CN104934569A - 一种三元复合锂-硫电池正极极片的制备方法 - Google Patents

一种三元复合锂-硫电池正极极片的制备方法 Download PDF

Info

Publication number
CN104934569A
CN104934569A CN201510230889.7A CN201510230889A CN104934569A CN 104934569 A CN104934569 A CN 104934569A CN 201510230889 A CN201510230889 A CN 201510230889A CN 104934569 A CN104934569 A CN 104934569A
Authority
CN
China
Prior art keywords
carbon nano
cellulose
pole piece
lithium
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510230889.7A
Other languages
English (en)
Inventor
孙晓刚
刘珍红
吴小勇
聂艳艳
庞志鹏
岳立福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201510230889.7A priority Critical patent/CN104934569A/zh
Publication of CN104934569A publication Critical patent/CN104934569A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种三元复合锂-硫电池正极极片的制备方法,首先将碳纳米管加入蒸馏水、乙醇等溶剂中,剪切和分散,制成碳纳米管分散液;将纤维素粉碎和打散成纤维素浆料;两者均匀混合,真空抽滤,制成碳纳米管-纤维素复合导电纸,真空干燥;然后将碳纳米管-纤维素复合导电纸和纯硫放入容器中并置于真空加热炉中,升温到450℃以上,气相渗透10分钟至20小时;真空干燥,得三元复合锂-硫电池的正极极片。本发明活性材料和集流体一体化制作,简化了锂-硫电池的制备工艺。产品具有大量微孔和巨大表面积,提高了硫在极片中装载量和密度及锂-硫电池能量密度。碳材料和硫的亲和性,增加了硫和碳纳米管的接触界面,使得界面电阻大幅减小,电池性能得以提高。

Description

一种三元复合锂-硫电池正极极片的制备方法
技术领域
本发明属于电化学和功能材料领域,涉及电池正极极片的制备方法。
背景技术    
锂-硫电池具有突出的高比能量优势和原料廉价、环境友好等优点,有望成为新一代高能电池体系。以金属锂为负极、单质硫为正极的锂-硫电池的理论比能量可达到2 600 Wh / kg,硫的理论比容量可达1675 mAh / g,远大于石墨372 mAh / g的理论容量,单质硫廉价、环境友好的特性又使该体系具有极大的开发潜力。
发明内容
本发明的目的是提出一种锂-硫电池正极极片的制备方法,使用纳米分散技术、传统造纸和化学气相渗透技术,将碳纳米管、纤维素纤维和硫三组分组合在一起,通过造纸技术制成碳纳米管和-纤维素复合的片状板材,然后将硫加热汽化,使硫原子渗透到复合纸的孔隙中,吸附硫元素后将复合纸真空干燥,再扎制和裁剪后用于制造各种规格碳纳米管-纤维素-硫三元复合的锂-硫电池的正极极片。
本发明是通过以下技术方案实现的。
(1)将碳纳米管加入蒸馏水、乙醇、苯、二甲苯或丙酮等溶剂中,经高速剪切和砂磨机分散处理,制成碳纳米管分散液。
(2)用高速剪分散设备将纤维素纤维粉碎和打散成细小的纤维素浆料。
(3)将碳纳米管分散液和纤维素浆料均匀混合,采用真空抽滤工艺制成碳纳米管-纤维素复合导电纸,然后真空干燥去除水分。
(4)将碳纳米管-纤维素复合导电纸和纯硫(升华硫)放入容器中并置于真空加热炉中,升温到450℃以上,硫在此温度转变为气态,气态硫原子渗透到复合导电纸的孔隙中。气相渗透的时间在10分钟至20小时,根据需要任意调节。控制气态硫渗透复合纸的时间,可控制复合纸中硫的吸附量,从而可制备特定比容量的正极极片。
(5)吸附硫元素后将复合纸真空干燥,再扎制和裁剪后用于制造各种规格碳纳米管-纤维素-硫三元复合的锂-硫电池的正极极片
本发明的产品可裁剪成需要的形状和大小,或者直接制造成特定的形状和大小的锂-硫电池正极极片产品。本发明充分利用新的工艺方法制造锂-硫电池正极,活性材料和集流体一体化制做,不需要另外在增加金属集流体,可减轻电池重量,简化锂-硫电池的制造工艺。该发明制备的碳纳米管/纸纤维复合导电纸中具有大量微小孔洞,和巨大表面积,硫元素很容易填充其中,从而提高硫在极片中的装载量和密度,提高锂-硫电池的能量密度。碳材料和硫具有很好的亲和性,硫吸附在碳纳米管表面,增加了硫和碳纳米管的接触界面,使得界面电阻大幅减小,电子的传输更为容易,电池的性能得以有效提高。
本发明所述的锂-硫电池正极的用途如下:(1)用做锌锰纸电池正极,(2)用作锂离子纸电池正极;(3)用于制造超级电容器;(4)用作锂电池正极。
附图说明
附图1为本发明的正极极片的SEM照片。
具体实施方式
本发明将通过以下实施例作进一步说明。
实施例1。
(1)取1克碳纳米管加入500ml蒸馏水中,分别经高速剪切和砂磨处理1小时,使碳纳米管均匀分散在液体中。
(2)将1克纸纤维加入500ml蒸馏水中,高速剪切2小时,将纸纤维打碎并均匀分散在水溶液中,制成纤维素浆料。
(3)将分散好的碳纳米管浆料及纤维素浆料混合均匀,采用真空抽滤工艺制成碳纳米管-纤维素复合导电纸,然后真空干燥去除水分。
(4)将碳纳米管-纤维素复合导电纸和纯硫(升华硫)放入容器中置于真空加热炉中,升温到460℃,硫在此温度转变为气态,硫原子渗透到复合导电纸中。
(5)气相渗透的时间为10分钟。
(6)吸附硫元素后将复合纸真空干燥,再扎制和裁剪后用于制造各种规格碳纳米管-纤维素-硫三元复合的锂-硫电池的正极极片
实施例2。
(1)取2克碳纳米管加入500ml蒸馏水中,分别经高速剪切和砂磨处理1小时,使碳纳米管均匀分散在液体中。
(2)将1克纸纤维加入500ml蒸馏水中,高速剪切2小时,将纸纤维打碎并均匀分散在水溶液中,制成纤维素浆料。
(3)将分散好的碳纳米管浆料及纤维素浆料混合均匀,采用真空抽滤工艺制成碳纳米管-纤维素复合导电纸,然后真空干燥去除水分。
(4)将碳纳米管-纤维素复合导电纸和纯硫(升华硫)放入容器中置于真空加热炉中,升温到480℃,硫在此温度转变为气态,硫原子渗透到复合导电纸中。
(5)气相渗透的时间为2小时。
(6)吸附硫元素后将复合纸真空干燥,再扎制和裁剪后用于制造各种规格碳纳米管-纤维素-硫三元复合的锂-硫电池的正极极片
实施例3。
(1)取3克碳纳米管加入500ml蒸馏水中,分别经高速剪切和砂磨处理1小时,使碳纳米管均匀分散在液体中。
(2)将1克纸纤维加入500ml蒸馏水中,高速剪切2小时,将纸纤维打碎并均匀分散在水溶液中,制成纤维素浆料。
(3)将分散好的碳纳米管浆料及纤维素浆料混合均匀,采用真空抽滤工艺制成碳纳米管-纤维素复合导电纸,然后真空干燥去除水分。
(4)将碳纳米管-纤维素复合导电纸和纯硫(升华硫)放入容器中置于真空加热箱中,升温到460℃,硫在此温度转变为气态,硫原子渗透到复合导电纸中。
(5)气相渗透的时间在20小时。
(6)吸附硫元素后将复合纸真空干燥,再扎制和裁剪后用于制造各种规格碳纳米管-纤维素-硫三元复合的锂-硫电池的正极极片。

Claims (1)

1.一种三元复合锂-硫电池正极极片的制备方法,其特征是按以下步骤:
(1)将碳纳米管加入蒸馏水、乙醇、苯、二甲苯或丙酮溶剂中,经高速剪切和砂磨机分散处理,制成碳纳米管分散液;
(2)用高速剪分散设备将纤维素纤维粉碎和打散成细小的纤维素浆料;
(3)将碳纳米管分散液和纤维素浆料均匀混合,采用真空抽滤工艺制成碳纳米管-纤维素复合导电纸,然后真空干燥去除水分;
(4)将碳纳米管-纤维素复合导电纸和纯硫放入容器中并置于真空加热炉中,升温到450℃以上,气相渗透10分钟至20小时;
(5)真空干燥,得三元复合锂-硫电池的正极极片。
CN201510230889.7A 2015-05-08 2015-05-08 一种三元复合锂-硫电池正极极片的制备方法 Pending CN104934569A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510230889.7A CN104934569A (zh) 2015-05-08 2015-05-08 一种三元复合锂-硫电池正极极片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510230889.7A CN104934569A (zh) 2015-05-08 2015-05-08 一种三元复合锂-硫电池正极极片的制备方法

Publications (1)

Publication Number Publication Date
CN104934569A true CN104934569A (zh) 2015-09-23

Family

ID=54121633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510230889.7A Pending CN104934569A (zh) 2015-05-08 2015-05-08 一种三元复合锂-硫电池正极极片的制备方法

Country Status (1)

Country Link
CN (1) CN104934569A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275581A (zh) * 2017-05-27 2017-10-20 双登集团股份有限公司 含有碳材料的负极铅膏均质工艺
CN107611342A (zh) * 2017-08-31 2018-01-19 柔电(武汉)科技有限公司 一种使用垫层的柔性锂离子电池电极片及其制备方法
CN108987796A (zh) * 2018-09-10 2018-12-11 江西克莱威纳米碳材料有限公司 一种柔性锂离子电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598142A (zh) * 2004-08-20 2005-03-23 中国科学院山西煤炭化学研究所 一种炭纤维纸及其制备方法
CN101562244A (zh) * 2009-06-02 2009-10-21 北京理工大学 锂二次电池用单质硫复合材料的制备方法
CN102561109A (zh) * 2011-12-20 2012-07-11 南昌大学 一种碳纳米管导电纸的制备方法
CN102610786A (zh) * 2011-12-20 2012-07-25 南昌大学 一种三元复合纸电池正极的制备方法
CN104393233A (zh) * 2014-10-10 2015-03-04 南京中储新能源有限公司 一种基于石墨烯阵列的碳硫复合电极及二次电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598142A (zh) * 2004-08-20 2005-03-23 中国科学院山西煤炭化学研究所 一种炭纤维纸及其制备方法
CN101562244A (zh) * 2009-06-02 2009-10-21 北京理工大学 锂二次电池用单质硫复合材料的制备方法
CN102561109A (zh) * 2011-12-20 2012-07-11 南昌大学 一种碳纳米管导电纸的制备方法
CN102610786A (zh) * 2011-12-20 2012-07-25 南昌大学 一种三元复合纸电池正极的制备方法
CN104393233A (zh) * 2014-10-10 2015-03-04 南京中储新能源有限公司 一种基于石墨烯阵列的碳硫复合电极及二次电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275581A (zh) * 2017-05-27 2017-10-20 双登集团股份有限公司 含有碳材料的负极铅膏均质工艺
CN107611342A (zh) * 2017-08-31 2018-01-19 柔电(武汉)科技有限公司 一种使用垫层的柔性锂离子电池电极片及其制备方法
CN108987796A (zh) * 2018-09-10 2018-12-11 江西克莱威纳米碳材料有限公司 一种柔性锂离子电池及其制备方法

Similar Documents

Publication Publication Date Title
Eftekhari et al. Cathode materials for lithium–sulfur batteries: a practical perspective
Chen et al. Cross-linking hollow carbon sheet encapsulated CuP2 nanocomposites for high energy density sodium-ion batteries
Deng et al. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries
Peng et al. Nitrogen and oxygen dual-doped hollow carbon nanospheres derived from catechol/polyamine as sulfur hosts for advanced lithium sulfur batteries
Imtiaz et al. Biomass-derived nanostructured porous carbons for lithium-sulfur batteries
Qu et al. A simple SDS-assisted self-assembly method for the synthesis of hollow carbon nanospheres to encapsulate sulfur for advanced lithium–sulfur batteries
Ma et al. Synthesis of micro-and mesoporous carbon spheres for supercapacitor electrode
Jiang et al. Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium–selenium batteries
Xu et al. Metal-organic framework-74-Ni/carbon nanotube composite as sulfur host for high performance lithium-sulfur batteries
Wang et al. Hierarchical SnO2/carbon nanofibrous composite derived from cellulose substance as anode material for lithium‐ion batteries
Huang et al. Understanding the roles of activated porous carbon nanotubes as sulfur support and separator coating for lithium-sulfur batteries
Saroha et al. Freestanding interlayers for Li–S batteries: design and synthesis of hierarchically porous N-doped C nanofibers comprising vanadium nitride quantum dots and MOF-derived hollow N-doped C nanocages
Zhou et al. Synthesis and electrochemical performance of ZnSe electrospinning nanofibers as an anode material for lithium ion and sodium ion batteries
Li et al. Review of the application of biomass-derived porous carbon in lithium-sulfur batteries
Liu et al. Biomass-derived Activated Carbon for Rechargeable Lithium-Sulfur Batteries.
Wu et al. A multidimensional and nitrogen-doped graphene/hierarchical porous carbon as a sulfur scaffold for high performance lithium sulfur batteries
Xu et al. The superior cycle and rate performance of a novel sulfur cathode by immobilizing sulfur into porous N-doped carbon microspheres
CN105161722A (zh) 一种锂硫电池正极材料用多孔碳纳米纤维膜及其制备方法
Gao et al. Sulfur double encapsulated in a porous hollow carbon aerogel with interconnected micropores for advanced lithium-sulfur batteries
Hou et al. Copper sulfide nanoneedles on CNT backbone composite electrodes for high-performance supercapacitors and Li-S batteries
Wu et al. Nitrogen, sulfur-codoped micro–mesoporous carbon derived from boat-fruited sterculia seed for robust lithium–sulfur batteries
Dong et al. Inhibited shuttle effect by functional separator for room-temperature sodium-sulfur batteries
Zuo et al. Stable lithium–sulfur batteries with high sulfur content fabricated by ultralight ochroma lagopus-derived carbon with dopamine shell as sulfur host
Li et al. Ultrafine Sb2S3@ carbon-nanofibers for fast and stable sodium storage
CN104979527A (zh) 一种柔性锂-硫电池正极的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150923