耳可接受的凝胶占组合物的高达约98重量%或约99重量%。当需要实质上非流体或实质上粘性的组合物时,希望如此。在另一实施例中,当需要粘性略小或流动性略大的耳可接受的医药凝胶组合物时,组合物的生物相容性凝胶部分占化合物的至少约50重量%、至少约60重量%、至少约70重量%、或甚至至少约80重量%或90重量%。这些范围内的所有中间整数意欲都在本发明的范围内,且在一些替代实施例中,调配流动性更大(因而粘性较小)的耳可接受的凝胶组合物,例如混合物的凝胶或基质组分占不超过约50重量%、不超过约40重量%、不超过约30重量%的组合物,或甚至占不超过组合物的约15重量%或约20重量%的组合物。
耳可接受的悬浮剂
在一个实施例中,耳结构调节剂或先天性免疫系统调节剂包括在医药学上可接受的粘度增强的组合物中,其中所述组合物另外包含至少一种悬浮剂,其中所述悬浮剂帮助赋予组合物控制释放特征。在一些实施例中,悬浮剂也用以提高耳可接受的耳结构调节组合物和组合物的粘度。
仅举例来说,悬浮剂包括例如以下化合物:聚乙烯吡咯烷酮(例如聚乙烯吡咯烷酮K12、聚乙烯吡咯烷酮K17、聚乙烯吡咯烷酮K25或聚乙烯吡咯烷酮K30)、乙烯基吡咯烷酮/乙酸乙烯酯共聚物(S630)、羧甲基纤维素钠、甲基纤维素、羟丙基甲基纤维素(羟丙甲纤维素)、羟甲基纤维素乙酸硬脂酸酯、聚山梨酸酯-80、羟乙基纤维素、褐藻酸钠、树胶(例如黄芪胶和阿拉伯胶、瓜尔胶、黄原酸烷(包括黄原胶))、糖、纤维素制品(例如羧甲基纤维素钠、甲基纤维素、羧甲基纤维素钠、羟丙基甲基纤维素、羟乙基纤维素)、聚山梨酸酯-80、褐藻酸钠、聚乙氧基化脱水山梨糖醇单月桂酸酯、聚乙氧基化脱水山梨糖醇单月桂酸酯、聚维酮等。在一些实施例中,适用水性悬浮液也含有一种或一种以上聚合物作为悬浮剂。适用聚合物包括例如纤维素聚合物(例如羟丙基甲基纤维素)等水溶性聚合物和例如交联含羧基聚合物等水不溶性聚合物。
在一个实施例中,本发明提供耳可接受的凝胶组合物,其包含治疗有效量的耳结构调节剂或先天性免疫系统调节剂于羟乙基纤维素凝胶中。羟乙基纤维素(HEC)以干粉形式获得,用水或水性缓冲溶液复原,得到所需粘度(一般约200cps至约30,000cps,对应于约0.2%至约10%HEC)。在一个实施例中,HEC浓度在约1%与约15%、约1%与约2%或约1.5%至约2%之间。
在其它实施例中,包括凝胶组合物和粘度增强的组合物在内的耳可接受的组合物另外包括赋形剂、其它药用剂或药剂、载剂、佐剂,例如防腐剂、稳定剂、湿润剂或乳化剂、溶解促进剂、盐、增溶剂、消泡剂、抗氧化剂、分散剂、湿润剂、表面活性剂和其组合。
耳可接受的光化辐射可固化的凝胶
在其它实施例中,凝胶为光化辐射可固化的凝胶,使得在投予目标耳结构中或其附近后,使用光化辐射(或光,包括紫外光、可见光或红外光)可形成所需凝胶性质。仅举例来说,使用纤维光学提供光化辐射,以便形成所需凝胶性质。在一些实施例中,纤维光学和凝胶投予装置形成单个单元。在其它实施例中,纤维光学和凝胶投予装置个别地提供。
耳可接受的溶剂释放凝胶
在一些实施例中,凝胶为溶剂释放凝胶,使得在投予目标耳结构中或其附近后形成所需凝胶性质,在注入的凝胶组合物中的溶剂使凝胶扩散时,形成具有所需凝胶性质的凝胶。举例来说,包含蔗糖乙酸异丁酸酯、医药学上可接受的溶剂、一种或一种以上添加剂和耳结构调节剂或先天性免疫系统调节剂的组合物投予圆窗膜上或其附近:注入的组合物中的溶剂扩散提供具有所需凝胶性质的储积器。举例来说,使用水溶性溶剂,可在溶剂从注入的组合物中快速扩散时,提供高粘度储积器。另一方面,使用疏水性溶剂(例如苯甲酸苯甲酯)提供粘度较低的储积器。耳可接受的溶剂释放凝胶组合物的一个实例是都彭公司(DURECT Corporation)出售的SABERTM传递系统。
耳可接受的原位形成的海绵状材料
海绵状材料的使用也涵盖在实施例的范围内,所述海绵状材料在内耳或中耳中原位形成。在一些实施例中,海绵状材料由透明质酸或其衍生物形成。海绵状材料充满所需的耳结构调节剂或先天性免疫系统调节剂,并放在中耳内,以便提供耳结构调节剂或先天性免疫系统调节剂在中耳内控制释放,或与圆窗膜接触,以便控制释放耳结构调节剂或先天性免疫系统调节剂至内耳中。在一些实施例中,海绵状材料为生物可降解的。
圆窗膜粘膜粘着剂
实施例的范围内还涵盖向本文所揭示的耳结构调节组合物和装置中添加圆窗膜粘膜粘着剂。术语‘粘膜粘着’用于指结合于例如三层圆窗膜的外膜等生物膜的粘蛋白层的物质。为用作圆窗膜粘膜粘着聚合物,聚合物具有一些一般生理化学特征,例如阴离子亲水性占优势和许多氢键形成基团、适于润湿粘液/粘膜组织表面的表面性质或足以穿透粘液网络的灵活性。
与耳可接受的组合物一起使用的圆窗膜粘膜粘着剂包括(但不限于)至少一种可溶性聚乙烯吡咯烷酮聚合物(PVP);水可膨胀但不溶于水的纤维状交联羧基官能型聚合物;交联聚(丙烯酸)(例如947P);卡波姆同聚物;卡波姆共聚物;亲水性多糖胶、麦芽糖糊精、交联褐藻酸盐胶凝胶、水可分散性聚羧基化乙烯基聚合物、至少两种选自由二氧化钛、二氧化硅和粘土组成的群组的颗粒组分、或其混合物。圆窗膜粘膜粘着剂任选与耳可接受的粘度增加赋形剂组合使用,或单独使用以增加组合物与粘膜层目标耳部组分的相互作用。在一个非限制性实例中,粘膜粘着剂是麦芽糖糊精和/或褐藻酸盐胶。使用时,赋予组合物的圆窗膜粘膜粘着剂特征处于足以传递有效量的耳结构调节剂或先天性免疫系统调节剂组合物到例如圆窗膜的粘膜层或蜗窗嵴,达涂布粘膜的量且此后传递组合物到患病区域(仅举例来说,包括内耳前庭和/或耳蜗结构)的水平。使用时,测定本文所提供的组合物的粘膜粘着特征,并使用此信息(与本文所提供的其他教示内容一起),来测定适当的量。一种确定足够的粘膜粘着的方法包括监测组合物与粘膜层相互作用的变化,包括(但不限于)测量组合物在不存在或存在粘膜粘着赋形剂的情况下保留或滞留时间的变化。
粘膜粘着剂已描述于例如美国专利第6,638,521号、第6,562,363号、第6,509,028号、第6,348,502号、第6,319,513号、第6,306,789号、第5,814,330号和第4,900,552号中,各专利中的所述揭示内容都以引用的方式并入本文中。
在另一非限制性实例中,粘膜粘着剂为例如至少两种选自二氧化钛、二氯化硅和粘土的颗粒组分,其中组合物在投予前不另外用任何液体稀释,且如果存在二氯化硅,那么其含量为约3重量%至约15重量%的组合物。如果存在二氯化硅,那么其包括气相二氧化硅、沉淀二氯化硅、凝聚二氯化硅、凝胶状二氯化硅和其混合物。如果存在粘土,那么其包括高岭土矿物、蛇纹石矿物、蒙脱石、伊利石或其混合物。举例来说,粘土包括合成锂皂石、膨润土、锂蒙脱石、皂石、蒙脱土或其混合物。
在一个非限制性实例中,圆窗膜粘膜粘着剂是麦芽糖糊精。麦芽糖糊精是通过水解任选来源于玉米、马铃薯、小麦或其它植物产品的淀粉所产生的碳水化合物。麦芽糖糊精任选地单独使用或与其它圆窗膜粘膜粘着剂组合使用,以使本文所揭示的组合物具有粘膜粘着特征。在一个实施例中,使用麦芽糖糊精与卡波普聚合物的组合来增加本文所揭示的组合物或装置的圆窗膜粘膜粘着特征。
在另一实施例中,圆窗膜粘膜粘着剂是烷基-糖苷和/或糖烷基酯。如本文所用,“烷基-糖苷”意思是化合物包含任何连接于疏水性烷基的亲水性糖(例如蔗糖、麦芽糖或葡萄糖)。在一些实施例中,圆窗膜粘膜粘着剂是烷基-糖苷,其中烷基-糖苷包含糖通过酰胺键、胺键、氨基甲酸酯键、醚键、硫醚键、酯键、硫酯键、糖苷键、硫糖苷键和/或酰脲键连接于疏水性烷基(例如包含约6至约25个碳原子的烷基)。在一些实施例中,圆窗膜粘膜粘着剂是己基-、庚基-、辛基-、壬基-、癸基-、十一烷基-、十二烷基-、十三烷基-、十四烷基-、十五烷基-、十六烷基-、十七烷基-和十八烷基α-或β-D-麦芽糖苷;己基-、庚基-、辛基-、壬基-、癸基-、十一烷基-、十二烷基-、十三烷基-、十四烷基-、十五烷基-、十六烷基-、十七烷基-和十八烷基α-或β-D-葡糖苷;己基-、庚基-、辛基-、壬基-、癸基-、十一烷基-、十二烷基-、十三烷基-、十四烷基-、十五烷基-、十六烷基-、十七烷基-和十八烷基α-或β-D-蔗糖苷;己基-、庚基-、辛基-、十二烷基-、十三烷基-和十四烷基-β-D-硫代麦芽糖苷;庚基-或辛基-1-硫代-α-或β-D-吡喃葡萄糖苷;烷基硫代蔗糖苷;烷基麦芽三糖苷;蔗糖β-氨基-烷基醚的长链脂肪族碳酸酰胺;巴拉金糖(palatinose)或异麦芽胺(isomaltamine)通过酰胺键连接于烷基链的衍生物和异麦芽胺通过脲连接于烷基链的衍生物;蔗糖β-氨基-烷基醚的长链脂肪族碳酸酰脲和蔗糖β-氨基-烷基醚的长链脂肪族碳酸酰胺。在一些实施例中,圆窗膜粘膜粘着剂是烷基-糖苷,其中烷基糖苷是麦芽糖、蔗糖、葡萄糖或其组合通过糖苷键连接于具有9-16个碳原子的烷基链(例如壬基-、癸基-、十二烷基-和十四烷基蔗糖苷;壬基-、癸基-、十二烷基-和十四烷基葡糖苷;和壬基-、癸基-、十二烷基-和十四烷基麦芽糖苷)。在一些实施例中,圆窗膜粘膜粘着剂是烷基-糖苷,其中烷基糖苷是十二烷基麦芽糖苷、十三烷基麦芽糖苷和十四烷基麦芽糖苷。
在一些实施例中,圆窗膜粘膜粘着剂是烷基-糖苷,其中烷基-糖苷是含至少一个葡萄糖的二糖。在一些实施例中,耳可接受的穿透增强剂是包含α-D-吡喃葡萄糖基-β-吡喃葡萄糖苷、正十二烷基-4-O-α-D-吡喃葡萄糖基-β-吡喃葡萄糖苷和/或正十四烷基-4-O-α-D-吡喃葡萄糖基-β-吡喃葡萄糖苷的表面活性剂。在一些实施例中,圆窗膜粘膜粘着剂是烷基-糖苷,其中烷基-糖苷于纯水或水溶液中的临界胶束浓度(CMC)小于约1mM。在一些实施例中,圆窗膜粘膜粘着剂是烷基-糖苷,其中烷基-糖苷内的氧原子经硫原子取代。在一些实施例中,圆窗膜粘膜粘着剂是烷基-糖苷,其中烷基糖苷是β-异头物。在一些实施例中,圆窗膜粘膜粘着剂是烷基-糖苷,其中烷基糖苷包含90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.1%、99.5%或99.9%的β-异头物。
耳可接受的控制释放粒子
本文所揭示的耳结构调节剂或先天性免疫系统调节剂和/或其它药剂任选并入控制释放粒子、脂质复合物、脂质体、纳米粒子、微粒、微球体、凝聚体、纳米囊或增强或促进耳结构调节剂或先天性免疫系统调节剂局部传递的其它试剂内。在一些实施例中,使用单一粘度增强的组合物,其中存在耳结构调节剂或先天性免疫系统调节剂,而在其它实施例中,使用包含两种或两种以上不同的粘度增强的组合物的混合物的医药组合物,其中存在耳结构调节剂或先天性免疫系统调节剂。在一些实施例中,也采用溶胶、凝胶和/或生物相容性基质的组合以提供控制释放型耳结构调节组合物或组合物的所需特征。在某些实施例中,控制释放型耳结构调节组合物或组合物通过一种或一种以上试剂交联以改变或改良组合物的性质。
与本文所揭示的医药组合物有关的微球体的实例包括:鲁兹(Luzzi,L.A.),医药生理学杂志(J.Pharm.Psy.)59:1367(1970);美国专利第4,530,840号;路易斯(Lewis,D.H.),“生体活性剂从丙交酯/乙交酯聚合物中控制释放(Controlled-release of BioactiveAgents from Lactides/Glycolide Polymers)”,生物可降解聚合物作为药物传递系统(Biodegradable Polymers as Drug Delivery Systems),查辛(Chasin,M.)和兰格(Langer,R.)编辑,马塞尔戴克(Marcel Decker)(1990);美国专利第4,675,189号;贝克(Beck)等人,“聚(乳酸)和聚(乳酸-共-乙醇酸)避孕传递系统(Poly(lactic acid)and Poly(lacticacid-co-glycolic acid)Contraceptive Delivery Systems)”,长效类固醇避孕(Long ActingSteroid Contraception),米沙尔(Mishell,D.R.)编辑,拉文出版社(Raven Press)(1983);美国专利第4,758,435号;美国专利第3,773,919号;美国专利第4,474,572号。调配成微球体的蛋白质治疗剂的实例包括:美国专利第6,458,387号;美国专利第6,268,053号;美国专利第6,090,925号;美国专利第5,981,719号;和美国专利第5,578,709号,且关于所述揭示内容,以引用的方式并入本文中。
微球体通常具有球形,不过也有可能是不规则形状的微粒。微球体的尺寸可变化,直径在亚微米至1000微米的范围内。适用于本文所揭示的耳可接受的组合物的微球体是直径为亚微米至250微米的微球体,允许通过用标准规格的针注射来投予。耳可接受的微球体可通过产生适用于可注射组合物的尺寸范围内的微球体的任何方法制备。任选使用用于投予液体组合物的标准规格的针实现注射。
用于本文中耳可接受的控制释放粒子的聚合基质物质的适合实例包括聚(乙醇酸)、聚-d,l-乳酸、聚-l-乳酸、上述共聚物、聚(脂族羧酸)、共聚草酸酯(copolyoxalate)、聚己内酯、聚二氧六环酮(polydioxonene)、聚(原碳酸酯)、聚(缩醛)、聚(乳酸-己内酯)、聚原酸酯、聚(乙醇酸-己内酯)、聚二氧六环酮、聚酸酐、聚膦嗪,和天然聚合物,包括白蛋白、酪蛋白和一些蜡,例如甘油单硬脂酸酯和二硬脂酸酯等。各种市售聚(丙交酯-共-乙交酯)物质(PLGA)任选用于本文所揭示的方法。举例来说,聚(d,l-乳酸-共-乙醇酸)可以从勃林格殷格翰(Boehringer-Ingelheim)以RESOMER RG 503H购得。此产物具有50%丙交酯与50%乙交酯的摩尔百分比组成。可获得具有广泛分子量和乳酸相对于乙醇酸的比率的这些共聚物。一个实施例包括使用聚合物聚(d,l-丙交酯-共-乙交酯)。此类共聚物中丙交酯与乙交酯的摩尔比率包括约95:5至约50:50的范围。
聚合基质物质的分子量具有一些重要性。分子量应足够高,以便其形成令人满意的聚合物涂层,即聚合物应为优良的成膜剂。通常令人满意的分子量在5,000至500,000道尔顿的范围内。从分子量影响聚合物的生物降解速率的观点看,聚合物的分子量也是重要的。对于药物释放的扩散机理,聚合物应完整无损,直到所有药物都从微粒中释放,然后才降解。药物也在聚合物赋形剂生物腐蚀时从微粒中释放。通过适当地选择聚合物质,制得微球体组合物,使得所得微球体显示扩散释放与生物降解释放性质。此可用于提供多相释放型式。
已知多种将化合物囊封在微球体中的方法。在这些方法中,一般使用搅拌器、搅动器或其它动力混合技术,将耳结构调节剂或先天性免疫系统调节剂分散或乳化于含有成壁物质的溶剂中。接着从微球体中除去溶剂,随后获得微球体产物。
在一个实施例中,通过将耳结构调节剂或先天性免疫系统调节剂和/或其它药剂并入乙烯-乙酸乙烯酯共聚物基质中,来制备控制释放型耳结构调节组合物(参见美国专利第6,083,534号,关于所述揭示内容,并入本文中)。在另一实施例中,耳结构调节剂或先天性免疫系统调节剂并入聚(乳酸-乙醇酸)或聚-L-乳酸微球体中(同前)。在另一实施例中,耳结构调节剂或先天性免疫系统调节剂囊封至褐藻酸盐微球体中(参见美国专利第6,036,978号,关于所述揭示内容,并入本文中)。囊封耳结构调节化合物或组合物的基于甲基丙烯酸酯的生物相容性聚合物任选用于本文所揭示的组合物和方法中。可购得各种基于甲基丙烯酸酯的聚合物系统,例如赢创(Evonik)出售的EUDRAGIT聚合物。甲基丙烯酸酯聚合物的一个适用方面是通过并入各种共聚物来改变组合物的性质。举例来说,由于聚(丙烯酸)中的羧基与粘液素形成氢键,所以聚(丙烯酸-共-甲基丙烯酸甲酯)微粒显示增强的粘膜粘着性(帕克(Park)等人,药学研究(Pharm.Res.)(1987)4(6):457-464)。丙烯酸与甲基丙烯酸甲酯单体之间的比率的变化用以调节共聚物的性质。基于甲基丙烯酸酯的微粒也已经用于蛋白质治疗组合物中(纳哈(Naha)等人,微囊法杂志(Journal of Microencapsulation)2008年2月4日(在线出版))。在一个实施例中,本文所述的粘度增强的耳可接受的组合物包含耳结构调节微球体,其中微球体由甲基丙烯酸酯聚合物或共聚物形成。在另一实施例中,本文所述的粘度增强的组合物包含耳结构调节微球体,其中微球体为粘膜粘着剂。其它控制释放系统,包括聚合物质或基质并入或沉积于含有耳结构调节剂或先天性免疫系统调节剂的实体或空心球上,也明确地涵盖于本文所揭示的实施例内。使用本文所揭示的教示内容、实例和原理,确定可使用并且不显著损失耳结构调节剂或先天性免疫系统调节剂的活性的控制释放系统类型。
医药制剂的常规微囊化工艺的一个实例展示于美国专利第3,737,337号中,关于所述揭示内容,以引用的方式并入本文中。使用常规混合器,包括(在制备分散液中)振动器和高速搅拌器等,将待囊封或包埋的耳结构调节物质溶解或分散在聚合物的有机溶液(相A)中。再次使用常规混合器,例如高速混合器、振动混合器或甚至喷嘴,将含有呈溶解或悬浮状态的核心物质的相(A)分散在水相(B)中,在这种情况下,微球体的粒径不仅通过相(A)的浓度来确定,而且也通过乳液(emulsate)或微球体尺寸来确定。使用将耳结构调节剂或先天性免疫系统调节剂微囊化的常规技术,当通过搅拌、搅动、振动或一些其它的动力混合技术,将含有活性剂和聚合物的溶剂乳化或分散在不混溶的溶液中时形成微球体,常常持续较长的时间。
构造微球体的方法也描述于美国专利第4,389,330号和美国专利第4,530,840号中,关于所述揭示内容,以引用的方式并入本文中。将所需耳结构调节剂或先天性免疫系统调节剂溶解或分散在适当的溶剂中。向含有药剂的介质中加入聚合基质物质,其量相对于活性成分,可得到具有活性剂的所需装载量的产物。耳结构调节微球体产物的所有成分任选一起掺合在溶剂介质中。药剂和聚合基质物质的适合溶剂包括有机溶剂,例如丙酮、卤代烃(例如氯仿、二氯甲烷等)、芳族烃化合物、卤化芳族烃化合物、环状醚、醇、乙酸乙酯等。
各成分于溶剂中的混合物在连续相处理介质中乳化;所述连续相介质可使含有指示成分的微滴的分散液在连续相介质中形成。当然,连续相处理介质和有机溶剂必须不混溶,且包括水,不过可任选使用非水性介质,例如二甲苯和甲苯和合成油和天然油。表面活性剂任选加入连续相处理介质中,以防止微粒凝聚和控制乳液中溶剂微滴的尺寸。一种优选的表面活性剂-分散介质组合为1至10wt.%聚(乙烯醇)于水中的混合物。通过机械搅动混合的物质,形成分散液。任选通过将小滴活性剂-成壁物质溶液加入连续相处理介质中来形成乳液。乳液形成期间的温度并不特别重要,但其会影响微球体的尺寸和品质以及连续相中药物的溶解性。需要连续相中的药剂尽可能地少。另外,从实际目的出发,取决于所用的溶剂和连续相处理介质,温度不能太低,否则溶剂和处理介质将凝固或处理介质将变得过于粘稠,或者不能太高,以致处理介质将蒸发或无法维持液体处理介质。另外,介质的温度不能高至不利地影响并入微球体中的特定药剂的稳定性的程度。因此,分散过程在维持稳定的操作条件的任何温度下进行,优选温度为约15℃至60℃,取决于所选的药物和赋形剂。
形成的分散液是稳定的乳液,且在溶剂除去过程的第一步中从此分散液中任选地部分除去有机溶剂的不混溶流体。通过例如加热、施加减压或两者组合等技术来除去溶剂。用以从微滴中蒸发溶剂的温度不是关键,但其不应该高至使既定微粒制备中所用的耳结构调节剂或先天性免疫系统调节剂降解的程度,也不应该高至使溶剂迅速蒸发而引起成壁物质缺陷的程度。一般说来,在第一溶剂除去步骤中除去5至75%的溶剂。
第一阶段后,通过任何适宜的分离方法,将溶剂不混溶流体介质中的分散微粒与流体介质分离。因此,举例来说,流体从微球体中倾析或过滤微球体悬浮液。另外,必要时可使用分离技术的不同组合。
微球体从连续相处理介质中分离后,通过萃取来除去微球体中的其余溶剂。此步骤中,微球体悬浮于步骤1中所用的相同连续相处理介质中,有或者没有表面活性剂,或悬浮于另一液体中。萃取介质从微球体中除去溶剂,然而不溶解微球体。萃取期间,具有溶解的溶剂的萃取介质任选除去并经新鲜的萃取介质置换。这最好连续进行。既定过程的萃取介质补充速率是变数,在进行此过程时确定,因此,不必预先确定对速率的准确限制。大部分溶剂从微球体中除去后,通过暴露于空气或通过其它常规干燥技术,例如真空干燥、经干燥剂干燥等,使微球体干燥。此过程非常有效地囊封耳结构调节剂或先天性免疫系统调节剂,这是因为可获得高达80wt.%、优选高达60wt.%的核心装载量。
或者,通过使用静态混合器制备含有耳结构调节剂或先天性免疫系统调节剂的控制释放微球体。静态或固定混合器由容纳大量静态混合剂的管道或管组成。静态混合器提供在长度较短的管道中均匀混合较短的时间。在静态混合器下,流体穿过混合器,而非例如刀片等混合器的一部分穿过流体。
静态混合器任选用以产生乳液。当使用静态混合器形成乳液时,若干因素决定乳液粒径,这些因素包括待混合的各种溶液或相的密度和粘度、相的体积比、相间界面张力、静态混合器参数(管道直径;混合元件长度;混合元件数目)和通过静态混合器的线速度。温度是变数,因为其影响密度、粘度和界面张力。控制变数是线速度、剪切速率(sheerrate)和每单位长度静态混合器的压降。
为使用静态混合器工艺产生含有耳结构调节剂或先天性免疫系统调节剂的微球体,将有机相与水相组合。有机相与水相基本上或实质上不混溶,其中水相构成乳液的连续相。有机相包括耳结构调节剂或先天性免疫系统调节剂以及成壁聚合物或聚合基质物质。通过将耳结构调节剂或先天性免疫系统调节剂溶解于有机或其它适合的溶剂中,或通过形成含有耳结构调节剂或先天性免疫系统调节剂的分散液或乳液,来制备有机相。抽吸有机相与水相,以便两相同时流过静态混合器,从而形成包含含有耳结构调节剂或先天性免疫系统调节剂囊封于聚合基质物质中的微球体的乳液。有机相与水相抽吸通过静态混合器,进入大量的淬灭液体中,以萃取或除去有机溶剂。当在淬灭液体中洗涤或搅拌有机溶剂时,任选从微球体中除去有机溶剂。在淬灭液体中洗涤微球体后,如通过筛子分离微球体,并干燥。
在一个实施例中,使用静态混合器制备微球体。所述工艺不限于以上所讨论的溶剂萃取技术,也与其它囊封技术一起使用。举例来说,所述工艺任选与相分离囊封技术一起使用。为此,制备包含耳结构调节剂或先天性免疫系统调节剂悬浮或分散在聚合物溶液中的有机相。非溶剂第二相不含聚合物和活性剂的溶剂。优选非溶剂第二相是聚硅氧油。有机相和非溶剂相抽吸通过静态混合器,进入非溶剂淬灭液体(例如庚烷)中。淬灭半固体粒子,以完全硬化和洗涤。微囊化的工艺包括喷雾干燥、溶剂蒸发、蒸发和萃取的组合和熔体挤出。
在另一实施例中,微囊化工艺涉及使用具有单一溶剂的静态混合器。此工艺详细描述于美国申请案第08/338,805号中,关于所述揭示内容,以引用的方式并入本文中。另一工艺涉及使用具有共溶剂的静态混合器。在此工艺中,制备包含生物可降解的聚合物粘合剂和耳结构调节剂或先天性免疫系统调节剂的生物可降解微球体,其包含至少两种实质上无毒的不含卤代烃的溶剂的掺合物以溶解药剂与聚合物。含有溶解的药剂和聚合物的溶剂掺合物分散在水溶液中,以形成小液滴。接着所得乳液加入优选含有掺合物中的至少一种溶剂的水性萃取介质中,从而控制每一溶剂的萃取速率,因此形成含有医药活性剂的生物可降解微球体。此工艺的优点是,由于一种溶剂在水中的溶解性实质上与另一种溶剂无关,所以其需要的萃取介质较少,且提高溶剂的选择,尤其是特别难以萃取的溶剂。
纳米粒子也欲用于本文所揭示的耳结构调节剂或先天性免疫系统调节剂。纳米粒子是尺寸为约100nm或少于100nm的物质结构。纳米粒子在医药组合物中的一个用途是,当粒子表面与溶剂的相互作用强至足以克服密度差时形成悬浮液。由于纳米粒子小至足以进行灭菌过滤,所以可对纳米粒子悬浮液进行灭菌(参见例如美国专利第6,139,870号,关于所述揭示内容,以引用的方式并入本文中)。纳米粒子包含至少一种疏水性、水不溶性和水不分散性聚合物或共聚物乳化于表面活性剂、磷脂或脂肪酸的溶液或水性分散液中。耳结构调节剂或先天性免疫系统调节剂任选与聚合物或共聚物一起引入纳米粒子中。
本文中也涵盖脂质纳米囊作为控制释放结构以及穿透圆窗膜和到达内耳和/或中耳目标。任选通过乳化癸酸和辛酸甘油三酸酯(拉布法克(Labrafac)WL 1349;平均分子量512)、大豆卵磷脂(S75-3;69%磷脂酰胆碱和其它磷脂)、表面活性剂(例如索路托(Solutol)HS15)、聚乙二醇660羟基硬脂酸酯与游离聚乙二醇660的混合物、NaCl和水来形成脂质纳米囊。在室温下搅拌混合物,获得水包油乳液。在磁力搅拌下以4℃/min的速率逐渐加热后,透明的短间隔应出现在接近70℃时,且在85℃下获得逆相(油中水滴)。接着在85℃与60℃之间,以4℃/min的速率,施加冷却与加热的三次循环,并在接近0℃的温度下在冷水中快速稀释,产生纳米囊悬浮液。为囊封耳结构调节剂或先天性免疫系统调节剂,在即将用冷水稀释之前任选加入药剂。
通过与耳用活性剂的水性胶束溶液一起培育90分钟,耳结构调节剂或先天性免疫系统调节剂也插入脂质纳米囊中。接着每15分钟涡旋悬浮液,接着在冰浴中淬灭1分钟。
适合的耳可接受的表面活性剂是例如胆酸或牛磺胆酸盐。由胆酸与牛磺酸形成的结合物牛磺胆酸是可充分代谢的磺酸表面活性剂。牛磺胆酸的类似物牛磺熊去氧胆酸(TUDCA)是一种天然存在的胆汁酸,且为牛磺酸与熊去氧胆酸(UDCA)的结合物。其它天然存在的阴离子型(例如半乳糖脑苷脂硫酸根)、中性(例如乳糖基酰基鞘氨醇)或两性离子型表面活性剂(例如鞘磷脂、磷脂酰胆碱、棕榈酰肉碱)任选用以制备纳米粒子。
耳可接受的磷脂选自例如天然、合成或半合成的磷脂;卵磷脂(磷脂酰胆碱),例如纯化卵磷脂或大豆卵磷脂(卵磷脂E100、卵磷脂E80和氢化磷脂(phospholipon),例如氢化磷脂90)、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰肌醇、磷脂酰甘油、二棕榈酰磷脂酰胆碱、二棕榈酰基磷脂酰胆碱甘油酯、二肉豆蔻酰磷脂酰胆碱、二硬脂酰磷脂酰胆碱和磷脂酸,或更特别是使用其混合物。
用于耳可接受的组合物的脂肪酸选自例如月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、异硬脂酸、花生酸、二十二烷酸、油酸、肉豆寇烯酸、棕榈油酸、亚油酸、α-亚油酸、花生四烯酸、二十碳五烯酸、芥子酸、二十二碳六烯酸等。
适合的耳可接受的表面活性剂选自已知的有机和无机医药赋形剂。这些赋形剂包括各种聚合物、低分子量寡聚体、天然产物和表面活性剂。优选表面改性剂包括非离子型和离子型表面活性剂。两种或两种以上表面改性剂可组合使用。
耳可接受的表面活性剂的代表性实例包括氯化十六烷基吡啶、明胶、酪蛋白、卵磷脂(磷脂)、葡聚糖、甘油、阿拉伯胶、胆固醇、黄芪胶、硬脂酸、硬脂酸钙、单硬脂酸甘油酯、鲸蜡硬脂醇、聚西托醇乳化蜡(cetomacrogol emulsifying wax)、脱水山梨糖醇酯、聚氧化乙烯烷基醚、聚氧化乙烯蓖麻油衍生物、聚氧化乙烯脱水山梨糖醇脂肪酸酯;十二烷基三甲基溴化铵、聚氧化乙烯硬脂酸酯、胶状二氧化硅、磷酸盐、十二烷基硫酸钠、羧甲基纤维素钙、羟丙基纤维素(HPC、HPC-SL和HPC-L)、羟丙基甲基纤维素(HPMC)、羧甲基纤维素钠、甲基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素邻苯二甲酸酯、非结晶纤维素、硅酸镁铝、三乙醇胺、聚乙烯醇(PVA)、聚乙烯吡咯烷酮(PVP)、4-(1,1,3,3-四甲基丁基)-苯酚与环氧乙烷和甲醛的聚合物(也称为泰洛沙泊、士贝亮(superione)和曲拉通(triton))、泊洛沙姆、泊洛沙胺(poloxamnine)、带电磷脂(例如二肉豆蔻酰基磷脂酰甘油、磺基丁二酸二辛酯(DOSS));1508、磺基丁二酸钠二烷基酯、多泡尔(Duponol)P、曲拉通X-200、克罗塔斯(Crodestas)F-110、对异壬基苯氧基聚-(缩水甘油)、克罗塔斯SL-40(克罗达公司(Croda,Inc.));和SA9OHCO,其是C18H37CH2(CON(CH3)-CH2(CHOH)4(CH2OH)2)(伊思曼柯达公司(Eastman Kodak Co.));癸酰基-N-甲基葡糖酰胺;正癸基β-D-吡喃葡萄糖苷;正癸基β-D-吡喃麦芽糖苷;正十二烷基β-D-吡喃葡萄糖苷;正十二烷基β-D-麦芽糖苷;庚酰基-N-甲基葡糖酰胺;正庚基β-D-吡喃葡萄糖苷;正庚基β-D-硫葡糖甙;正己基β-D-吡喃葡萄糖苷;壬酰基-N-甲基葡糖酰胺;正壬基β-D-吡喃葡萄糖苷;辛酰基-N-甲基葡糖酰胺;正辛基β-D-吡喃葡萄糖苷;辛基β-D-硫代吡喃葡萄糖苷等。大部分这些表面活性剂是已知的医药赋形剂并详细描述于美国药学协会(the American Pharmaceutical Association)和英国药学会(The Pharmaceutical Society of Great Britain)联合出版的医药赋形剂手册(the Handbook of Pharmaceutical Excipients)中,关于所述揭示内容,以引用的方式具体并入本文中。
疏水性、水不溶性和水不分散性聚合物或共聚物可选自生物相容性和生物可降解的聚合物,例如乳酸或乙醇酸聚合物和其共聚物、或聚乳酸/聚氧化乙烯(或聚氧化丙烯)共聚物(优选分子量在1000与200,000之间)、聚羟基丁酸聚合物、含有至少12个碳原子的脂肪酸的聚内酯、或聚酸酐。
纳米粒子可通过凝聚或溶剂蒸发技术,向磷脂和油酸盐的水性分散液或溶液中加入包含活性成分和疏水性、水不溶性和水不分散性聚合物或共聚物的不混溶有机相来获得。混合物预先乳化,接着进行均质化,并蒸发有机溶剂,获得极小尺寸的纳米粒子的水性悬浮液。
多种方法任选用以制造在实施例的范围内的耳结构调节纳米粒子。这些方法包括汽化方法,例如自由射流扩大、激光汽化、电火花腐蚀、电爆炸和化学气相沉积;物理方法包含机械磨损(例如“珠磨(pearlmilling)”技术,伊兰诺斯(Elan Nanosystems))、超临界CO2和溶剂置换后界面沉积。在一个实施例中,使用溶剂置换法。通过此方法产生的纳米粒子的尺寸对有机溶剂中聚合物的浓度、混合速率和工艺中所用的表面活性剂敏感。连续流混合器提供必要的紊流以确保粒径小。已经描述一种类型的任选用以制备纳米粒子的连续流混合装置(汉森(Hansen)等人,物理化学杂志(J Phys Chem)92,2189-96,1988)。在其它实施例中,可使用超声波装置、流过型均质器或超临界CO2装置来制备纳米粒子。
如果无法根据直接合成来获得适合的纳米粒子均质性,那么使用尺寸排阻色谱法产生高度均匀的含药物粒子,这些含药物粒子不含参与其制造的其它组分。例如凝胶过滤色谱法等尺寸排阻色谱法(SEC)技术用以将粒子结合的耳结构调节剂或先天性免疫系统调节剂或其它医药化合物与自由耳结构调节剂或先天性免疫系统调节剂或其它医药化合物分离,或选择含耳结构调节剂的纳米粒子的适合尺寸范围。例如休珀代克斯(Superdex)200、休珀罗斯(Superose)6、赛法尔(Sephacryl)1000等各种SEC介质可购得,并用于基于尺寸分级分离这些混合物。另外,任选通过离心、膜过滤和通过利用其它的分子筛分装置、交联凝胶/物质和膜来纯化纳米粒子。
耳可接受的环糊精和其它稳定组合物
在一具体实施例中,耳可接受的组合物或者包含环糊精。环糊精是含有6、7或8个吡喃葡萄糖单元的环状寡糖,分别称为α-环糊精、β-环糊精或γ-环糊精。环糊精具有增强水溶性的亲水性外部,和形成空腔的疏水性内部。在水性环境中,其它分子的疏水性部分通常进入环糊精的疏水性空腔形成包合化合物(inclusion compound)。另外,环糊精能够与不在疏水性空腔内部的分子发生其它类型的非键结相互作用。环糊精的各吡喃葡萄糖单元都具有三个自由羟基,或α-环糊精具有18个羟基,β-环糊精具有21个羟基,且γ-环糊精具有24个羟基。一个或一个以上这些羟基可与若干试剂中的任何试剂反应以形成多种环糊精衍生物,包括羟丙基醚、磺酸盐和磺烷基醚。下文显示β-环糊精和羟丙基-β-环糊精(HPβCD)的结构。
在一些实施例中,在本文所述的医药组合物中使用环糊精提高药物的溶解度。在许多增强溶解性的情况下,涉及包合化合物;然而环糊精与不可溶化合物之间的其它相互作用也提高溶解度。羟丙基-β-环糊精(HPβCD)可以无热原产品形式购得。其是易溶解于水中的非吸湿性白色粉末。HPβCD是热稳定的且在中性pH值下不降解。因此,环糊精提高治疗剂在组合物中的溶解度。因此,在一些实施例中,纳入环糊精以提高耳可接受的耳结构调节剂或先天性免疫系统调节剂在本文所述的组合物中的溶解度。在其它实施例中,环糊精另外在本文所述的组合物内用作控制释放赋形剂。
仅举例来说,可用环糊精衍生物包括α-环糊精、β-环糊精、γ-环糊精、羟乙基β-环糊精、羟丙基γ-环糊精、硫酸化β-环糊精、硫酸化α-环糊精、磺丁基醚β-环糊精。
本文所揭示的组合物和方法中所用的环糊精的浓度随生理化学性质、药物动力学性质、副作用或不良事件、组合物考虑因素、或其它与治疗活性剂或其盐或前药相关的因素、或组合物中其它赋形剂的性质而变化。因此,在某些情况下,根据本文所揭示的组合物和方法使用的环糊精的浓度或量将视需要而变化。使用时,使用本文所述的原理、实例和教示来选择提高耳结构调节剂或先天性免疫系统调节剂的溶解度和/或充当本文所述的任何组合物中的控制释放赋形剂所需的环糊精的量。
适用于本文所揭示的耳可接受的组合物的其它稳定剂包括例如脂肪酸、脂肪醇、醇、长链脂肪酸酯、长链醚、脂肪酸的亲水性衍生物、聚乙烯吡咯烷酮、聚乙烯醚、聚乙烯醇、烃、疏水性聚合物、水分吸收聚合物和其组合。在一些实施例中,还使用稳定剂的酰胺类似物。在其它实施例中,所选稳定剂改变组合物的疏水性(例如油酸、蜡),或改良组合物中各种组分的混合(例如乙醇),控制配方中的水分含量(例如PVP或聚乙烯吡咯烷酮),控制相迁移率(熔点高于室温的物质,例如长链脂肪酸、醇、酯、醚、酰胺等或其混合物;蜡),和/或提高配方与囊封材料的相容性(例如油酸或蜡)。在另一实施例中,使用这些稳定剂中的一些作为溶剂/共溶剂(例如乙醇)。在其它实施例中,稳定剂的存在量足以抑制耳结构调节剂或先天性免疫系统调节剂的降解。所述稳定剂的实例包括(但不限于):(a)约0.5%到约2%w/v甘油,(b)约0.1%到约1%w/v甲硫氨酸,(c)约0.1%到约2%w/v单硫代甘油,(d)约1mM到约10mM EDTA,(e)约0.01%到约2%w/v抗坏血酸,(f)0.003%到约0.02%w/v聚山梨酸酯80,(g)0.001%到约0.05%w/v聚山梨酸酯20,(h)精氨酸,(i)肝素,(j)硫酸葡聚糖,(k)环糊精,(l)多硫酸戊聚糖和其它类肝素,(m)二价阳离子,例如镁和锌;或(n)其组合。
其它适用的耳可接受的耳结构调节剂或先天性免疫系统调节剂组合物包括一种或一种以上抗聚集添加剂以通过降低蛋白质聚集速率来增强耳结构调节组合物的稳定性。所选抗聚集添加剂取决于例如耳结构调节剂或先天性免疫系统调节剂抗体等耳结构调节剂或先天性免疫系统调节剂所暴露的条件的性质。举例来说,经受搅拌和热应力的某些组合物需要的抗聚集添加剂与经受冻干和复原的组合物不同。仅举例来说,适用的抗聚集添加剂包括脲、氯化胍、例如甘氨酸或精氨酸等简单氨基酸、糖、多元醇、聚山梨酸酯、例如聚乙二醇和葡聚糖等聚合物、例如烷基糖苷等烷基糖类、和表面活性剂。
需要时,其它适用的组合物任选包括一种或一种以上耳可接受的抗氧化剂以增强化学稳定性。仅举例来说,适合的抗氧化剂包括抗坏血酸、甲硫氨酸、硫代硫酸钠和偏亚硫酸氢钠。在一个实施例中,抗氧化剂选自金属螯合剂、含硫醇化合物和其它一般稳定剂。
其它适用的组合物包括一种或一种以上耳可接受的表面活性剂以增强物理稳定性或用于其它目的。适合的非离子型表面活性剂包括(但不限于)聚氧化乙烯脂肪酸甘油酯和植物油,例如聚氧化乙烯(60)氢化蓖麻油;和聚氧化乙烯烷基醚和烷基苯基醚,例如辛苯聚醇10、辛苯聚醇40。
在一些实施例中,本文所述的耳可接受的医药组合物就化合物降解来说在任何以下时期内是稳定的:至少约1天、至少约2天、至少约3天、至少约4天、至少约5天、至少约6天、至少约1周、至少约2周、至少约3周、至少约4周、至少约5周、至少约6周、至少约7周、至少约8周、至少约3月、至少约4月、至少约5月或至少约6月。在其它实施例中,本文所述的组合物就化合物降解来说在至少约1周的时期内是稳定的。本文还描述就化合物降解来说在至少约1月的时期内是稳定的组合物。
在其它实施例中,将另一表面活性剂(共表面活性剂)和/或缓冲剂与一种或一种以上本文先前所述的医药学上可接受的媒剂组合以使表面活性剂和/或缓冲剂将产品维持在就稳定性来说最佳的pH值下。适合的共表面活性剂包括(但不限于):a)天然与合成亲脂性试剂,例如磷脂、胆固醇和胆固醇脂肪酸酯和其衍生物;b)非离子型表面活性剂,包括例如聚氧化乙烯脂肪醇酯、脱水山梨糖醇脂肪酸酯(Span)、聚氧化乙烯脱水山梨糖醇脂肪酸酯(例如聚氧化乙烯(20)脱水山梨糖醇单油酸酯(Tween 80)、聚氧化乙烯(20)脱水山梨糖醇单硬脂酸酯(Tween 60)、聚氧化乙烯(20)脱水山梨糖醇单月桂酸酯(Tween 20)和其它Tween、脱水山梨糖醇酯、甘油酯,例如Myrj与三乙酸甘油酯(glycerol triacetate/triacetin)、聚乙二醇、十六烷醇、十六醇硬脂醇、硬脂醇、聚山梨酸酯80、泊洛沙姆、泊洛沙胺、聚氧化乙烯蓖麻油衍生物(例如RH40、CremphorA25、Cremphor A20、EL)和其它Cremophor、磺基丁二酸酯、烷基硫酸酯(SLS);PEG甘油基脂肪酸酯,例如PEG-8甘油基辛酸酯/癸酸酯(Labrasol)、PEG-4甘油基辛酸酯/癸酸酯(Labrafac Hydro WL 1219)、PEG-32甘油基月桂酸酯(Gelucire444/14)、PEG-6甘油基单油酸酯(Labrafil M 1944CS)、PEG-6甘油基亚油酸酯(LabrafilM 2125CS);丙二醇单脂肪酸酯和二脂肪酸酯,例如丙二醇月桂酸酯、丙二醇辛酸酯/癸酸酯;700、抗坏血酸基-6-棕榈酸酯、硬脂胺、月桂基硫酸钠、聚氧化乙烯三蓖麻醇酸甘油酯和其任何组合或混合物;c)阴离子型表面活性剂包括(但不限于)羧甲基纤维素钙、羧甲基纤维素钠、磺基丁二酸钠二辛酯、褐藻酸钠、烷基聚氧化乙烯硫酸盐、月桂基硫酸钠、三乙醇胺硬脂酸酯、月桂酸钾、胆汁盐和其任何组合或混合物;和d)阳离子型表面活性剂,例如溴化十六烷基三甲基铵和氯化十二烷基二甲基苄基-铵。
在另一实施例中,当本发明的耳可接受的组合物中使用一种或一种以上共表面活性剂时,所述共表面活性剂例如与医药学上可接受的媒剂组合且于最终组合物中的存在量例如在约0.1%至约20%、约0.5%至约10%范围内。
在一个实施例中,表面活性剂的HLB值为0至20。在其它实施例中,表面活性剂的HLB值为0至3、4至6、7至9、8至18、13至15、10至18。
在一个实施例中,由于稀释剂提供更稳定的环境,所以还使用稀释剂来稳定耳结构调节剂或先天性免疫系统调节剂或其它医药化合物。使用溶解于缓冲溶液中的盐(还可控制或维持pH值)作为稀释剂,包括(但不限于)磷酸盐缓冲盐水溶液。在其它实施例中,凝胶组合物与内淋巴或外淋巴等张:取决于作为耳结构调节剂或先天性免疫系统调节剂组合物的目标的耳蜗部分。等张组合物通过添加张力剂提供。适合的张力剂包括(但不限于)任何医药学上可接受的糖、盐或任何其组合或混合物,例如但不限于右旋糖和氯化钠。在其它实施例中,张力剂以约100mOsm/kg至约500mOsm/kg的量存在。在一些实施例中,张力剂以约200mOsm/kg至约400mOsm/kg、约280mOsm/kg至约320mOsm/kg的量存在。张力剂的量将取决于如本文所述的医药组合物的目标结构。
适用的张力组合物还包括使组合物的重量渗透摩尔浓度在外淋巴或内淋巴可接受的范围内所需的量的一种或一种以上盐。所述盐包括具有钠、钾或铵阳离子和氯离子、柠檬酸根、抗坏血酸根、硼酸根、磷酸根、碳酸氢根、硫酸根、硫代硫酸根或亚硫酸氢根阴离子的盐;适合的盐包括氯化钠、氯化钾、硫代硫酸钠、亚硫酸氢钠和硫酸铵。
在一些实施例中,本文所揭示的耳可接受的凝胶组合物或者或另外含有防腐剂以防止微生物生长。用于本文所述的粘度增强的组合物的适合耳可接受的防腐剂包括(但不限于)苯甲酸、硼酸、对羟基苯甲酸酯、醇、季铵化合物、稳定的二氧化氯、汞剂(例如硝酸苯汞和硫柳汞)、上述物质的混合物等。
在另一实施例中,仅举例来说,在本文呈示的耳可接受的组合物内,防腐剂是抗微生物剂。在一个实施例中,组合物包括防腐剂,仅举例来说,对羟基苯甲酸甲酯、亚硫酸氢钠、硫代硫酸钠、抗坏血酸、氯丁醇、硫柳汞、对羟基苯甲酸酯、苯甲醇、苯基乙醇等。在另一实施例中,对羟基苯甲酸甲酯的浓度为约0.05%至约1.0%,约0.1%至约0.2%。在另一实施例中,凝胶通过混合水、对羟基苯甲酸甲酯、羟乙基纤维素和柠檬酸钠来制备。在另一实施例中,凝胶通过混合水、对羟基苯甲酸甲酯、羟乙基纤维素和乙酸钠来制备。在另一实施例中,混合物通过在120℃高压灭菌处理约20分钟来灭菌,且在与适量本文所揭示的耳结构调节剂或先天性免疫系统调节剂混合之前,测试pH值、对羟基苯甲酸甲酯浓度和粘度。
药物传递媒剂中所用的适合的耳可接受的水溶性防腐剂包括亚硫酸氢钠、硫代硫酸钠、抗坏血酸、氯丁醇、硫柳汞、对羟基苯甲酸酯、苯甲醇、丁基化羟基甲苯(BHT)、苯基乙醇等。这些试剂的存在量一般为约0.001重量%至约5重量%,且存在量优选为约0.01重量%至约2重量%。在一些实施例中,本文所述的耳相容性组合物不含防腐剂。
圆窗膜穿透增强剂
在另一实施例中,组合物另外包含一种或一种以上圆窗膜穿透增强剂。穿过圆窗膜的穿透通过存在圆窗膜穿透增强剂来增强。圆窗膜穿透增强剂是有利于将共投予的物质传输穿过圆窗膜的化学实体。圆窗膜穿透增强剂根据化学结构分组。例如月桂基硫酸钠、月桂酸钠、聚氧化乙烯-20-十六烷基醚、月桂醇-9、十二烷基磺酸钠、磺基丁二酸钠二辛酯、聚氧化乙烯-9-月桂基醚(PLE)、壬基苯氧基聚乙烯(NP-POE)、聚山梨酸酯等离子型与非离子型表面活性剂可用作圆窗膜穿透增强剂。胆汁盐(例如甘胆酸钠、脱氧胆酸钠、牛磺胆酸钠、牛磺双氢褐霉素钠、甘油双氢褐霉素钠等)、脂肪酸和衍生物(例如油酸、羊脂酸、单甘油酯和二甘油酯、月桂酸、酰基胆碱、羊脂酸、酰基肉碱、癸酸钠等)、螯合剂(例如EDTA、柠檬酸、水杨酸盐等)、亚砜(例如二甲亚砜(DMSO)、十二烷基甲基亚砜等)和醇(例如乙醇、异丙醇、甘油、丙二醇等)也可用作圆窗膜穿透增强剂。
在一些实施例中,耳可接受的穿透增强剂为包含烷基糖苷的表面活性剂,其中烷基糖苷为十四烷基-β-D-麦芽糖苷。在一些实施例中,耳可接受的穿透增强剂为包含烷基-糖苷的表面活性剂,其中烷基糖苷为十二烷基-麦芽糖苷。在一些情况下,穿透增强剂为透明质酸酶。在一些情况下,透明质酸酶为人类或牛的透明质酸酶。在一些情况下,透明质酸酶为人类透明质酸酶(例如在人类精子中发现的透明质酸酶PH20(海兹美)、(巴克斯特国际公司))。在一些情况下,透明质酸酶为牛的透明质酸酶(例如牛睾丸透明质酸酶(美药星制药)、(普瑞制药公司))。在一些情况下,透明质酸酶为羊的透明质酸酶(ISTA制药)。在一些情况下,本文所述的透明质酸酶为重组透明质酸酶。在一些情况下,本文所述的透明质酸酶为人化重组透明质酸酶。在一些情况下,本文所述的透明质酸酶为聚乙二醇化透明质酸酶(例如PEGPH20(海兹美))。另外,涵盖美国专利第7,151,191号、第6,221,367号和第5,714,167号中所述的肽样穿透增强剂作为额外的实施例,所述专利中的所述揭示内容以引用的方式并入本文中。这些穿透增强剂为氨基酸和肽衍生物,并通过被动跨细胞扩散使药物能够得到吸收,而不会影响膜的完整性或细胞间的紧密接合。
圆窗膜可穿透脂质体
还可采用脂质体或脂质粒子来囊封耳结构调节组合物或组合物。缓和分散于水性介质中的磷脂形成多层微脂粒,其中截留水性介质的区域将各脂质层隔开。对这些多层微脂粒进行超声波处理或湍流搅拌形成单层微脂粒,常称为脂质体,尺寸为约10-1000nm。这些脂质体具有许多作为耳结构调节剂或先天性免疫系统调节剂或其它药剂载剂的优点。其是生物惰性的,生物可降解,无毒且无抗原性。所形成的脂质体具有各种尺寸且具有不同组成和表面特性。另外,其能够截留多种试剂并在脂质体瓦解的部位释放所述试剂。
此处用于耳可接受的脂质体的适合磷脂为例如磷脂酰胆碱、磷脂酰乙醇胺和磷脂酰丝氨酸、鞘磷脂、心磷脂、缩醛磷脂、磷脂酸和脑苷脂,尤其为可与本文的耳结构调节剂或先天性免疫系统调节剂一起溶于无毒的医药学上可接受的有机溶剂中的磷脂。优选磷脂为例如磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰肌醇、溶血磷脂酰胆碱、磷脂酰甘油等和其混合物,尤其为卵磷脂,例如大豆卵磷脂。本发明组合物中所用的磷脂的量在约10%至约30%、优选约15%至约25%范围内,且尤其为约20%。
宜采用亲脂性添加剂选择性地修饰脂质体的特征。仅举例来说,这些添加剂的实例包括硬脂胺、磷脂酸、生育酚、胆固醇、胆固醇琥珀酸单酯和羊毛脂提取物。所用的亲脂性添加剂的量在0.5%至8%、优选1.5%至4%的范围内,且尤其为约2%。一般来说,亲脂性添加剂的量与磷脂的量的比率在约1:8至约1:12范围内,且尤其为约1:10。所述磷脂、亲脂性添加剂同耳结构调节剂或先天性免疫系统调节剂和其它医药化合物与溶解所述成分的医药学上可接受的无毒有机溶剂系统结合使用。所述溶剂系统不仅必须完全溶解耳结构调节剂或先天性免疫系统调节剂,而且其也必须允许组合物具有稳定的单个双层脂质体。溶剂系统包含约8%至约30%的量的异山梨醇二甲醚(dimethylisosorbide)和四甘醇(四氢呋喃聚乙二醇醚(glycofurol),即四氢呋喃聚乙二醇醚(tetrahydrofurfurylalcohol polyethylene glycol ether))。在所述溶剂系统中,异山梨醇二甲醚的量与四甘醇的量的比率在约2:1至约1:3、尤其约1:1至约1:2.5的范围内,且优选为约1:2。因此,最终组合物中四甘醇的量从5%到20%、尤其5%到15%不等,且优选为约10%。因此,最终组合物中异山梨醇二甲醚的量在3%至10%、尤其3%至7%范围内,且优选为约5%。
如下文所用,术语“有机组分”是指包含所述磷脂、亲脂性添加剂和有机溶剂的混合物。耳结构调节剂或先天性免疫系统调节剂可溶解于有机组分中,或以其它方式维持药剂的完全活性。最终组合物中耳结构调节剂或先天性免疫系统调节剂的量可在0.1%至5.0%范围内。另外,可向有机组分中添加例如抗氧化剂等其它成分。实例包括生育酚、丁基化羟基茴香醚、丁基化羟基甲苯、抗坏血酸棕榈酸酯、抗坏血酸油酸酯等。
或者通过以下步骤来制备适度耐热的耳结构调节剂或先天性免疫系统调节剂或其它药剂的脂质体组合物:(a)在容器中,将磷脂和有机溶剂系统加热至约60-80℃,使活性成分溶解,接着加入任何额外的调配试剂,并搅拌混合物,直到完全溶解;(b)在第二容器中,将水溶液加热至90-95℃,并将防腐剂溶解于其中,使混合物冷却,接着加入其余辅助调配试剂和其余水,且搅拌混合物,直到完全溶解;因此制备水性组分;(c)将有机相直接转移至水性组分中,同时使用例如高剪切混合器等高性能混合设备使组合均质;和(d)粘度增强试剂加入所得混合物中,同时进一步均质化。水性组分任选放在装备有均质器的适合容器中,且通过在注入有机组分期间产生紊流来实现均质。可采用对混合物施加高剪切力的任何混合工具或均质器。一般来说,可采用速度能够为约1,500至20,000rpm、尤其是约3,000至约6,000rpm的混合器。适用于工艺步骤(d)中的粘度增强剂为例如黄原胶、羟丙基纤维素、羟丙基甲基纤维素或其混合物。粘度增强剂的量取决于其它成分的性质和浓度,且一般在约0.5%至2.0%的范围内或为约1.5%。为防止所用物质在脂质体组合物制备期间降解,宜用例如氮气或氩气等惰性气体吹洗所有溶液并在惰性气氛下进行所有步骤。通过上述方法制备的脂质体通常含有大部分活性成分结合于脂质双层中,且无需将脂质体与未囊封的物质分离。
在其它实施例中,耳可接受的组合物(包括凝胶组合物和粘度增强的组合物)另外包括赋形剂、其它药用剂或药剂、载剂、佐剂,例如防腐剂、稳定剂、湿润剂或乳化剂、溶解促进剂、盐、增溶剂、消泡剂、抗氧化剂、分散剂、湿润剂、表面活性剂和其组合。
用于本文所述的耳可接受的组合物的适合载剂包括(但不限于)与目标耳部结构的生理环境相容的任何医药学上可接受的溶剂。在其它实施例中,基质是医药学上可接受的表面活性剂与溶剂的组合。
在一些实施例中,其它赋形剂包括硬脂酰反丁烯二酸钠、二乙醇胺十六烷基硫酸酯、异硬脂酸酯、聚氧化乙烯化蓖麻油、壬苯醇醚10(nonoxyl 10)、辛苯聚醇9、月桂基硫酸钠、脱水山梨糖醇酯(脱水山梨糖醇单月桂酸酯、脱水山梨糖醇单油酸酯、脱水山梨糖醇单棕榈酸酯、脱水山梨糖醇单硬脂酸酯、脱水山梨糖醇倍半油酸酯、脱水山梨糖醇三油酸酯、脱水山梨糖醇三硬脂酸酯、脱水山梨糖醇月桂酸酯、脱水山梨糖醇油酸酯、脱水山梨糖醇棕榈酸酯、脱水山梨糖醇硬脂酸酯、脱水山梨糖醇二油酸酯、脱水山梨糖醇倍半异硬脂酸酯、脱水山梨糖醇倍半硬脂酸酯、脱水山梨糖醇三异硬脂酸酯)、卵磷脂、其医药学上可接受的盐和其组合或混合物。
在其它实施例中,载剂是聚山梨酸酯。聚山梨酸酯是脱水山梨糖醇酯的非离子型表面活性剂。适用于本发明的聚山梨酸酯包括(但不限于)聚山梨酸酯20、聚山梨酸酯40、聚山梨酸酯60、聚山梨酸酯80(Tween 80)和其任何组合或混合物。在其它实施例中,利用聚山梨酸酯80作为医药学上可接受的载剂。
在一个实施例中,用于制备医药传递媒剂的基于甘油的水溶性耳可接受的粘度增强组合物包含含有至少约0.1%水溶性甘油化合物或更多的耳结构调节剂或先天性免疫系统调节剂。在一些实施例中,耳结构调节剂或先天性免疫系统调节剂的百分比在总医药组合物的重量或体积的约1%与约95%之间、约5%与约80%之间、约10%与约60%之间或更大百分比间变化。在一些实施例中,各治疗上适用的耳结构调节剂或先天性免疫系统调节剂组合物中化合物的量经制备以使化合物的任何既定单位剂量内将获得适合的剂量。本文涵盖例如溶解度、生物利用率、生物半衰期、投药途径、产品贮存期以及其它药理学考虑因素等因素。
必要时,除缓冲剂以外,耳可接受的医药凝胶还含有共溶剂、防腐剂、共溶剂、离子强度和重量渗透摩尔浓度调节剂和其它赋形剂。适合的耳可接受的水溶性缓冲剂是碱金属或碱土金属碳酸盐、磷酸盐、碳酸氢盐、柠檬酸盐、硼酸盐、乙酸盐、丁二酸盐等,例如磷酸钠、柠檬酸钠、硼酸钠、乙酸钠、碳酸氢钠、碳酸钠和缓血酸胺(TRIS)。这些试剂的存在量足以将系统的pH值维持在7.4±0.2且优选为7.4。因而,缓冲剂以总组合物的重量计多达5%。
使用共溶剂来增强耳结构调节剂或先天性免疫系统调节剂的溶解性,然而,一些耳结构调节剂或先天性免疫系统调节剂或其它医药化合物不可溶。通常借助于适合的悬浮或粘度增强剂将其悬浮于聚合物媒剂中。
此外,一些医药赋形剂、稀释剂或载剂可能具有耳毒性。举例来说,氯化苯甲烃铵,一种常见防腐剂,其具有耳毒性,因此如果引入前庭或耳蜗结构中,那么可能产生危害。在调配控制释放型耳结构调节剂或先天性免疫系统调节剂组合物时,建议避免或组合适当的赋形剂、稀释剂或载剂以从组合物中减少或消除可能的耳毒性组分或减小所述赋形剂、稀释剂或载剂的量。控制释放型耳结构调节剂或先天性免疫系统调节剂组合物任选包括耳保护剂,例如抗氧化剂、α硫辛酸、钙、磷霉素、或铁螯合剂,以抵消因使用特定治疗剂或赋形剂、稀释剂或载剂而造成的可能耳毒性作用。
以下是治疗上可接受的耳用组合物的实例:
或者,除至少一种活性剂和/或赋形剂外,本文所揭示的组合物还涵盖耳保护剂,包括(但不限于)例如抗氧化剂、α硫辛酸、钙、磷霉素或铁螯合剂等试剂,以抵抗可能由于使用具体治疗剂或赋形剂、稀释剂或载剂而引起的潜在耳毒性作用。
治疗模式
给药方法和时程
传递到内耳的药物已经由经口、静脉内或肌肉内途径全身性投予。然而,针对内耳局部性病变的全身性投药会增加全身性毒性和不良副作用的可能性,且引起药物的分布不富有成效,在这一分布中,血清中可见高含量的药物,而相应地内耳中可见较低含量。
鼓室内注射治疗剂是将治疗剂注射到鼓膜后方的中耳和/或内耳中的技术。在一个实施例中,本文所述的组合物通过经鼓室注射直接投予到圆窗膜上。在另一实施例中,本文所述的耳可接受的耳结构调节剂或先天性免疫系统调节剂组合物通过通向内耳的非经鼓室途径投予到圆窗膜上。在其它实施例中,本文所述的组合物通过通向圆窗膜的外科手术途径投予到圆窗膜上,包含修改蜗窗嵴。
在一个实施例中,传递系统是能够刺穿鼓膜并直接到达圆窗膜或内耳的蜗窗嵴的注射器和针装置。在一些实施例中,注射器上的针比18号针宽。在另一实施例中,针号为18号到31号。在另一实施例中,针号为25号到30号。取决于耳结构调节组合物或组合物的稠度或粘度,注射器或皮下注射针的针号可相应变化。在另一实施例中,可通过减小针的壁厚(通常称为薄壁或特别薄壁针)来增加针的内径,以在维持足够的针号的同时减小针阻塞的可能性。
在另一实施例中,针是用于即时传递凝胶组合物的皮下注射针。皮下注射针可为单次使用针或一次性针。在一些实施例中,注射器可用于传递如本文所揭示的医药学上可接受的基于凝胶的含耳结构调节剂或先天性免疫系统调节剂的组合物,其中注射器具有压配合型(press-fit)(Luer)或旋紧型(twist-on)(Luer-lock)接头。在一个实施例中,注射器是皮下注射器。在另一实施例中,注射器由塑料或玻璃制成。在又一实施例中,皮下注射器是单次使用性注射器。在另一实施例中,玻璃注射器能够进行灭菌。在又一实施例中,灭菌利用高压灭菌器进行。在另一实施例中,注射器包含圆柱形注射器主体,其中凝胶组合物在使用前储存于其中。在其它实施例中,注射器包含圆柱形注射器主体,其中如本文所揭示的基于凝胶的医药学上可接受的耳结构调节剂或先天性免疫系统调节剂组合物在使用前储存于其中,其允许便利地与适合的医药学上可接受的缓冲液混合。在其它实施例中,注射器可含有其它赋形剂、稳定剂、悬浮剂、稀释剂或其组合以稳定或以其它方式稳定地储存其中所含的耳结构调节剂或先天性免疫系统调节剂或其它医药化合物。
在一些实施例中,注射器包含圆柱形注射器主体,其中主体被隔室化,各隔室能够储存耳可接受的耳结构调节剂或先天性免疫系统调节剂凝胶组合物的至少一种组分。在另一实施例中,具有隔室化主体的注射器允许在注射到中耳或内耳中之前混合各组分。在其它实施例中,传递系统包含多个注射器,多个注射器的各注射器含有凝胶组合物的至少一种组分以便各组分在注射之前预先混合或在注射之后混合。在另一实施例中,本文所揭示的注射器包含至少一个储积器,其中至少一个储积器包含耳结构调节剂或先天性免疫系统调节剂或医药学上可接受的缓冲剂或粘度增强剂(例如胶凝剂)或其组合。任选采用呈最简单形式的市售注射装置进行鼓室内注射,如具有注射筒、含针的针组合件、含柱塞杆的柱塞和固定凸缘的即用型塑料注射器。
在一些实施例中,传递装置是设计用于将治疗剂投予中耳和/或内耳的装置。仅举例来说,佳乐医药有限公司(GYRUS Medical Gmbh)提供观测圆窗龛(round window niche)和传递药物至圆窗龛的微耳镜(micro-otoscope);阿伦伯格(Arenberg)已在美国专利第5,421,818号、第5,474,529号和第5,476,446号中描述传递流体至内耳结构的医学治疗装置,关于所述揭示内容,各专利以引用的方式并入本文中。美国专利申请案第08/874,208号(关于所述揭示内容,以引用的方式并入本文中)描述植入流体转移导管以传递治疗剂至内耳的外科方法。美国专利申请公开案2007/0167918(关于所述公开内容,以引用的方式并入本文中)另外描述用于鼓室内流体取样和药剂施用的组合型耳用抽吸器和药物分配器。
本文所述的组合物和其投药模式也适用于对内耳隔室进行直接滴注或灌注的方法。因此,本文所述的组合物适用于外科手术程序,作为非限制性实例,包括内耳开窗术、迷路切开术、乳突切除术、镫骨切除术、内淋巴球囊切开术等。
含有本文所述的耳结构调节剂或先天性免疫系统调节剂化合物的耳可接受的组合物或组合物可投予用于防治性和/或治疗性处理。在治疗性应用中,向已患有本文所揭示的病症的患者投予足以治愈或至少部分地抑制疾病、病症或病状的症状的量的耳结构调节组合物。对此用途有效的量将取决于疾病、病症或病状的严重程度和病程、先前疗法、患者的健康状态和对药物的反应以及治疗医师的判断。
在患者的病状未改善的情况下,基于医生的判断,可长期投予耳结构调节剂或先天性免疫系统调节剂化合物,即长时间投予,包括患者的整个生命持续时间,以改善或以其它方式控制或限制患者的疾病或病状的症状。
在患者状态改善的情况下,基于医生的判断,可连续投予耳结构调节剂或先天性免疫系统调节剂化合物;或者,所投予的药物剂量可暂时减少或暂时暂停某一段时间(即“药物假期”)。药物假期的长度从2天到1年不等,仅举例来说,包括2天、3天、4天、5天、6天、7天、10天、12天、15天、20天、28天、35天、50天、70天、100天、120天、150天、180天、200天、250天、280天、300天、320天、350天和365天。药物假期期间,剂量减少可为10%-100%,仅举例来说,包括10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%和100%。
一旦患者的耳部病状得到改善,必要时即投予维持性耳结构调节剂或先天性免疫系统调节剂剂量。接着,根据症状,任选减少投药的剂量或频率或两者至保持疾病、病症或病状改善的水平。在某些实施例中,在症状出现任何复发之后,患者需要长期的间歇疗法。
耳结构调节剂或先天性免疫系统调节剂对应于这一量的量将视以下因素而变化:例如特定化合物、疾病病状和其严重程度、病例相关的特定境况,包括例如所投予的具体耳结构调节剂或先天性免疫系统调节剂、投药途径、所治疗的病状、所治疗的目标区域和所治疗的个体或宿主。然而,一般来说,用于成年人类治疗的剂量通常会在每次投药0.02-50mg范围内,优选为每次投药1-15mg。所要的剂量以单次剂量或同时(或在短时期内)或以适当间隔投予的分次剂量提供。
在一些实施例中,最初投药是特定耳结构调节剂或先天性免疫系统调节剂,而后续投药是不同的组合物或耳结构调节剂或先天性免疫系统调节剂。
外源性物质的植入物
在一些实施例中,本文所述的医药调配物、组合物和装置与植入外源性物质(例如医学装置或多个细胞(例如干细胞))组合使用(例如植入、短期使用、长期使用或除去)。如本文所用,术语“外源性物质”包括内耳或中耳医学装置(例如听力防护装置、听力改善装置、短电极、微假体或活塞样假体);针;药物传递装置;和细胞(例如干细胞)。在一些情况下,外源性物质的植入物用于遭受听力损失的患者。在一些情况下,听力损失在出生时即存在。在一些情况下,听力损失与出生后发展或进展,引起骨生成、神经损伤、耳蜗结构消失或其组合的病状相关联(例如梅尼埃尔氏病)。
在一些情况下,外源性物质是多个细胞。在一些情况下,外源性物质是多个干细胞。
在一些情况下,外源性物质是电子装置。在一些实施例中,电子装置具有放在耳朵后面的外部部分,和通过外科手术放在皮肤下的第二部分,所述第二部分帮助提供声音感觉给深度耳聋或严重耳背的人。仅举例来说,这些医学装置植入物绕过耳朵的受损部分,且直接刺激听神经。在一些情况下,耳蜗植入物用于单侧耳聋。在一些情况下,耳蜗植入物用于两耳耳聋。
在一些实施例中,投予本文所述的活性剂与植入外源性物质(例如医学装置植入物或干细胞移植物)组合,可延迟或防止由耳朵中安装外部装置和/或多个细胞(例如干细胞)所引起的耳结构损伤,例如刺激、细胞死亡、骨生成和/或另外神经元退化。在一些实施例中,投予本文所述的组合物或装置与植入物组合,相较于单独植入物,可更有效地恢复听力损失。
在一些实施例中,投予本文所述的活性剂可减少由允许成功植入的潜在病状所引起的耳结构损害。在一些实施例中,投予本文所述的活性剂与外科手术和/或植入外源性物质结合,可减少或防止消极副作用(例如细胞死亡)。
在一些实施例中,投予本文所述的活性剂与植入外源性物质结合,具有营养作用(即促进细胞健康生长和植入物或移植物区域中的组织愈合)。在一些实施例中,在耳部外科手术期间或在鼓室内注射程序期间需要营养作用。在一些实施例中,在安装医学装置后或在细胞(例如干细胞)移植后需要营养作用。在一些所述实施例中,本文所述的组合物或装置通过内耳开窗术引导耳蜗注射,或通过沉积在圆窗上来投予。
在一些实施例中,投予本文所述的活性剂可减少与耳部外科手术或植入外源性物质(例如医学装置或多个细胞(例如干细胞))相关联的发炎和/或感染。在一些情况下,用本文所述的调配物灌注外科手术区可减少或消除外科手术后和/或植入后并发症(例如发炎、毛细胞损伤、神经元退化、骨生成等)。在一些情况下,用本文所述的调配物灌注外科手术区可减少外科手术后或植入后恢复时间。
一方面,本文所述的调配物和其投药方式可应用于引导内耳隔室灌注的方法。因此,本文所述的调配物可与外科手术程序组合使用,所述外科手术程序包括(以非限制性实例说明)内耳开窗术、迷路切开术、乳突切除术、镫骨切除术、镫骨足板造孔术、内淋巴球囊切开术等。在一些实施例中,在耳部外科手术前、在耳部外科手术期间、在耳部外科手术后或其组合,用本文所述的调配物灌注内耳隔室。在一些所述实施例中,本文所述的调配物实质上不含延长释放的组分(例如胶凝组分,例如聚氧化乙烯-聚氧化丙烯共聚物)。在一些所述实施例中,本文所述的调配物含有以调配物的重量计少于5%的延长释放组分(例如胶凝组分,例如聚氧化乙烯-聚氧化丙烯三嵌段共聚物)。在一些所述实施例中,本文所述的调配物含有以调配物的重量计少于2%的延长释放组分(例如胶凝组分,例如聚氧化乙烯-聚氧化丙烯三嵌段共聚物)。在一些所述实施例中,本文所述的调配物含有以调配物的重量计少于1%的延长释放组分(例如胶凝组分,例如聚氧化乙烯-聚氧化丙烯三嵌段共聚物)。在一些所述实施例中,用于灌注外科手术区的本文所述组合物实质上不含胶凝组分。
粘度
在其它实施例中,耳用凝胶调配物含有粘度增强剂,其足以提供约500与1,000,000厘泊之间、约750与1,000,000厘泊之间、约1000与1,000,000厘泊之间、约1000与400,000厘泊之间、约2000与100,000厘泊之间、约3000与50,000厘泊之间、约4000与25,000厘泊之间、约5000与20,000厘泊之间或约6000与15,000厘泊之间的粘度。在一些实施例中,耳用凝胶调配物含有足以提供约50,0000与1,000,000厘泊之间的粘度的粘度增强剂。
在一些实施例中,本文所述的组合物或装置是在体温下粘度低的组合物或装置。在一些实施例中,低粘度组合物或装置含有约1%至约10%粘度增强剂(例如胶凝组分,例如聚氧化乙烯-聚氧化丙烯共聚物)。在一些实施例中,低粘度组合物或装置含有约2%至约10%粘度增强剂(例如胶凝组分,例如聚氧化乙烯-聚氧化丙烯共聚物)。在一些实施例中,低粘度组合物或装置含有约5%至约10%粘度增强剂(例如胶凝组分,例如聚氧化乙烯-聚氧化丙烯共聚物)。在一些实施例中,低粘度组合物或装置实质上不含粘度增强剂(例如胶凝组分,例如聚氧化乙烯-聚氧化丙烯共聚物)。在一些实施例中,本文所述的低粘度耳结构调节或补体调节组合物或装置提供约100cP至约10,000cP的表观粘度。在一些实施例中,本文所述的低粘度耳结构调节或补体调节组合物或装置提供约500cP至约10,000cP的表观粘度。在一些实施例中,本文所述的低粘度耳结构调节或补体调节组合物或装置提供约1000cP至约10,000cP的表观粘度。在一些所述实施例中,低粘度耳结构调节或补体调节组合物或装置与例如外科手术程序等外部耳介入组合投予,所述外科手术程序包括(但不限于)中耳外科手术、内耳外科手术、鼓膜切开术、内耳开窗术、迷路切开术、乳突切除术、镫骨切除术、镫骨足板造孔术、内淋巴球囊切开术等。在一些所述实施例中,低粘度耳结构调节或补体调节组合物或装置在耳介入期间投予。在其它所述实施例中,低粘度耳结构调节或补体调节组合物或装置在耳介入前投予。
在一些实施例中,本文所述的组合物或装置是在体温下粘度高的组合物或装置。在一些实施例中,高粘度组合物或装置含有约10%至约25%粘度增强剂(例如胶凝组分,例如聚氧化乙烯-聚氧化丙烯共聚物)。在一些实施例中,高粘度组合物或装置含有约14%至约22%粘度增强剂(例如胶凝组分,例如聚氧化乙烯-聚氧化丙烯共聚物)。在一些实施例中,高粘度组合物或装置含有约15%至约21%粘度增强剂(例如胶凝组分,例如聚氧化乙烯-聚氧化丙烯共聚物)。在一些实施例中,本文所述的高粘度耳结构调节或补体调节组合物或装置提供约100,000cP至约1,000,000cP的表观粘度。在一些实施例中,本文所述的高粘度耳结构调节或补体调节组合物或装置提供约150,000cP至约500,000cP的表观粘度。在一些实施例中,本文所述的高粘度耳结构调节或补体调节组合物或装置提供约250,000cP至约500,000cP的表观粘度。在一些所述实施例中,高粘度组合物或装置在室温下为液体,且在约室温与体温之间为凝胶(包括重度发烧的个体,例如高达约42℃)。在一些实施例中,高粘度耳结构调节或补体调节组合物或装置作为单一疗法投予,以治疗本文所述的耳部疾病或病状。在一些实施例中,高粘度耳结构调节或补体调节组合物或装置与例如外科手术程序等外部耳介入组合投予,所述外科手术程序包括(但不限于)中耳外科手术、内耳外科手术、鼓膜切开术、内耳开窗术、迷路切开术、乳突切除术、镫骨切除术、镫骨足板造孔术、内淋巴球囊切开术等。在一些所述实施例中,高粘度耳结构调节或补体调节组合物或装置在耳介入后投予。在其它所述实施例中,高粘度耳结构调节或补体调节组合物或装置在耳介入前投予。
控制释放组合物的药物动力学
在一个实施例中,本文所揭示的组合物另外提供耳结构调节剂或先天性免疫系统调节剂从组合物中立即释放,或在1分钟内、或在5分钟内、或在10分钟内、或在15分钟内、或在30分钟内、或在60分钟内、或在90分钟内释放。在其它实施例中,治疗有效量的耳结构调节剂或先天性免疫系统调节剂从组合物中立即释放,或在1分钟内、或在5分钟内、或在10分钟内、或在15分钟内、或在30分钟内、或在60分钟内、或在90分钟内释放。在某些实施例中,组合物包含提供耳结构调节剂或先天性免疫系统调节剂立即释放的耳医药学上可接受的凝胶组合物。组合物的其它实施例还可包括增强本文所包括的组合物的粘度的试剂。
在其它或另外的实施例中,组合物提供耳结构调节剂或先天性免疫系统调节剂的延长释放型组合物。在某些实施例中,耳结构调节剂或先天性免疫系统调节剂从组合物中扩散的持续时间超过5分钟、或15分钟、或30分钟、或1小时、或4小时、或6小时、或12小时、或18小时、或1天、或2天、或3天、或4天、或5天、或6天、或7天、或10天、或12天、或14天、或18天、或21天、或25天、或30天、或45天、或2月、或3月、或4月、或5月、或6月、或9月、或1年。在其它实施例中,治疗有效量的耳结构调节剂或先天性免疫系统调节剂从组合物中释放的持续时间超过5分钟、或15分钟、或30分钟、或1小时、或4小时、或6小时、或12小时、或18小时、或1天、或2天、或3天、或4天、或5天、或6天、或7天、或10天、或12天、或14天、或18天、或21天、或25天、或30天、或45天、或2月、或3月、或4月、或5月、或6月、或9月、或1年。
在其它实施例中,组合物提供耳结构调节剂或先天性免疫系统调节剂的立即释放与延长释放型组合物。在其它实施例中,组合物含有0.25:1比率、或0.5:1比率、或1:1比率、或1:2比率、或1:3、或1:4比率、或1:5比率、或1:7比率、或1:10比率、或1:15比率、或1:20比率的立即释放与延长释放型组合物。在另一实施例中,组合物提供第一耳结构调节剂或先天性免疫系统调节剂的立即释放和第二耳结构调节剂或先天性免疫系统调节剂或其它治疗剂的延长释放。在其它实施例中,组合物提供耳结构调节剂或先天性免疫系统调节剂和至少一种治疗剂的立即释放和延长释放组合物。在一些实施例中,组合物分别提供0.25:1比率、或0.5:1比率、或1:1比率、或1:2比率、或1:3、或1:4比率、或1:5比率、或1:7比率、或1:10比率、或1:15比率、或1:20比率的第一耳结构调节剂或先天性免疫系统调节剂和第二治疗剂的立即释放与延长释放型组合物。
在一具体实施例中,组合物在疾病部位提供治疗有效量的耳结构调节剂或先天性免疫系统调节剂,基本上没有全身性暴露。在另一实施例中,组合物在疾病部位提供治疗有效量的耳结构调节剂或先天性免疫系统调节剂,基本上没有可检测的全身性暴露。在其它实施例中,组合物在疾病部位提供治疗有效量的耳结构调节剂或先天性免疫系统调节剂,具有极少或没有可检测的全身性暴露。
立即释放、延迟释放和/或延长释放耳结构调节组合物或组合物的组合可与其它药剂以及本文所揭示的赋形剂、稀释剂、稳定剂、张力剂和其它组分组合。因而,取决于所用的耳结构调节剂或先天性免疫系统调节剂、所要的稠度或粘度、或所选的传递模式,本文所揭示的实施例的替代方面相应地与立即释放、延迟释放和/或延长释放实施例组合。
在某些实施例中,通过将组合物注射于测试动物(包括例如豚鼠或栗鼠)的圆窗膜上或附近来测定本文所述的耳结构调节组合物的药物动力学。在确定的时期(例如在1周时期内,6小时、12小时、1天、2天、3天、4天、5天、6天和7天用于测试组合物的药物动力学),对测试动物实施安乐死且测试5mL外淋巴流体样品。取出内耳并测试耳结构调节剂或先天性免疫系统调节剂的存在。需要时,测量其它器官中耳结构调节剂或先天性免疫系统调节剂的含量。另外,通过从测试动物中抽取血液样品来测量耳结构调节剂或先天性免疫系统调节剂的全身性含量。为确定组合物是否阻碍听力,任选对测试动物的听力进行测试。
或者,提供内耳(从测试动物中取出)并且测量耳结构调节剂或先天性免疫系统调节剂的迁移。作为又一替代,提供圆窗膜的活体外模型,并且测量耳结构调节剂或先天性免疫系统调节剂的迁移。
如本文所述,包含微粉化耳用药剂的组合物相较于包含未微粉化耳用药剂的组合物,提供更长时间的延长释放。在一些情况下,微粉化耳用药剂通过缓慢降解提供平稳的活性剂供应(例如+/-20%),并用作活性剂的储积器;此种储积作用可增加耳用药剂在耳朵中的滞留时间。在具体实施例中,活性剂(例如微粉化活性剂)的适当粒径与组合物中胶凝剂的量组合的选择可提供可调的延长释放特征,使活性剂经数小时、数天、数周或数月的时间释放。
在一些实施例中,本文所述的任何调配物的粘度经设计以提供从耳用相容性凝胶中释放的适合速率。在一些实施例中,增稠剂(例如胶凝组分,例如聚氧化乙烯-聚氧化丙烯共聚物)浓度允许可调的平均溶解时间(MDT)。MDT与活性剂从本文所述的组合物或装置中释放的速率成反比。在实验上,将释放的耳用药剂任选拟合成考斯梅尔-佩帕斯等式(Korsmeyer-Peppas equation)
Q Q &alpha; = kt n + b
其中Q是时间t时释放的耳用药剂的量,Qα是耳用药剂的总释放量,k是n次的释放常数,n是与溶解机理相关的无量纲数,且b是轴截距,表征最初爆发的释放机理,其中n=1表征侵蚀控制机理。平均溶解时间(MDT)是不同时段在释放之前留在基质中的药物分子的和除以分子总数,且任选如下计算:
MDT = nt - 1 / n n + 1
举例来说,组合物或装置的平均溶解时间(MDT)与胶凝剂(例如泊洛沙姆)浓度之间的线性关系指示耳用药剂因聚合物凝胶(泊洛沙姆)腐蚀而释放,而非通过扩散释放。在另一个实例中,非线性关系指示耳用药剂通过扩散和/或聚合物凝胶降解的组合释放。在另一个实例中,组合物或装置的凝胶消除时程更快(活性剂更快释放),指示平均溶解时间(MDT)下降。测试组合物中胶凝组分和/或活性剂的浓度以确定MDT的适合参数。在一些实施例中,也测试注射体积以确定临床前和临床研究的适合参数。凝胶强度和活性剂浓度影响耳用药剂从组合物中释放的动力学。在低泊洛沙姆浓度下,消除速率加速(MDT下降)。组合物或装置中耳用药剂浓度增加可延长耳用药剂在耳朵中的滞留时间和/或MDT。
在一些实施例中,本文所述的组合物或装置中泊洛沙姆的MDT为至少6小时。在一些实施例中,本文所述的组合物或装置中泊洛沙姆的MDT为至少10小时。
在一些实施例中,本文所述的组合物或装置中活性剂的MDT为约30小时至约48小时。在一些实施例中,本文所述的组合物或装置中活性剂的MDT为约30小时至约96小时。在一些实施例中,本文所述的组合物或装置中活性剂的MDT为约30小时至约1周。在一些实施例中,本文所述的组合物或装置中活性剂的MDT为约1周至约6周。
在一些实施例中,本文所述的组合物或装置中活性剂的平均滞留时间(MRT)为约20小时至约48小时。在一些实施例中,本文所述的组合物或装置中活性剂MRT为约20小时至约96小时。在一些实施例中,本文所述的组合物或装置中活性剂的MRT为约20小时至约1周。
在一些实施例中,活性剂的MRT为约20小时。在一些实施例中,活性剂的MRT为约30小时。在一些实施例中,活性剂的MRT为约40小时。在一些实施例中,活性剂的MRT为约50小时。在一些实施例中,活性剂的MRT为约60小时。在一些实施例中,活性剂的MRT为约70小时。在一些实施例中,活性剂的MRT为约80小时。在一些实施例中,活性剂的MRT为约90小时。在一些实施例中,活性剂的MRT为约1周。在一些实施例中,活性剂的MRT为约90小时。在一些实施例中,本文所述的组合物或装置的MDT为约1周至约6周。在一些实施例中,活性剂的MRT为约1周。在一些实施例中,活性剂的MRT为约2周。在一些实施例中,活性剂的MRT为约3周。在一些实施例中,活性剂的MRT为约4周。在一些实施例中,活性剂的MRT为约5周。对于各调配物,耳用药剂的半衰期和耳用药剂的平均滞留时间是通过使用本文所述的程序测量外淋巴中耳用药剂的浓度来确定。
在某些实施例中,相较于非控制释放型耳用调配物的调配物,本文所述的任何控制释放型耳用调配物都增加耳用药剂的暴露和增加耳流体(例如内淋巴和/或外淋巴)中曲线下面积(AUC)约30%、约40%、约50%、约60%、约70%、约80%或约90%。在某些实施例中,相较于非控制释放型耳用调配物的调配物,本文所述的任何控制释放型耳用调配物都增加耳用药剂的暴露时间和减小耳流体(例如内淋巴和/或外淋巴)中Cmax约40%、约30%、约20%或约10%。在某些实施例中,相较于非控制释放型耳用调配物的调配物,本文所述的任何控制释放型耳用调配物都改变(例如减少)Cmax与Cmin的比率。在某些实施例中,相较于非控制释放型耳用调配物的调配物,本文所述的任何控制释放型耳用调配物都增加耳用药剂的暴露和增加耳用药剂浓度超过Cmin的持续时间约30%、约40%、约50%、约60%、约70%、约80%或约90%。在一些情况下,本文所述的控制释放型调配物延迟到达Cmax的时间。在一些情况下,平稳地控制释放药物可延长药物浓度高于Cmin的时间。在一些实施例中,本文所述的耳用组合物延长药物在内耳中的滞留时间,并提供稳定的药物暴露曲线。在一些情况下,组合物中活性剂的浓度增加使清除过程饱和,且允许更迅速且更稳定地到达稳定状态。
在一些情况下,一旦药物的药物暴露(例如内淋巴或外淋巴中的浓度)到达稳定状态,那么内淋巴或外淋巴中药物的浓度长时间(例如1天、2天、3天、4天、5天、6天或1周、3周、6周、2个月)保持在治疗剂量下或其附近。在一些实施例中,从本文所述的控制释放型调配物释放的活性剂的稳定状态浓度为从非控制释放型调配物的调配物释放的活性剂的稳定状态浓度的约20至约50倍。
本文所述的任何调配物、组合物或装置中的活性剂释放任选可调,以达到所需释放特征。在一些实施例中,本文所述的组合物是实质上不含胶凝组分的溶液。在所述情况下,组合物中的活性剂基本上立即释放。在一些所述实施例中,组合物可例如在外科手术期间用于灌注耳结构。
在一些实施例中,本文所述的组合物是实质上不含胶凝组分且包含微粉化耳用药剂的溶液。在一些所述实施例中,组合物提供活性剂约2天至约4天的中间释放。
在一些实施例中,本文所述的组合物包含胶凝剂(例如泊洛沙姆407)并且活性剂经约1天至约3天的时间释放。在一些实施例中,本文所述的组合物包含胶凝剂(例如泊洛沙姆407)并且活性剂经约1天至约5天的时间释放。在一些实施例中,本文所述的组合物包含胶凝剂(例如泊洛沙姆407)并且活性剂经约2天至约7天的时间释放。
在一些实施例中,本文所述的组合物包含胶凝剂(例如泊洛沙姆407)与微粉化耳用药剂组合并提供延长持续释放。在一些实施例中,本文所述的组合物包含(a)约14%-17%胶凝剂(例如泊洛沙姆407)和(b)微粉化耳用药剂;并提供经约1周至约3周的时间的延长持续释放。在一些实施例中,本文所述的组合物包含(a)约16%胶凝剂(例如泊洛沙姆407)和(b)微粉化耳用药剂;并提供经约3周的时间的延长持续释放。在一些实施例中,本文所述的组合物包含(a)约18%-21%胶凝剂(例如泊洛沙姆407)和(b)微粉化耳用药剂;并提供经约3周至约6周的时间的延长持续释放。在一些实施例中,本文所述的组合物包含(a)约20%胶凝剂(例如泊洛沙姆407)和(b)微粉化耳用药剂;并提供经约6周的时间的延长持续释放。在一些实施例中,组合物中胶凝剂的量和耳用药剂的粒径可调,以达到组合物中耳用药剂的所需释放曲线。
在具体实施例中,包含微粉化耳用药剂的组合物相较于包含未微粉化耳用药剂的组合物,提供更长时间的延长释放。在具体实施例中,活性剂(例如微粉化活性剂)的适当粒径与组合物中胶凝剂的量组合的选择可提供可调的延长释放特征,使活性剂经数小时、数天、数周或数月的时间释放。
试剂盒/制品
本发明还提供预防、治疗或改善哺乳动物的疾病或病症的症状的试剂盒。所述试剂盒一般包含一种或一种以上本文所揭示的耳结构调节剂或先天性免疫系统调节剂控制释放型组合物或装置和所述试剂盒的使用说明书。本案还涵盖一种或一种以上耳结构调节剂或先天性免疫系统调节剂控制释放型组合物的用途,其用于制造供治疗、减轻、降低或改善患有、怀疑患有或有风险发展内耳病症的哺乳动物(例如人类)的疾病、功能异常或病症的症状的药剂。
在一些实施例中,试剂盒包括经划分以容纳一个或一个以上例如小瓶、管等容器的载具、包装或容器,例如小瓶、管等容器各包括本文所述的方法中使用的一个独立的元件。适合的容器包括例如瓶子、小瓶、注射器和试管。在其它实施例中,容器由例如玻璃或塑料等多种材料形成。
本文提供的制品含有包装材料。本文还提供用于包装医药产品的包装材料。参见例如美国专利第5,323,907号、第5,052,558号和第5,033,252号。医药包装材料的实例包括(但不限于)发泡包装、瓶子、管、吸入器、泵、袋、小瓶、容器、注射器、瓶子和任何适于所选组合物和预定投药模式和治疗的包装材料。预期本文所提供的多种耳结构调节组合物组合物作为用于可通过将耳结构调节剂或先天性免疫系统调节剂以控制释放方式投予内耳中而受益的任何疾病、病症或病状的多种治疗。
在一些实施例中,从商业和使用者使用本文所述的组合物的角度看,希望试剂盒包括一个或一个以上额外容器,各具有一种或一种以上各种材料(例如任选呈浓缩形式的试剂,和/或装置)。所述材料的非限制性实例包括(但不限于)缓冲剂、稀释剂、过滤器、针、注射器;载具、包装、容器、小瓶和/或列出内含物的管标签和/或使用说明书和/或含使用说明书的包装说明书。任选包括一组说明书。在另一实施例中,标签在容器上或与容器相联。在另一个实施例中,当形成标签的字母、数字或其它特征连接、模制或蚀刻于容器自身中时,标签在容器上;当标签存在于也托住容器的接受器或载具内时,标签与容器相联,例如呈包装说明书形式。在其它实施例中,使用标签来指示待用于具体治疗应用的内含物。在另一实施例中,标签也指示例如在本文所述的方法中内含物的使用说明。
在某些实施例中,医药组合物呈现于包装或分配装置中,此装置含有一种或一种以上含有本文所提供的化合物的单位剂型。在另一实施例中,包装例如含有金属或塑料薄片,例如泡罩包装。在另一实施例中,包装或分配装置附有投药说明书。在另一实施例中,包装或分配器也附有与容器相联的呈管理医药制造、使用或销售的政府机构所规定的形式的标志,此标志反映此机构批准此药物形式用于人类或兽医学投药。在另一实施例中,此标志例如是经美国食品与药物管理局批准用于处方药物的标签或批准的产品说明书。在另一实施例中,也制备在相容的医药载剂中调配的含有本文所提供的化合物的组合物,其放在适当容器中并标记用于治疗所指示的病状。
实例
实例1-制备甲氨蝶呤/透明质酸酶热致可逆凝胶调配物
成分 量(每克调配物的毫克数)
对羟基苯甲酸甲酯 1.0
HPMC 10.0
泊洛沙姆407 180.0
TRIS HCl缓冲液(0.1M) 808.0
透明质酸酶 1.0
硫柳汞 0.1
通过将1.80g泊洛沙姆407(巴斯夫公司(BASF Corp.))悬浮于5.00g TRIS HCl缓冲液(0.1M)中制备10g批料的含0.1%透明质酸酶的凝胶调配物,且在4℃下搅动混合各组分过夜以确保完全溶解。加入羟丙基甲基纤维素(100.0mg)、对羟基苯甲酸甲酯(10mg)和额外的TRIS HCl缓冲液(0.1M)(3.08g),且进一步搅拌,直到观察到完全溶解。加入甲氨蝶呤(10mg)并混合以使之溶解。将混合物维持在低于室温下直到使用。
实例2-制备胶原蛋白粘膜粘着性热致可逆凝胶调配物
成分 量(每克调配物的毫克数)
胶原蛋白 10.0
对羟基苯甲酸甲酯 1.0
HPMC 10.0
Carbopol 934P 2.0
泊洛沙姆407 180.0
TRIS HCl缓冲液(0.1M) 797.0
硫柳汞 0.1
通过将20.0mg Carbopol 934P和1.80g泊洛沙姆407(巴斯夫公司)悬浮于5.00gTRIS HCl缓冲液(0.1M)中制备10g批料的含1.0%胶原蛋白的粘膜粘着性凝胶调配物,且在4℃下搅动混合各组分过夜以确保完全溶解。加入羟丙基甲基纤维素(100.0mg)、对羟基苯甲酸甲酯(10mg)和额外的TRIS HCl缓冲液(0.1M)(2.97g),且进一步搅拌,直到观察到完全溶解。将混合物维持在低于室温下直到使用。
实例3:制备热致可逆凝胶KCNQ调节剂/透明质酸酶调配物
成分 量(每克调配物的毫克数)
瑞替加滨(Retigabine) 18.0
透明质酸酶 2.0
对羟基苯甲酸甲酯 1.0
HPMC 10.0
泊洛沙姆407 180.0
TRIS HCl缓冲液(0.1M) 789.0
通过将1.80g泊洛沙姆407(巴斯夫公司)悬浮于5.00g TRIS HCl缓冲液(0.1M)中制备10g批料的含1.8%瑞替加滨、0.2%透明质酸酶的凝胶调配物,且在4℃下搅动混合各组分过夜以确保完全溶解。加入瑞替加滨(200.0mg)、羟丙基甲基纤维素(100.0mg)、对羟基苯甲酸甲酯(10mg)和额外的TRIS HCl缓冲液(0.1M)(2.89g),且进一步搅拌,直到观察到完全溶解。将混合物维持在低于室温下直到使用。
实例4-制备基于透明质酸酶粘膜粘着剂的调配物
成分 量(每克调配物的毫克数)
透明质酸酶 10.0
柠檬酸钠 1.25
抗坏血酸钠 0.8
石蜡油 200
三羟基硬脂酸酯 10
鲸蜡基二甲基硅氧烷共聚醇 30
补足至1000
磷酸盐缓冲液,pH 7.4 适量至pH 7.4
首先通过轻轻混合透明质酸酶与缓冲液,制备乳膏型调配物。在升温至60℃下,通过混合石蜡油、三羟基硬脂酸酯和鲸蜡基二甲基硅氧烷共聚醇,制备第二系统。冷却至室温后,将脂质系统与水相混合30分钟。
实例5-制备胶原酶粘膜粘着性热致可逆凝胶调配物
成分 量(每克调配物的毫克数)
胶原酶 10.0
对羟基苯甲酸甲酯 1.0
泊洛沙姆407 180.0
Carbopol 934P 2.0
TRIS HCl缓冲液(0.1M) 316.0
硫柳汞 0.1
首先将Carbopol 934P和泊洛沙姆407(巴斯夫公司)悬浮于TRIS HCl缓冲液(0.1M)中,且在4℃下搅动混合各组分过夜以确保完全溶解。加入对羟基苯甲酸甲酯并进一步搅拌,直到观测到完全溶解。将胶原酶混合进去,同时维持搅拌,产生0.2%胶原酶粘膜粘着性热致可逆凝胶调配物。将混合物维持在低于室温下直到使用。
本文所述的医药组合物的粘度测定是在室温和37℃下进行并使用博力飞(轴式和杯式)粘度计在20rpm下进行。
实例6-制备基于角蛋白粘膜粘着剂的调配物
成分 量(每克调配物的毫克数)
角蛋白 100.0
柠檬酸钠 6.75
抗坏血酸钠 4.32
石蜡油 500.0
三羟基硬脂酸酯 54.0
鲸蜡基二甲基硅氧烷共聚醇 162.0
补足至1000
磷酸盐缓冲液,pH 7.4 适量至pH 7.4
首先通过轻轻混合角蛋白与缓冲液,制备乳膏型调配物。在升温至60℃下,通过混合石蜡油、三羟基硬脂酸酯和鲸蜡基二甲基硅氧烷共聚醇,制备第二系统。冷却至室温后,将脂质系统与水相混合30分钟。
实例7-制备凝胶/脂质体百里香油调配物
成分
百里香油 20.0mg/g
脂质体 15μmol/ml
壳聚糖-甘油磷酸盐 100.0mg/g
在百里香油存在下,通过逆相蒸发法制备脂质体,其中通过蒸发有机溶剂,含脂质的氯仿或氯仿-甲醇(2:1,v/v)沉积在管侧面上。将脂质膜再溶解于乙醚中,并加入含有20mM Hepes和144mM NaCl的水相(pH 7.4,300mOsm/kg)。混合物经过声波处理,获得均质乳液,接着真空除去有机溶剂。挤压制剂,获得所需脂质体尺寸,并通过使用塞法戴克斯(Sephadex)G-50柱(瑞典(Sweden)乌普萨拉(Uppsala)阿姆森医药生物技术(Amersham Pharmacia Biotech))进行尺寸排阻色谱法,除去游离组分。
为制备壳聚糖-甘油磷酸盐调配物,将5ml乙酸溶液滴定至约pH 4.0。加入壳聚糖,获得约pH 5.5。通过过滤将此溶液灭菌。还制备5ml甘油磷酸二钠水溶液并灭菌。将两种溶液混合,并在37℃下2小时内,形成所需凝胶。在室温下,壳聚糖-甘油磷酸盐溶液与脂质体轻轻混合。
实例8-制备双膦酸盐热致可逆凝胶调配物
成分 量(每克调配物的毫克数)
阿仑膦酸钠 10.0
柠檬酸钠 1.25
抗坏血酸钠 0.8
透明质酸酶PH20 10
泊洛沙姆407 15
补足至1000
磷酸盐缓冲液,pH 7.4 适量至pH 7.4
通过将阿仑膦酸钠和透明质酸酶PH20与缓冲液混合形成第一溶液,来制备液体调配物。在升温至60℃下,通过将泊洛沙姆407、柠檬酸钠和抗坏血酸钠混合于水中,制备第二系统。第一溶液加入第二系统中并充分混合。
实例9-制备透明质酸酶热致可逆凝胶调配物
成分 量(每克调配物的毫克数)
透明质酸酶PH20 200
氯化钠 10
依地酸二钠 1.2
氯化钙 0.5
泊洛沙姆188 12
补足至1000
磷酸盐缓冲液,pH 7.4 适量至pH 7.4
首先通过轻轻混合PH20与缓冲液来制备液体调配物。在升温至60℃下,通过将泊洛沙姆188、氯化钠、依地酸二钠和氯化钙混合于水中,制备第二系统。PH20溶液加入第二系统中并充分混合。
实例10-制备基于双膦酸盐粘膜粘着剂的调配物
成分 量(每克调配物的毫克数)
利塞膦酸盐 10.0
柠檬酸钠 1.25
抗坏血酸钠 0.8
石蜡油 200
羟丙基甲基纤维素 10
鲸蜡基二甲基硅氧烷共聚醇 30
补足至1000
磷酸盐缓冲液,pH 7.4 适量至pH 7.4
首先通过轻轻混合利塞膦酸盐与缓冲液,制备乳膏型调配物。在升温至60℃下,通过将石蜡油、羟丙基甲基纤维素和鲸蜡基二甲基硅氧烷共聚醇混合,制备第二系统。冷却至室温后,将脂质系统与水相混合30分钟。
实例11-制备基于甲状旁腺激素粘膜粘着剂的调配物
成分 量(每克调配物的毫克数)
甲状旁腺激素 100.0
柠檬酸钠 6.75
抗坏血酸钠 4.32
石蜡油 500.0
三羟基硬脂酸酯 54.0
鲸蜡基二甲基硅氧烷共聚醇 162.0
补足至1000
磷酸盐缓冲液,pH 7.4 适量至pH 7.4
首先通过轻轻混合甲状旁腺激素与缓冲液,制备乳膏型调配物。在升温至60℃下,通过将石蜡油、三羟基硬脂酸酯和鲸蜡基二甲基硅氧烷共聚醇混合,制备第二系统。冷却至室温后,将脂质系统与水相混合30分钟。
实例12-制备FUT-175热致可逆凝胶调配物
成分 量(每克调配物的毫克数)
对羟基苯甲酸甲酯 3.0
HPMC 30.0
泊洛沙姆407 540.0
TRIS HCl缓冲液(0.1M) 2424.0
FUT-175 3.0
通过将1.80g泊洛沙姆407(巴斯夫公司)悬浮于5.00g TRIS HCl缓冲液(0.1M)中制备10g批料的含0.1%FUT-175的凝胶调配物,且在4℃下搅动混合各组分过夜以确保完全溶解。加入羟丙基甲基纤维素(100.0mg)、对羟基苯甲酸甲酯(10mg)和额外的TRIS HCl缓冲液(0.1M)(3.08g),且进一步搅拌,直到观察到完全溶解。将混合物维持在低于室温下直到使用。
实例13-制备TKIXc粘膜粘着性热致可逆凝胶调配物
成分 量(每克调配物的毫克数)
TKIXc 45.0
对羟基苯甲酸甲酯 4.5
HPMC 45.0
Carbopol 934P 9.0
泊洛沙姆407 810.0
TRIS HCl缓冲液(0.1M) 3586.5
通过将20.0mg Carbopol 934P和1.80g泊洛沙姆407(巴斯夫公司)悬浮于5.00gTRIS HCl缓冲液(0.1M)中制备10g批料的含1.0%TKIXc的粘膜粘着性凝胶调配物,且在4℃下搅动混合各组分过夜以确保完全溶解。加入羟丙基甲基纤维素(100.0mg)、对羟基苯甲酸甲酯(10mg)和额外的TRIS HCl缓冲液(0.1M)(2.97g),且进一步搅拌,直到观察到完全溶解。将混合物维持在低于室温下直到使用。
实例14-制备基于TKIXc粘膜粘着剂的调配物
成分 量(每克调配物的毫克数)
TKIXc 25.0
柠檬酸钠 3.125
抗坏血酸钠 2.0
石蜡油 500.0
三羟基硬脂酸酯 25.0
鲸蜡基二甲基硅氧烷共聚醇 75.0
补足至1000
磷酸盐缓冲液,pH 7.4 适量至pH 7.4
首先通过轻轻混合TKIXc与缓冲液,制备乳膏型调配物。在升温至60℃下,通过将石蜡油、三羟基硬脂酸酯和鲸蜡基二甲基硅氧烷共聚醇混合,制备第二系统。冷却至室温后,将脂质系统与水相混合30分钟。
实例15-制备肝素粘膜粘着性热致可逆凝胶调配物
成分 量(每克调配物的毫克数)
肝素 10.0
对羟基苯甲酸甲酯 1.0
泊洛沙姆407 180.0
Carbopol 934P 2.0
TRIS HCl缓冲液(0.1M) 316.0
硫柳汞 0.1
首先将Carbopol 934P和泊洛沙姆407(巴斯夫公司)悬浮于TRIS HCl缓冲液(0.1M)中,且在4℃下搅动混合各组分过夜以确保完全溶解。加入对羟基苯甲酸甲酯并进一步搅拌,直到观测到完全溶解。将肝素混合进去,同时维持搅拌,产生0.2%胶原酶粘膜粘着性热致可逆凝胶调配物。将混合物维持在低于室温下直到使用。
本文所述的医药组合物的粘度测定是在室温和37℃下进行并使用博力飞(轴式和杯式)粘度计在20rpm下进行。
实例16-粘度增强的耳用药剂调配物施用于圆窗膜上
制备实例2的调配物,且装入连接于15号luer锁紧接口(luer lock)一次性针的5ml硅化玻璃注射器中。利多卡因局部施用于鼓膜,且制造小切口以允许观测中耳空腔。将针尖导入圆窗膜上方的位置,且将耳用药剂调配物直接施用于圆窗膜上。
实例17-制备凝胶/脂质体sCR1-SLex调配物
成分
sCR1-SLex 20.0mg/g
脂质体 15μmol/ml
壳聚糖-甘油磷酸盐 100.0mg/g
在sCR1-SLex存在下,通过逆相蒸发法制备脂质体,其中通过蒸发有机溶剂,含脂质的氯仿或氯仿-甲醇(2:1,v/v)沉积在管侧面上。将脂质膜再溶解于乙醚中,并加入含有20mM Hepes和144mM NaCl的水相(pH 7.4,300mOsm/kg)。混合物经过声波处理,获得均质乳液,接着真空除去有机溶剂。挤压制剂,获得所需脂质体尺寸,并通过使用塞法戴克斯G-50柱(瑞典乌普萨拉阿姆森医药生物技术(Amersham PharmaciaBiotech))进行尺寸排阻色谱法,除去游离组分。
为制备壳聚糖-甘油磷酸盐调配物,将5ml乙酸溶液滴定至约pH 4.0。加入壳聚糖,获得约pH 5.5。通过过滤将此溶液灭菌。还制备5ml甘油磷酸二钠水溶液并灭菌。混合两种溶液,并在37℃下2小时内,形成所需凝胶。在室温下,壳聚糖-甘油磷酸盐溶液与脂质体轻轻混合。
实例18-粘度增强的耳用药剂调配物施用于圆窗膜上
制备实例2的调配物,且装入连接于15号luer锁紧接口一次性针的5ml硅化玻璃注射器中。利多卡因局部施用于鼓膜,且制造小切口以允许观测中耳空腔。将针尖导入圆窗膜上方的位置,且将耳用药剂调配物直接施用于圆窗膜上。
实例19pH值对经过高压灭菌处理的含17%泊洛沙姆407NF/2%耳用药剂的PBS 缓冲液的降解产物的影响
通过用79.3g无菌过滤的去离子水溶解351.4mg氯化钠(飞世尔科技(FisherScientific))、302.1mg无水磷酸二钠(飞世尔科技)、122.1mg无水磷酸二氢钠(飞世尔科技)和适量耳用药剂来制备17%泊洛沙姆407/2%耳用药剂的储备溶液。在冰冷水浴中冷却溶液,然后在混合下,向冷溶液中洒入17.05g泊洛沙姆407NF(斯百全化学(SPECTRUM CHEMICALS))。进一步混合混合物直到泊洛沙姆完全溶解。测量这一溶液的pH值。
含17%泊洛沙姆407/2%耳用药剂的PBS,pH 5.3。取上述溶液的等分试样(约30mL),且通过加入1M HCl调节pH值至5.3。
含17%泊洛沙姆407/2%耳用药剂的PBS,pH 8.0。取上述储备溶液的等分试样(约30mL),且通过加入1M NaOH调节pH值至8.0。
通过用无菌过滤的去离子水溶解805.5mg氯化钠(飞世尔科技)、606mg无水磷酸二钠(飞世尔科技)、247mg无水磷酸二氢钠(飞世尔科技),然后补足到200g来制备PBS缓冲液(pH 7.3)。
通过将适量耳用药剂溶解于PBS缓冲液中且用PBS缓冲液补足到10g来制备耳用药剂于PBS(pH 7.3)中的2%溶液。
将1mL样品个别地放入3mL螺旋盖玻璃小瓶(具有橡胶衬里)中,并紧密闭合。将小瓶放入马科佛格(Market Forge)斯蒂马克(sterilmatic)高压灭菌器(环境,缓慢的液体)中并在250℉下灭菌15分钟。高压灭菌后,样品冷却至室温,然后放入冰箱中。趁冷混合小瓶,使样品均质化。
观察外观(例如褪色和/或沉淀)并记录。使用配备有Luna C18(2)3μm,250×4.6mm柱)的阿格兰特(Agilent)1200,使用30-80乙腈梯度(1-10分钟)(含0.05%TFA的水-乙腈混合物)进行HPLC分析,总操作时间为15分钟。通过取30μL样品且用1.5mL 1:1乙腈水混合物溶解来稀释样品。记录经过高压灭菌处理的样品中耳用药剂的纯度。
一般来说,组合物不应具有超过2%且更优选不超过1%的任何个别杂质(例如耳用药剂的降解产物)。另外,组合物不应在储存期间沉淀,或在制造和储存后变色。
使用以上程序测试根据实例6中的程序制备的包含阿普唑仑、氯硝西泮、安定或微粉化安定的组合物,以确定pH值对高压灭菌步骤期间降解的影响。
实例20-高压灭菌处理对含17%泊洛沙姆407NF/2%耳用药剂的PBS的释放曲线和 粘度的影响
评估实例6的样品的等分试样(高压灭菌处理和未高压灭菌处理)的释放曲线和粘度测量以评估热灭菌对凝胶性质的影响。
在37℃下在斯那普维尔(snapwell)(孔径为0.4μm的直径6.5mm的聚碳酸酯膜)中进行溶解。将0.2mL凝胶放入斯那普维尔中且使之硬化,然后将0.5mL放入储积器中且使用优莱博(Labline)轨道振荡器在70rpm下振荡。每小时获取样品(抽取0.1mL且用温缓冲液置换)。相对于外部校准标准曲线,使用硫氰酸钴方法在624nm下利用UV分析样品的泊洛沙姆浓度。简单地说,混合20μL样品与1980μL 15mM硫氰酸钴溶液,且使用伊瓦鲁新(Evolution)160UV/Vis分光光度计(赛默科技(Thermo Scientific))在625nm下测量吸光度。
将释放的耳用药剂拟合成考斯梅尔-佩帕斯等式
Q Q &alpha; = kt n + b
其中Q是时间t时释放的耳用药剂的量,Qα是耳用药剂的总释放量,k是n次的释放常数,n是与溶解机理相关的无量纲数且b是轴截距,表征最初爆发的释放机理,其中n=1表征侵蚀控制机理。平均溶解时间(MDT)是不同时段释放前留在基质中的药物分子的和除以分子总数,且如下计算:
MDT = nk - 1 / n n + 1
粘度测量使用配备有水夹套温控单元(温度以1.6℃/min从15℃上升到34℃)且具有在0.08rpm(剪切速率为0.31s-1)下旋转的CPE-51轴的博力飞粘度计RVDV-II+P进行。T凝胶定义为因溶胶-凝胶转变而发生粘度增加的曲线的拐点。
使用上述程序,测试根据实例6中的程序制备的包含胶原蛋白、角蛋白、胶原酶或微粉化胶原蛋白的组合物,以确定T凝胶。
实例21-加入第二聚合物对含有2%耳用药剂和17%泊洛沙姆407NF的组合物在热 灭菌(高压灭菌处理)后的降解产物和粘度的影响
溶液A:通过用78.4无菌过滤的去离子水溶解178.35mg氯化钠(飞世尔科技)、300.5mg无水磷酸二钠(飞世尔科技)、126.6mg无水磷酸二氢钠(飞世尔科技)制备于PBS缓冲液中包含羧甲基纤维素钠(CMC)的溶液(pH 7.0),然后向缓冲溶液中洒入1g布郎赛(Blanose)7M65CMC(赫库斯(Hercules),2%时的粘度为5450cP)且加热以帮助溶解,然后冷却溶液。
通过在冰冷水浴中冷却8.1g溶液A,然后加入适量耳用药剂,接着混合,来制备于PBS缓冲液中包含17%泊洛沙姆407NF/1%CMC/2%耳用药剂的溶液(pH 7.0)。在混合下,向冷溶液中洒入1.74g泊洛沙姆407NF(斯百全化学)。进一步混合混合物直到所有泊洛沙姆都完全溶解。
将2mL上述样品放入3mL螺旋盖玻璃小瓶(具有橡胶衬里)中,且紧密闭合。将小瓶放入马科佛格斯蒂马克高压灭菌器(环境,缓慢的液体)中并在250℉下灭菌25分钟。高压灭菌处理后,样品冷却至室温,然后放入冰箱中。趁小瓶尚冷时混合,使样品均质化。
使用配备有Luna C18(2)3μm,250×4.6mm柱)的阿格兰特(Agilent)1200,使用30-80乙腈梯度(1-10分钟)(含0.05%TFA的水-乙腈混合物)进行HPLC分析,总操作时间为15分钟。通过取30μL样品且用1.5mL 1:1乙腈水混合物溶解来稀释样品。记录经过高压灭菌处理的样品中耳用药剂的纯度。
粘度测量使用配备有水夹套温控单元(温度以1.6℃/min从15℃上升到34℃)且具有在0.08rpm(剪切速率为0.31s-1)下旋转的CPE-51轴的博力飞粘度计RVDV-II+P进行。T凝胶定义为因溶胶-凝胶转变而发生粘度增加的曲线的拐点。
在37℃下在斯那普维尔(孔径为0.4μm的6.5mm直径的聚碳酸酯膜)中进行溶解,将0.2mL凝胶放入斯那普维尔中并使之硬化,然后将0.5mL放入储积器中并使用优莱博轨道振荡器在70rpm下振荡。每小时获取样品(抽取0.1mL且用温缓冲液置换)。利用245nm的紫外线相对于外部校准标准曲线分析样品的耳用药剂浓度。
使用以上程序测试包含胶原蛋白、角蛋白、胶原酶或微粉化胶原蛋白的组合物,以确定加入第二聚合物对含有2%耳用药剂和17%泊洛沙姆407NF的组合物在热灭菌(高压灭菌处理)后的降解产物和粘度的影响。
实例22-缓冲液类型对含有泊洛沙姆407NF的组合物在热灭菌(高压灭菌处理)后 的降解产物的影响
通过用无菌过滤的去离子水溶解377.8mg氯化钠(飞世尔科技)和602.9mg缓血酸胺(西格玛化学公司(Sigma Chemical Co.)),然后补足到100g来制备TRIS缓冲液,用1M HCl调节pH值至7.4。
含有25%泊洛沙姆407的TRIS缓冲液溶液的储备溶液:
称量45g TRIS缓冲液,在冰冷浴中冷却,然后在混合下,向缓冲液中洒入15g泊洛沙姆407NF(斯百全化学)。进一步混合混合物直到所有泊洛沙姆都完全溶解。
用以上储备溶液制备一系列组合物。适量耳用药剂(或其盐或前药)和/或呈微粉化/经过涂布/脂质体粒子形式的耳用药剂(或其盐或前药)用于所有实验。
含有25%泊洛沙姆407的PBS缓冲液溶液的储备溶液(pH 7.3):
通过用140.4g无菌过滤的去离子水溶解704mg氯化钠(飞世尔科技)、601.2mg无水磷酸二钠(飞世尔科技)、242.7mg无水磷酸二氢钠(飞世尔科技)制备PBS缓冲液。在冰冷水浴中冷却溶液,然后在混合下,向冷溶液中洒入50g泊洛沙姆407NF(斯百全化学)。进一步混合混合物直到泊洛沙姆都完全溶解。
用以上储备溶液制备一系列组合物。适量耳用药剂(或其盐或前药)和/或呈微粉化/经过涂布/脂质体粒子形式的耳用药剂(或其盐或前药)用于所有实验。
表2和3列出使用上述程序制备的样品。适量耳用药剂加入各样品中,以提供样品中2%耳用药剂的最终浓度。
表2.制备含有TRIS缓冲液的样品
样品 pH值 25%储备溶液(g) TRIS缓冲液(g)
20%P407/2%耳用药剂/TRIS 7.45 8.01 1.82
18%P407/2%耳用药剂/TRIS 7.45 7.22 2.61
16%P407/2%耳用药剂/TRIS 7.45 6.47 3.42
18%P407/2%耳用药剂/TRIS 7.4 7.18 2.64
4%耳用药剂/TRIS 7.5 - 9.7
2%耳用药剂/TRIS 7.43 - 5
1%耳用药剂/TRIS 7.35 - 5
2%耳用药剂/TRIS(悬浮液) 7.4 - 4.9
表3.制备含有PBS缓冲液的样品(pH 7.3)
样品 PBS中25%储备溶液(g) PBS缓冲液(g)
20%P407/2%耳用药剂/PBS 8.03 1.82
18%P407/2%耳用药剂/PBS 7.1 2.63
16%P407/2%耳用药剂/PBS 6.45 3.44
18%P407/2%耳用药剂/PBS - 2.63
2%耳用药剂/PBS - 4.9
将1mL样品个别地放入3mL螺旋盖玻璃小瓶(具有橡胶衬里)中,且紧密闭合。将小瓶放入马科佛格斯蒂马克高压灭菌器(环境,缓慢的液体)中并在250℉下灭菌25分钟。高压灭菌处理后,样品冷却至室温。将这些小瓶放入冰箱中,并趁小瓶尚冷时混合,使样品均质化。
使用配备有Luna C18(2)3μm,250×4.6mm柱)的阿格兰特1200,使用30-80乙腈梯度(1-10分钟)(含0.05%TFA的水-乙腈混合物)进行HPLC分析,总操作时间为15分钟。通过取30μL样品且用1.5mL 1:1乙腈水混合物溶解来稀释样品。记录经过高压灭菌处理的样品中耳用药剂的纯度。比较组合物在TRIS和PBS缓冲液中的稳定性。
粘度测量使用配备有水夹套温控单元(温度以1.6℃/min从15℃上升到34℃)且具有在0.08rpm(剪切速率为0.31s-1)下旋转的CPE-51轴的博力飞粘度计RVDV-II+P进行。T凝胶定义为因溶胶-凝胶转变而发生粘度增加的曲线的拐点。仅仅分析在高压灭菌处理后未显示改变的组合物。
使用以上程序测试包含胶原蛋白、角蛋白、胶原酶或微粉化胶原蛋白的组合物,以确定加入第二聚合物对含有2%耳用药剂和17%泊洛沙姆407NF的组合物在热灭菌(高压灭菌处理)后的降解产物和粘度的影响。将含有微粉化耳用药剂的组合物的稳定性与未微粉化耳用药剂组合物对应物的稳定性相比。
实例23:脉冲式释放型耳用组合物
使用本文所述的程序,使用安定来制备脉冲式释放型耳用药剂组合物。通过用79.3g无菌过滤的去离子水溶解351.4mg氯化钠(飞世尔科技)、302.1mg无水磷酸二钠(飞世尔科技)、122.1mg无水磷酸二氢钠(飞世尔科技)和适量耳用药剂来制备17%泊洛沙姆溶液。在冰冷水浴中冷却溶液,然后在混合下,向冷溶液中洒入17.05g泊洛沙姆407NF(斯百全化学)。进一步混合混合物直到泊洛沙姆都完全溶解。测量此溶液的pH值。借助于β-环糊精,将20%传递剂量的安定溶解于17%泊洛沙姆溶液中。接着剩余80%耳用药剂加入混合物中,并使用本文所述的任何程序制备最终组合物。
使用本文所述的程序,测试包含根据本文所述的程序和实例制备的包含胶原蛋白、角蛋白、胶原酶或微粉化胶原蛋白的组合物的脉冲式释放型组合物,以确定脉冲式释放曲线。
实例24:制备含17%泊洛沙姆407/2%耳用药剂/78Ppm伊文思蓝的PBS
通过用1mL PBS缓冲液溶解5.9mg伊文思蓝(西格玛化学公司)来制备伊文思蓝(5.9mg/mL)于PBS中的储备溶液。通过用140.4g无菌过滤的去离子水溶解704mg氯化钠(飞世尔科技)、601.2mg无水磷酸二钠(飞世尔科技)、242.7mg无水磷酸二氢钠(飞世尔科技)来制备PBS缓冲液。
含有25%泊洛沙姆407的PBS缓冲液溶液的储备溶液(如实例9中)用于此研究中。适量耳用药剂加入25%泊洛沙姆407溶液的储备溶液中,以制备包含2%耳用药剂的组合物(表4)。
表4.制备含有伊文思蓝的泊洛沙姆407样品
样品身份 PBS中25%P407(g) PBS缓冲液(g) 伊文思蓝溶液(μL)
17%P407/2%耳用药剂/EB 13.6 6 265
20%P407/2%耳用药剂/EB 16.019 3.62 265
25%P407/2%耳用药剂/EB 19.63 - 265
根据实例12中的程序制备包含胶原蛋白、角蛋白、胶原酶或微粉化胶原蛋白的组合物,并通过0.22μm PVDF注射过滤器(密理博公司(Millipore corporation))过滤来灭菌,且进行高压灭菌处理。
通过本文所述的程序,将以上组合物给予天竺鼠的中耳,并在给药后和给药24小时后确定组合物在接触后胶凝的能力和凝胶的位置。
实例25:有和无观测染料的泊洛沙姆407组合物的最终灭菌
17%泊洛沙姆407/2%耳用药剂/磷酸盐缓冲液,pH7.3:用158.1g无菌过滤的去离子水溶解709mg氯化钠(飞世尔科技)、742mg脱水磷酸二钠USP(飞世尔科技)、251.1mg单水合磷酸二氢钠USP(飞世尔科技)和适量耳用药剂。在冰冷水浴中冷却溶液,然后在混合下,向冷溶液中洒入34.13g泊洛沙姆407NF(斯百全化学)。进一步混合混合物直到泊洛沙姆完全溶解。
含17%泊洛沙姆407/2%耳用药剂/59ppm伊文思蓝的磷酸盐缓冲液:取2mL 17%泊洛沙姆407/2%耳用药剂/磷酸盐缓冲液且加入2mL 5.9mg/mL伊文思蓝(西格玛-阿尔德里奇化学公司(Sigma-Aldrich chemical Co))的PBS缓冲液溶液。
25%泊洛沙姆407/2%耳用药剂/磷酸盐缓冲液:用70.5g无菌过滤的去离子水溶解330.5mg氯化钠(飞世尔科技)、334.5mg二水合磷酸二钠USP(飞世尔科技)、125.9mg单水合磷酸二氢钠USP(飞世尔科技)和适量耳用药剂。
在冰冷水浴中冷却溶液,然后在混合下,向冷溶液中洒入25.1g泊洛沙姆407NF(斯百全化学)。进一步混合混合物直到泊洛沙姆完全溶解。
含25%泊洛沙姆407/2%耳用药剂/59ppm伊文思蓝的磷酸盐缓冲液:取2mL25%泊洛沙姆407/2%耳用药剂/磷酸盐缓冲液且加入2mL 5.9mg/mL伊文思蓝(西格玛-阿尔德里奇化学公司)的PBS缓冲液溶液。
将2mL组合物放入2mL玻璃小瓶(惠顿(Wheaton)血清玻璃小瓶)中,且用13mm丁基苯乙烯(金布尔(kimble)塞子)密封,并用13mm铝封封口。将小瓶放入马科佛格斯蒂马克高压灭菌器(环境,缓慢的液体)中并在250℉下灭菌25分钟。高压灭菌处理后,样品冷却至室温,然后冷冻放置。将小瓶放入冰箱中,且趁冷混合以使样品均质化。记录在高压灭菌处理后的样品褪色或沉淀。
使用配备有Luna C18(2)3μm,250×4.6mm柱)的阿格兰特1200,使用30-95甲醇:乙酸酯缓冲液pH 4梯度(1-6分钟)进行HPLC分析,接着等度洗脱11分钟,总操作时间为22分钟。通过取30μL样品且用0.97mL水溶解来稀释样品。主峰记录在下表中。使用此方法,高压灭菌处理前的纯度始终大于99%。
粘度测量使用配备有水夹套温控单元(温度以1.6℃/min从15℃上升到34℃)且具有在0.08rpm(剪切速率为0.31s-1)下旋转的CPE-51轴的博力飞粘度计RVDV-II+P进行。T凝胶定义为因溶胶-凝胶转变而发生粘度增加的曲线的拐点。
使用上述程序,测试根据实例11中的程序制备的包含胶原蛋白、角蛋白、胶原酶或微粉化胶原蛋白的组合物,以确定组合物的稳定性。
实例26:释放曲线的活体外比较
在37℃下在斯那普维尔(孔径为0.4μm的6.5mm直径的聚碳酸酯膜)中进行溶解,将0.2mL本文所述的凝胶组合物放入斯那普维尔中并使之硬化,然后将0.5mL缓冲液放入储积器中并使用优莱博轨道振荡器在70rpm下振荡。每小时获取样品(抽取0.1mL且用温缓冲液置换)。利用245nm的紫外线相对于外部校准标准曲线分析样品的耳用药物浓度。在624nm下使用硫氰酸钴方法分析泊洛尼克浓度。确定随%P407变化的平均溶解时间(MDT)的相对等级次序。组合物平均溶解时间(MDT)与P407浓度之间的线性关系指示耳用药物因聚合物凝胶(泊洛沙姆)腐蚀而释放,而非通过扩散释放。非线性关系指示耳用药物通过扩散和/或聚合物凝胶降解的组合释放。
或者,使用李新宇(Li Xin-Yu)论文[药学学报(Acta Pharmaceutica Sinica)2008,43(2):208-203]描述的方法分析样品,且确定随%P407而变的平均溶解时间(MDT)的等级次序。
使用以上程序,测试根据本文所述的程序制备的包含胶原蛋白、角蛋白、胶原酶或微粉化胶原蛋白的组合物,以确定耳用药剂的释放曲线。
实例27:胶凝温度的活体外比较
出于操纵胶凝温度的目的,评估泊洛沙姆188和耳用药剂对泊洛沙姆407组合物的胶凝温度和粘度的影响。
使用25%泊洛沙姆407的PBS缓冲液储备溶液(如实例9中)和PBS溶液(如实例11中)。使用来自巴斯夫的泊洛沙姆188NF。适量耳用药剂加入表5中所述的溶液中,以提供耳用药剂的2%组合物。
表5.制备含泊洛沙姆407/泊洛沙姆188的样品
样品 25%P407储备溶液(g) 泊洛沙姆188(mg) PBS缓冲液(g)
16%P407/10%P188 3.207 501 1.3036
17%P407/10%P188 3.4089 500 1.1056
18%P407/10%P188 3.6156 502 0.9072
19%P407/10%P188 3.8183 500 0.7050
20%P407/10%P188 4.008 501 0.5032
20%P407/5%P188 4.01 256 0.770
使用本文所述的程序,测量以上组合物的平均溶解时间、粘度和胶凝温度。
将所获得的数据拟合成等式,且可利用这一等式估算F127/F68混合物(17-20%F127和0-10%F68)的胶凝温度。
T凝胶=-1.8(%F127)+1.3(%F68)+53
将所获得的数据拟合成等式,且可使用实例13和15中获得的结果,基于F127/F68混合物(17-25%F127和0-10%F68)的胶凝温度,利用这一等式估算平均溶解时间(小时)。
MDT=-0.2(T凝胶)+8
通过加入适量耳用药剂至表5中所述的溶液中来制备包含胶原蛋白、角蛋白、胶原酶或微粉化胶原蛋白的组合物。使用上述程序确定组合物的胶凝温度。
实例28:测定无菌过滤的温度范围
测量低温下的粘度以帮助指导需要进行无菌过滤以降低堵塞可能性的温度范围。
粘度测量使用配备有水夹套温控单元(温度以1.6℃/min从10℃上升到25℃)且具有在1、5和10rpm(剪切速率为7.5、37.5和75s-1)下旋转的CPE-40轴的博力飞粘度计RVDV-II+P进行。
随递增浓度的耳用药剂测定17%泊洛尼克P407的T凝胶。由下式估算17%泊洛尼克组合物的T凝胶的增加:
ΔT凝胶=0.93[耳用药剂%]
使用以上程序,测试根据本文所述的程序制备的包含胶原蛋白、角蛋白、胶原酶或微粉化胶原蛋白的组合物,以确定无菌过滤的温度范围。记录加入增加量的耳用药剂对T凝胶和组合物的表观粘度的影响。
实例29:测定制造条件
表6.制造/过滤条件下潜在组合物的粘度
a粘度是在37.5s-1的剪切速率下测量
制造8升批料的17%P407安慰剂以评估制造/过滤条件。通过将6.4升去离子水放入3加仑SS压力容器中制造安慰剂,并在冰箱中冷却过夜。次日早晨,取出水槽(水温5℃,室温18℃),并加入48g氯化钠、29.6g脱水磷酸二钠和10g单水合磷酸二氢钠,且用顶置式混合器(IKA RW20,1720rpm)溶解。半小时后,一旦缓冲液溶解(溶液温度8℃,室温18℃),就在15分钟间隔内向缓冲溶液中缓慢洒入1.36kg泊洛沙姆407NF(斯百全化学)(溶液温度12℃,室温18℃),然后速度增至2430rpm。再混合1小时后,将混合速率减至1062rpm(完全溶解)。
室温维持低于25℃以保持溶液温度低于19℃。制造开始后溶液温度维持低于19℃长达3小时,无需冷冻/冷却容器。
在溶液在20psi和14℃下,评估表面积为17.3cm2的三个不同赛多斯克(Sartoscale)(赛多利斯斯泰迪(Sartorius Stedim))过滤器
1)赛多普(Sartopore)2,0.2μm 5445307HS-FF(PES),流速:16mL/min
2)赛多布(Sartobran)P,0.2μm 5235307HS-FF(纤维素酯),流速:12mL/min
3)赛多普2XLI,0.2μm 5445307IS-FF(PES),流速:15mL/min
使用赛多普2过滤器5441307H4-SS,使用表面积为0.015m2的0.45、0.2μm赛多普2150无菌胶囊(赛多利斯斯泰迪)在溶液温度下在16psi压力下进行过滤。在16psi下流速经测量为约100mL/min,当温度维持在6.5-14℃范围内时,流速无变化。溶液的压力递减和温度递增引起流速因溶液粘度增加而减小。在这一过程期间监测溶液的褪色。
表7.17%泊洛沙姆407安慰剂在6.5-14℃的溶液温度范围内使用赛多普20.2μm过滤器在16psi压力下所得的预测过滤时间
过滤器 尺寸(m2) 估算的流速(mL/min) 过滤8升的时间(估算值)
赛多普2,4号 0.015 100mL/min 80分钟
赛多普2,7号 0.05 330mL/min 24分钟
赛多普2,8号 0.1 670mL/min 12分钟
在过滤评估之前,检查粘度、T凝胶和UV/Vis吸收。泊洛尼克UV/Vis光谱由伊瓦鲁新160UV/Vis(赛默科技)获得。250-300nm范围内的峰归因于原料中存在BHT稳定剂(泊洛沙姆)。表8列出在过滤前后以上溶液的物理化学性质。
表8.在过滤前后17%泊洛沙姆407安慰剂溶液的物理化学性质
样品 T凝胶(℃) 19℃下的粘度a(cP) 274nm下的吸光率
过滤前 22 100 0.3181
过滤后 22 100 0.3081
a粘度是在37.5s-1的剪切速率下测量
上述工艺适用于制造17%P407组合物,且包括室内条件的温度分析。优选19℃的最大温度降低制造期间冷却容器的成本。在一些情况下,使用夹套容器进一步控制溶液温度以减少制造方面的问题。
实例30.经过高压灭菌处理的微粉化样品中耳用药剂的活体外释放
含17%泊洛沙姆407/1.5%耳用药剂的TRIS缓冲液:将250.8mg氯化钠(飞世尔科技)和302.4mg缓血酸胺(西格玛化学公司)溶解于39.3g无菌过滤的去离子水中,用1M HCl调节pH值至7.4。使用4.9g上述溶液,且将适量微粉化耳用药剂充分悬浮并分散。将2mL组合物转移到2mL玻璃小瓶(惠顿血清玻璃小瓶)中,并用13mm丁基苯乙烯(金布尔塞子)密封,且用13mm铝封封口。将小瓶放入马科佛格斯蒂马克高压灭菌器(环境,缓慢的液体)中并在250℉下灭菌25分钟。高压灭菌处理后,样品冷却至室温。将小瓶放入冰箱中,且趁冷混合以使样品均质化。记录在高压灭菌处理后的样品褪色或沉淀。
在37℃下在斯那普维尔(孔径为0.4μm的6.5mm直径的聚碳酸酯膜)中进行溶解,将0.2mL凝胶放入斯那普维尔中并使之硬化,然后将0.5mL PBS缓冲液放入储积器中并使用优莱博轨道振荡器在70rpm下振荡。每小时获取样品[抽取0.1mL且用含2%PEG-40氢化蓖麻油(巴斯夫)的温PBS缓冲液置换以增强耳用药剂溶解性]。相对于外部校准标准曲线,由245nm的紫外线分析样品的耳用药剂浓度。与本文公开的其它组合物相比较释放速率。计算各样品的MDT时间。
通过使用艾本德(eppendorf)离心机5424在15,000rpm下离心样品10分钟后测量上清液中耳用药剂的浓度来评估17%泊洛沙姆系统中耳用药剂的溶解。相对于外部校准标准曲线,由245nm的紫外线测量上清液中的耳用药剂浓度。
使用以上程序,测试根据本文所述的程序制备的包含胶原蛋白、角蛋白、胶原酶或微粉化胶原蛋白的组合物,以确定各组合物中耳用药剂的释放速率。
实例31.含有羧甲基纤维素钠的组合物的释放速率或MDT和粘度
17%泊洛沙姆407/2%耳用药剂/1%CMC(赫库斯布郎赛7M):通过将205.6mg氯化钠(飞世尔科技)、372.1mg二水合磷酸二钠(飞世尔科技)、106.2mg单水合磷酸二氢钠(飞世尔科技)溶解于78.1g无菌过滤的去离子水中来制备羧甲基纤维素钠(CMC)的PBS缓冲液溶液(pH 7.0)。向缓冲溶液中洒入1g布郎赛7M CMC(赫库斯,2%时粘度为533cP)并加热成流动的溶液,然后冷却溶液,并在混合下向冷溶液中洒入17.08g泊洛沙姆407NF(斯百全化学)。通过向9.8g上述溶液中加入/溶解适量耳用药剂并混合,直到所有耳用药剂完全溶解来制备包含17%泊洛沙姆407NF/1%CMC/2%耳用药剂于PBS缓冲液中的组合物。
17%泊洛沙姆407/2%耳用药剂/0.5%CMC(布郎赛7M65):通过将257mg氯化钠(飞世尔科技)、375mg二水合磷酸二钠(飞世尔科技)、108mg单水合磷酸二氢钠(飞世尔科技)溶解于78.7g无菌过滤的去离子水中来制备羧甲基纤维素钠(CMC)的PBS缓冲液溶液(pH 7.2)。向缓冲溶液中洒入0.502g布郎赛7M65CMC(赫库斯,2%时粘度为5450cP)并加热成流动的溶液,然后冷却溶液,并在混合下向冷溶液中洒入17.06g泊洛沙姆407NF(斯百全化学)。通过向9.8g上述溶液中加入/溶解适量耳用药剂并混合,直到耳用药剂完全溶解来制备17%泊洛沙姆407NF/1%CMC/2%耳用药剂的PBS缓冲液溶液。
17%泊洛沙姆407/2%耳用药剂/0.5%CMC(布郎赛7H9):通过将256.5mg氯化钠(飞世尔科技)、374mg二水合磷酸二钠(飞世尔科技)、107mg单水合磷酸二氢钠(飞世尔科技)溶解于78.6g无菌过滤的去离子水中来制备羧甲基纤维素钠(CMC)的PBS缓冲液溶液(pH 7.3),然后向缓冲溶液中洒入0.502g布郎赛7H9CMC(赫库斯,1%时粘度为5600cP)并加热成流动的溶液,然后冷却溶液,并在混合下向冷溶液中洒入17.03g泊洛沙姆407NF(斯百全化学)。通过向9.8上述溶液中加入/溶解适量耳用药剂并混合,直到耳用药剂完全溶解来制备17%泊洛沙姆407NF/1%CMC/2%耳用药剂的PBS缓冲液溶液。
粘度测量使用配备有水夹套温控单元(温度以1.6℃/min从10℃上升到34℃)且具有在0.08rpm(剪切速率为0.6s-1)下旋转的CPE-40轴的博力飞粘度计RVDV-II+P进行。T凝胶定义为因溶胶-凝胶转变而发生粘度增加的曲线的拐点。
在37℃下在斯那普维尔(孔径为0.4μm的6.5mm直径的聚碳酸酯膜)中进行溶解,将0.2mL凝胶放入斯那普维尔中并使之硬化,然后将0.5mL PBS缓冲液放入储积器中并使用优莱博轨道振荡器在70rpm下振荡。每小时获取样品(抽取0.1mL且用温PBS缓冲液置换)。利用245nm的紫外线相对于外部校准标准曲线分析样品的耳用药物浓度。计算以上各组合物的MDT时间。
使用以上程序,测试根据上述程序制备的包含胶原蛋白、角蛋白、胶原酶或微粉化胶原蛋白的组合物,以确定含有羧甲基纤维素钠的组合物的释放速率和/或平均溶解时间与粘度之间的关系。记录平均溶解时间(MDT)与表观粘度(在胶凝温度以下2℃下测量)之间的任何相关性。
实例32-粘度增强的耳结构调节剂或先天性免疫系统调节剂组合物施用于圆窗膜上
制备实例2的组合物,且装入连接于15号luer锁紧接口一次性针的5ml硅化玻璃注射器中。利多卡因局部施用于鼓膜,且制造小切口以允许观测中耳空腔。将针尖导入圆窗膜上方的位置,且将组合物直接施用于圆窗膜上。
实例33-在天竺鼠中经鼓室内注射耳结构调节组合物的活体内测试
一组21只天竺鼠(查尔斯河(Charles River),雌性,重200-300g)经鼓室内注射50μL本文所述的含有0至6%耳用药剂的不同P407-DSP组合物。测定各组合物的凝胶消除时程。组合物的凝胶消除时程越快,表明平均溶解时间(MDT)越低。因此,测试组合物中耳结构调节剂或先天性免疫系统调节剂的注射体积和浓度,以确定临床前和临床研究的最佳参数。
实例34-活体内延长释放动力学
一组21只天竺鼠(查尔斯河,雌性,重200-300g)经鼓室内注射50μL 17%泊洛尼克F-127组合物,所述组合物经缓冲在280mOsm/kg下且含有以组合物的重量计1.5%至4.5%的耳结构调节剂或先天性免疫系统调节剂。在第1天对动物给药。基于外淋巴的分析,确定组合物的释放曲线。
实例35.泊洛沙姆浓度和活性剂浓度对释放动力学的影响
使用上述程序,制备包含不同浓度的胶凝剂和微粉化地塞米松的一系列组合物。使用上述程序确定表9中各组合物的平均溶解时间(MDT)。
表9.制备泊洛沙姆/耳用药剂组合物
样品 pH值 MDT
15.5%P407/1.5%地塞米松/PBS 7.4 46小时
16%P407/1.5%地塞米松/PBS 7.4 40小时
17%P407/1.5%地塞米松/PBS 7.4 39小时
15.5%P407/4.5%地塞米松/PBS 7.4 >7天
16%P407/4.5%地塞米松/PBS 7.4 >7天
17%P407/4.5%地塞米松/PBS 7.4 >7天
通过测量泊洛沙姆的MDT和测量耳用药剂的MDT,来确定凝胶强度和耳用药剂浓度对从组合物或装置释放耳用药剂的动力学的影响。对于各调配物,耳用药剂的半衰期和耳用药剂的平均滞留时间也是通过测量外淋巴中耳用药剂的浓度来确定。
如上所述测量各组合物的表观粘度。上述组合物或装置中约15.5%的热致可逆性聚合物凝胶浓度提供约270,000cP的表观粘度。上述组合物或装置中约16%的热致可逆性聚合物凝胶浓度提供约360,000cP的表观粘度。上述组合物或装置中约17%的热致可逆性聚合物凝胶浓度提供约480,000cP的表观粘度。
使用以上程序,测试根据本文所述的程序制备的包含胶原蛋白、角蛋白、胶原酶或微粉化胶原蛋白的组合物,以确定各组合物中耳用药剂的释放速率。
实例36-在中耳炎动物模型中对耳用药剂调配物进行评估
诱发中耳炎
这些研究使用由耳镜检查和鼓室压测量确定具有正常中耳的重400至600g的健康成年灰鼠(chinchillas)。离接种还有24小时时阻塞耳咽管以防止接种物流出耳咽管。将1毫升4-h-对数期第3型肺炎链球菌菌株(含有约40个菌落形成单位(CFU))直接放入灰鼠的中耳鼓室下大泡中。用1毫升无菌PBS接种对照小鼠。
处理
将肺炎链球菌接种小鼠和对照小鼠分成两组(每组n=10)。将含有透明质酸酶的实例3的耳用药剂调配物施用于一组动物的鼓室壁。不含透明质酸酶的对照调配物施用于第二组。在最初施用后3天,再次施用透明质酸酶和对照调配物。处理第七天后,处死动物。
结果分析
在肺炎球菌接种后12、24、48、72、96、120和148小时取样中耳的耳流体(MEF)的量。也在肺炎球菌接种后12、24、48、72、96、120和148小时进行听觉分析。最后,在肺炎球菌接种后12、24、48、72、96、120和148小时进行平衡分析。
实例37-在鼓膜穿孔动物模型中对耳用药剂调配物进行评估
在阿莫斯(Amoils,C.P.)等人,耳鼻咽喉-头颈外科(Otolaryngol Head Neck Surg.)(1992),106,47-55中描述的鼓膜穿孔动物模型中测试实例3的耳用药剂调配物。将一组20只灰鼠分成对照/未处理和测试/处理组,以比较耳用药剂调配物对鼓膜愈合的影响。动物经受热的鼓膜切除术,接着对鼓膜微瓣进行普通包裹,导致永久性的几乎全部的慢性鼓膜穿孔。对动物持续观测6-8周,以确保慢性鼓膜穿孔。弃去任何显示外耳炎或中耳炎的动物。从研究中去除掉任何穿孔自发闭合的动物。在观测期结束时,用实例1的组合物处理动物,1天1次,持续3周。通过每周目测耳科检验来检查动物的穿孔是否闭合。还记录愈合的进展。
实例38-在耳硬化症动物模型中对耳用药剂调配物进行评估
在ARO摘要(ARO abstracts),2008,摘要352,双膦酸盐抑制缺乏骨保护素的小鼠(一种耳硬化症动物模型)的听囊中的骨重塑(Bisphosphonates Inhibit Bone Remodeling inthe Otic Capsule of Osteoprotegerin Deficient Mouse,an Animal Model of Otosclerosis)中描述的耳硬化症动物模型中测试实例8的耳用药剂调配物。用实例8的调配物(100微克/公斤/天,6天;或500微克/公斤/天,6天)处理三周大的OPG敲除小鼠,并在9周和18周后处死。处死前,利用听性脑干诱发反应和畸变产物耳声发射来评估听觉。如下评估骨重塑:处理颞骨以供组织学分析,并用阿兹(Azure)或抗酒石酸酸性磷酸酶染色剂染色,用于评估破骨细胞活性。
实例39-渗出性中耳炎患者中透明质酸酶的临床试验
研究目标
这一研究的主要目标将是评估透明质酸酶与安慰剂相比在改善渗出性中耳炎患者的渗出性中耳炎症状方面的安全性和功效。
方法
研究设计
此将是比较渗出性中耳炎症状治疗中TKIXc(100mg和200mg)与安慰剂的第3期多中心双盲随机安慰剂对照的三组研究。约有150位个体将参加这一研究,并基于主办方制定的随机分配顺序,随机分配(1:1)到3个治疗组中的一个组中。每个组将接受200mg控制释放型透明质酸酶、400mg控制释放型透明质酸酶或控制释放型安慰剂调配物。
1周基线期后,将来自各组的患者随机化至16周双处理时期(8周治疗,接着8周维持时期)。主要功效测量为个体耳朵中可见的流体(即渗出物)的量的变化百分比。
实例40-耳硬化症患者中双膦酸盐的临床试验
研究目标
这一研究的主要目标将是评估双膦酸盐与安慰剂相比在改善耳硬化症患者的听觉方面的安全性和功效。
方法
研究设计
此将是比较耳硬化症治疗中利塞膦酸盐(100mg和200mg)与安慰剂的第3期多中心双盲随机安慰剂对照的三组研究。约有150位个体将参加这一研究,并基于主办方制定的随机分配顺序,随机分配(1:1)到3个治疗组中的一个组中。每个组将接受200mg利塞膦酸盐粘膜粘着性调配物、400mg利塞膦酸盐粘膜粘着性调配物或粘膜粘着性安慰剂调配物。入选标准包括计划进行外科手术、气骨隙大于20dB和正常中耳状态的耳硬化症。排除标准是怀孕、另一耳朵聋或先前在耳朵上进行镫骨切除术。
1周基线期后,将来自各组的患者随机化至16周双处理时期(8周治疗,接着8周维持时期)。主要功效测量为听觉阈的变化。
实例41-在中耳炎动物模型中对耳用药剂调配物进行评估
诱发中耳炎
这些研究使用由耳镜检查和鼓室压测量确定具有正常中耳的重400至600g的健康成年灰鼠。离接种还有24小时时阻塞耳咽管以防止接种物流出耳咽管。将1毫升4-h-对数期第3型肺炎链球菌菌株(含有约40个菌落形成单位(CFU))直接放入灰鼠的中耳鼓室下大泡中。用1毫升无菌PBS接种对照小鼠。
处理
将肺炎链球菌接种小鼠和对照小鼠分成两组(每组n=10)。将实例3的耳用药剂调配物施用于一组动物的鼓室壁。不含活性剂的对照调配物施用于第二组。在最初施用后3天,再次施用调配物。处理第七天后,处死动物。
结果分析
在肺炎链球菌接种后12、24、48、72、96、120和148小时取样中耳的耳流体(MEF)的量。也在肺炎球菌接种后12、24、48、72、96、120和148小时进行听觉分析。最后,在肺炎球菌接种后12、24、48、72、96、120和148小时进行平衡分析。
实例42.中耳炎患者中TKIXc的临床试验
研究目标
这一研究的主要目标将是评估TKIXc与安慰剂相比在改善渗出性中耳炎患者的渗出性中耳炎症状方面的安全性和功效。
方法
研究设计
此将是比较渗出性中耳炎症状治疗中TKIXc(100mg和200mg)与安慰剂的第3期多中心双盲随机安慰剂对照的三组研究。约有150位个体将参加这一研究,并基于主办方制定的随机分配顺序,随机分配(1:1)到3个治疗组中的一个组中。每个组将接受200mg控制释放型TKIXc、400mg控制释放型TKIXc或控制释放型安慰剂调配物。
1周基线期后,将来自各组的患者随机化至16周双处理时期(8周治疗,接着8周维持时期)。主要功效测量为个体耳朵中可见的流体(即渗出物)的量的变化百分比。
虽然本文已显示和描述本发明的优选实施例,但这些实施例仅以举例的方式提供。任选采用本文所述的实施例的各种替代方案实施本发明。希望随附权利要求书界定本发明的范围,因此涵盖所述权利要求书的范围内的方法和结构以及其等效物。

Claims (10)

1.一种医药组合物或装置,其包含:治疗有效量的具有实质上较少降解产物的耳结构降解剂;且其中所述组合物或装置包含两个或两个以上选自以下的特征:
(i)约0.1重量%至约10重量%之间的所述耳结构降解剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106P70E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;
(iii)足量无菌水,经缓冲以提供约5.5与约8.0之间的pH值;
(iv)多颗粒耳结构降解剂;
(v)胶凝温度在约19℃至约42℃之间;
(vi)每克组合物少于约50个菌落形成单位(cfu)的微生物剂;
(vii)每公斤个体体重少于约5个内毒素单位(EU);
(viii)所述耳结构降解剂的平均溶解时间为约30小时;和
(ix)表观粘度为约100,000cP至约500,000cP。
2.根据权利要求1所述的医药组合物或装置,其中所述组合物或装置包含:
(i)约0.1重量%至约10重量%之间的所述耳结构降解剂或其医药学上可接受的前药或盐;
(ii)约14重量%至约21重量%之间的通式E106P70E106的聚氧化乙烯-聚氧化丙烯三嵌段共聚物;
(iii)所述多颗粒耳结构降解剂;和
(iv)胶凝温度在约19℃至约42℃之间。
3.根据权利要求1所述的医药组合物或装置,其中所述组合物或装置提供约200与400mOsm/L之间的实际容量渗透摩尔浓度。
4.根据权利要求1所述的医药组合物或装置,其中所述耳结构降解剂经至少3天的时间释放。
5.根据权利要求1所述的医药组合物或装置,其中所述医药组合物是耳可接受的热致可逆凝胶。
6.根据权利要求1所述的医药组合物或装置,其另外包含染料。
7.根据权利要求1所述的医药组合物或装置,其中所述耳结构降解剂为醇、烷醇、香精油、脂肪酸、二醇、月桂氮酮、吡咯烷酮、亚砜、表面活性剂、酶或其组合。在一些实施例中,所述酶为蛋白酶、糖苷酶、蛋白酶、糖苷酶、链丝菌蛋白酶、酪蛋白酶、软骨素酶、胶原酶、皮肤素酶、弹性蛋白酶、明胶酶、肝素酶、透明质酸酶、角蛋白酶、脂肪酶、金属蛋白酶(例如基质金属蛋白酶)、葡激酶、链激酶、胰凝乳蛋白酶、内肽酶V8、胰蛋白酶、嗜热菌蛋白酶、胃蛋白酶、血纤维蛋白溶酶或其组合。
8.根据权利要求1所述的医药组合物或装置,其中所述耳结构降解剂包含多颗粒。
9.根据权利要求1所述的医药组合物或装置,其中所述耳结构降解剂基本上呈微粉化粒子形式。
10.根据权利要求1所述的医药组合物或装置,其中所述组合物或装置的pH值在约6.0至约7.6之间。
CN201510260647.2A 2008-07-21 2009-07-20 控制释放型耳结构调节和先天性免疫系统调节组合物、装置以及治疗耳部病症的方法 Pending CN104940126A (zh)

Applications Claiming Priority (17)

Application Number Priority Date Filing Date Title
US8245008P 2008-07-21 2008-07-21
US61/082,450 2008-07-21
US9120508P 2008-08-22 2008-08-22
US9120008P 2008-08-22 2008-08-22
US61/091,200 2008-08-22
US61/091,205 2008-08-22
US9438408P 2008-09-04 2008-09-04
US61/094,384 2008-09-04
US10111208P 2008-09-29 2008-09-29
US61/101,112 2008-09-29
US10884508P 2008-10-27 2008-10-27
US61/108,845 2008-10-27
US14003308P 2008-12-22 2008-12-22
US61/140,033 2008-12-22
US15677109P 2009-03-02 2009-03-02
US61/156,771 2009-03-02
CN200980128665.8A CN102105133B (zh) 2008-07-21 2009-07-20 控制释放型耳结构调节和先天性免疫系统调节组合物以及治疗耳部病症的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200980128665.8A Division CN102105133B (zh) 2008-07-21 2009-07-20 控制释放型耳结构调节和先天性免疫系统调节组合物以及治疗耳部病症的方法

Publications (1)

Publication Number Publication Date
CN104940126A true CN104940126A (zh) 2015-09-30

Family

ID=54155569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510260647.2A Pending CN104940126A (zh) 2008-07-21 2009-07-20 控制释放型耳结构调节和先天性免疫系统调节组合物、装置以及治疗耳部病症的方法

Country Status (1)

Country Link
CN (1) CN104940126A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112165860A (zh) * 2018-01-09 2021-01-01 奥德纳米有限公司 生长因子耳用制剂
CN113116888A (zh) * 2021-04-19 2021-07-16 上海兴糖生物技术有限公司 依布硒啉的新用途
CN113577238A (zh) * 2021-06-29 2021-11-02 中国农业大学 巴西苏木素增效多黏菌素类抗生素对大肠杆菌的抑菌效果应用
CN115124503A (zh) * 2022-07-01 2022-09-30 首都师范大学 反芪骨架分子及其合成方法和用途以及有机微腔激子极化激元发光二极管

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112165860A (zh) * 2018-01-09 2021-01-01 奥德纳米有限公司 生长因子耳用制剂
CN113116888A (zh) * 2021-04-19 2021-07-16 上海兴糖生物技术有限公司 依布硒啉的新用途
CN113116888B (zh) * 2021-04-19 2022-08-26 上海兴糖生物技术有限公司 依布硒啉的用途
CN113577238A (zh) * 2021-06-29 2021-11-02 中国农业大学 巴西苏木素增效多黏菌素类抗生素对大肠杆菌的抑菌效果应用
CN113577238B (zh) * 2021-06-29 2023-09-22 中国农业大学 巴西苏木素增效多黏菌素类抗生素对大肠杆菌的抑菌效果应用
CN115124503A (zh) * 2022-07-01 2022-09-30 首都师范大学 反芪骨架分子及其合成方法和用途以及有机微腔激子极化激元发光二极管
CN115124503B (zh) * 2022-07-01 2023-04-18 首都师范大学 反芪骨架分子及其合成方法和用途以及有机微腔激子极化激元发光二极管

Similar Documents

Publication Publication Date Title
CN102105133B (zh) 控制释放型耳结构调节和先天性免疫系统调节组合物以及治疗耳部病症的方法
US20210220263A1 (en) Controlled-release cns modulating compositions and methods for the treatment of otic disorders
US11369566B2 (en) Controlled release antimicrobial compositions and methods for the treatment of otic disorders
US20190298799A1 (en) Controlled-release apoptosis modulating compositions and methods for the treatment of otic disorders
US9808460B2 (en) Controlled release auris sensory cell modulator compositions and methods for the treatment of otic disorders
AU2009274137B2 (en) Controlled release antimicrobial compositions and methods for the treatment of otic disorders
US8349353B2 (en) Controlled release cytotoxic agent compositions and methods for the treatment of otic disorders
CA2732686C (en) Controlled release auris sensory cell modulator compositions and methods for the treatment of otic disorders
CN104940126A (zh) 控制释放型耳结构调节和先天性免疫系统调节组合物、装置以及治疗耳部病症的方法
AU2014200457B2 (en) Controlled release antimicrobial compositions and methods for the treatment of otic disorders

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1215394

Country of ref document: HK

WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150930

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1215394

Country of ref document: HK