CN104934389B - 高电子迁移率晶体管温度传感器 - Google Patents

高电子迁移率晶体管温度传感器 Download PDF

Info

Publication number
CN104934389B
CN104934389B CN201510113995.7A CN201510113995A CN104934389B CN 104934389 B CN104934389 B CN 104934389B CN 201510113995 A CN201510113995 A CN 201510113995A CN 104934389 B CN104934389 B CN 104934389B
Authority
CN
China
Prior art keywords
temperature
hemt
signal
sbd
instruction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510113995.7A
Other languages
English (en)
Other versions
CN104934389A (zh
Inventor
迪利普·马达夫·瑞恩布德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP BV
Original Assignee
NXP BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP BV filed Critical NXP BV
Publication of CN104934389A publication Critical patent/CN104934389A/zh
Application granted granted Critical
Publication of CN104934389B publication Critical patent/CN104934389B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明为高电子迁移率晶体管温度传感器。一种集成结构(1),包括:高电子迁移率晶体管(HEMT)(3)和与HEMT相集成的温度感应结构(8),温度感应元件(7)配置为提供指示温度的信号,以为HEMT提供温度保护。

Description

高电子迁移率晶体管温度传感器
技术领域
本发明涉及一种包括高电子迁移率晶体管(High-Electron-MobilityTransistor,HEMT)的集成结构。它还涉及一种采用该结构的集成电路组件和电子器件。
背景技术
在功率半导体中,自发热是一种已知的问题,在AlGaN/GaN功率HEMT中,由于典型的高功耗水平,这个问题显得特别重要。在静态和动态的情况下,GaN HEMT和GaN二极管在应用板上进行测试时,被观察到要蒙受热效应之苦。在静态直流I-V测量中,自发热效应得以显现,其中观察到当功耗增大时,饱和区出现明显的负斜率。电流崩塌是HEMT中的一种“记忆”效应,其中流经器件的电流取决于先前施加到器件上的电压。温度越高,电流崩塌的影响越坏。从而,在进行系统设计时,需要特别仔细地注意GaN功率半导体的栅极驱动和漏-源偏置。在例如功率因数补偿(PFC)、升压电路或电机驱动控制等应用中,器件在开关时非常迅速地到达高温度,且经常表现出热逸溃,由于它超过了最大结温度(Tj)和封装的限制,会引起器件的损坏。
发明内容
根据本发明的一个方面,提供一种集成结构,包括:高电子迁移率晶体管(HEMT)和与HEMT相集成的温度感应结构,温度感应结构配置为提供指示温度的信号,以为HEMT提供温度保护。
由此,可包括基于GaN的器件的HEMT具有了集成的温度感测,将较为有利。这将使得HEMT更加可靠。温度感应结构或其部分可被集成在HEMT结构的有源区、漏区、源区或栅区。利用可以作为温度感应结构的半导体结构,可以使得HEMT的温度得以有效地量测。
所述结构可进一步包括温度保护元件,温度保护元件配置为接收指示温度的信号,并控制所述HEMT。将保护电路与HEMT集成是较为有利的。
温度感应结构可以包括一个或多个温度感应元件。温度感应元件可以分布在HEMT上。温度感应元件可以位于由HEMT占据的管芯区域上不同的点位处,这将是有利的。HEMT在使用中的温度可能不是均匀的,从而,提供多个温度感应元件将会使得可能遭受过热温度的分区得到更为可靠的测量。
温度感应元件可包括肖特基势垒二极管(SBD)。温度感应元件可以使用由于压电极化而发生的二维电子气。HEMT可以是基于氮化镓的HEMT结构。由于SBD可以在GaN工艺过程中与HEMT一起形成,而不需要额外的掩模或工艺步骤,这是有利的。可以理解的是,基于GaN的工艺可包括多层AlGaN,以制作超晶格和金属,例如镍或镍钒,以形成肖特基栅。
温度感应元件可以分布在HEMT的栅极手指区域。将温度感应元件设置在此处是有利的,这将可以设置多个感应元件,潜在地得到更为精确的温度分布信息。
温度保护元件可配置为提供HEMT控制信号,以响应于指示温度的信号而关断HEMT。可选地,温度保护元件可配置为向本结构以远的器件提供温度信息,以与外部保护或补偿机制一起使用。
温度保护元件可位于HEMT的源极节点邻近。这将至少为测试目的地向该元件提供较佳的电气耦合。
温度保护元件可配置为向HEMT的栅极提供HEMT控制信号。从而,可向HEMT提供一个栅-源电压(Vgs),以关闭其运行。在耗尽型HEMT(通常导通)的情况下,Vgs可以包括低于阈值电压Vth的负电压。对于增强型的HEMT(通常关断),Vgs可包括低于阈值电压Vth的正电压。可以理解的是,当Vgs被拉到低于HEMT的阈值电压Vth(开启阈值电压)时,HEMT将由导通切换至关断状态,从而关闭。
温度感应结构可以包括绝对温度比例电路(PTAT),其配置为输出指示温度的信号。PTAT电路可使用两个或多个温度感应元件。PTAT电路可包括第一和第二肖特基势垒二极管,其各配置为由恒定电流供给。该恒定电流可以由电流源供电,电流源可以由至少一个GaN HEMT和电阻形成。第一和第二肖特基势垒二极管可配置为运行于不同的电流密度。第一SBD和第二SBD可具有不同的面积。第一SBD和第二SBD之间的电压可以包括所述指示温度的信号。从而,SBD在PTAT电路中作用为温度传感器。温度感应结构可包括绝对温度比例电路,其配置为使用适应于运行在不同电流密度下的一对温度感应元件,来得到指示温度的信号。
温度感应结构可包括电压频率转换器。温度感应结构可以包括第一温度感应元件和第二温度感应元件,配置为控制振荡器。振荡器可包括多谐振荡器或方波发生器,配置为从第一和第二温度感应元件所接收的信号而生成指示温度的信号,第一和第二温度感应元件可包括两个GaNSBD。振荡器可配置为生成指示温度的信号,其具有的频率是HEMT的温度的函数。第一SBD和第二SBD可具有实质上相同的面积。第一SBD和第二SBD可以布置为极性相反地并联,并配置为控制振荡器。温度感应结构可包括多谐振荡器,多谐振荡器配置为使用由一对温度感应元件所得到的信号,多谐振荡器配置为生成指示温度信号的信号,所述指示温度信号的信号具有的频率是HEMT的温度的函数。
温度保护元件可包括比较元件,比较元件配置为将指示温度的信号与预定的设定点比较,并当设定点被超过时生成逻辑信号。感应的温度可以包括来自PTAT电路或振荡器/多谐振荡器/方波发生器的温度信号。该设定点可以包括预定的电压信号,该预定的电压信号代表感应的温度欲比较的阈值温度。
比较元件可包括频率电压变换器,并可配置为将指示温度的信号的频率与预定的设定点比较,并当达到或超过该设定点时生成指示器信号,该指示器信号可包括逻辑信号。比较元件可以包括锁相回路,锁相回路配置为当指示温度的信号的频率与表现阈值温度的预定阈值频率匹配时闩锁。此类闩锁可以使用异或逻辑结构,以作动为鉴相器。
从而,比较元件可以通过指示器/逻辑信号的方式,配置为指示所感测的温度是否上升到阈值以上。该信号可被用来控制HEMT,以防止温度进一步上升。可以理解的是,比较元件可以提供指示器信号,指示器信号可以具有多于两个状态,并可以提供对HEMT的梯度控制信号。
温度保护元件可包括电平转换器,电平转换器配置为响应于指示器信号或逻辑信号而生成控制信号,以施加到HEMT的栅极。由于电平转换器可以将指示器信号或逻辑信号的一种电气属性进行转换,典型地为电压,从而使用它可以在HEMT的栅极直接作用,以控制通过HEMT的功率并从而控制其温度,因此电平转换器是有好处的。
电平转换器可包括极性变换器。在HEMT的特定运行模式下,可能需要控制信号具有与逻辑信号相反的极性。从而,极性变换器可以提供用来进行该转换。
HEMT、温度感应结构以及温度保护电路在同样的管芯上集成在同样的半导体主体中。这为HEMT提供了一种紧凑的温度保护解决方案。
根据本发明的第二方面,提供了一种集成电路组件,其包括了第一方面所述的结构。。
该组件可包括用来接收负电源供给的引脚和用来接收正电源供给的引脚。
根据本发明的第三方面,提供了一种电子器件,其包括了第一方面所述的结构。该电子器件可以包括基于GaN的开关模式电源或马达控制系统。
附图说明
以下通过示例的方式结合附图对于本发明的实施方式进行进一步描述。
图1是一种实施方式的集成结构的平面视图;
图2是一种实施方式的集成结构的示意图;
图3是另一种实施方式的集成结构的示意图;
图4是一种实施方式的PTAT电路;
图5是一种实施方式的比较器电路;
图6是一种实施方式的电平转换器电路;以及
图7是一种实施方式的电压频率转换器电路。
具体实施方式
图1所示的是形成在半导体主体2中的一种集成结构1。该结构1包括HEMT 3,HEMT3具有源区4、栅区5和漏区6。该结构进一步包括数个温度感应元件7a-7d,其集成在GaN半导体主体2的HEMT 3的有源区中。温度感应元件包括肖特基势垒二极管(Schottky BarrierDiode,SBD)。相应地,SBD 7分布在定义出HEMT 3的区域上。在图1中,SBD 7a-7d被提供在HEMT的导通通道中。温度感应元件与HEMT 3之间电隔离,并且可以被设置于主体2上HEMT所处的位置中的任何位置。温度感应元件形成为温度感应结构8的一部分,温度感应结构8配置为提供可以指示HEMT 3的温度的信号。该结构1包括温度保护元件9,温度保护元件9配置为使用来自于温度感应结构的信号,以提供控制信号来控制HEMT 3。温度感应结构8可配置为提供用于外部电路进行处理的温度信号。可选地,并如该实施方式如示的,温度保护元件9可以配置为使用来自温度感应结构8的信息,以控制HEMT的运行。
图2所示的是温度感应结构8和温度保护元件9的元件部分的第一种实施方式。温度感应结构8包括绝对温度比例(Proportional To Absolute Temperature,PTAT)电路10。图4中将显示PTAT电路的更多细节。电路10配置为使用SBD 7a-7d中的对,以作为温度感应元件。PTAT电路10配置为提供输出电压,该输出电压与HEMT的温度成线性比例。从而,PTAT电路在其输出处提供温度信号。
参考图4所示,PTAT电路显示为在两个分支40、41中使用SBD中的两个,7a和7b。PTAT电路10的每人分支都由恒定电流供给。图中所示的电流源42、43用来向SBD 7a、7b提供恒定电流。电流源42、43可为可以理解的任意合适的恒定电流电路。SBD 7a、7b配置为其中一个的面积大于另一个。在该实施方式中,SBD 7a的面积是SBD 7b的面积的10倍。可以预期的是,其他可能的倍数或者面积差异也可适用。第一SBD 7a和第二SBD 7b上的电压之差ΔVSBD从而形成为PTAT电路10的温度信号44。因此,利用SBD的面积的缩放,通过将SBD 7a、7b运行于不同的电流密度,可以产生出温度有关的输出电压(ΔVSBD)。电流源42和43可以设计为利用GaN HEMT和电阻。在PTAT电路配置中的SBD从而作动为温度感应元件。其中A1为SBD 7a的面积,A2为SBD 7b的面积,A1=10*A2
温度保护元件9包括比较元件,比较元件包括比较器12,比较器12配置为接收温度信号44,将其与预定的阈值温度(在本实施方式中例如为200℃)相比较,并且响应于超过所述阈值温度而产生逻辑信号。从而,比较器12可以配置为当温度感应元件探测到的温度低于阈值时生成逻辑“0”信号,而当所述预定温度被超过时生成逻辑“1”信号。使得代表预定温度被超过的逻辑“1”信号包含比逻辑“0”信号更高的电压是有利的,因为其可以用作HEMT3的控制信号。可以理解的是,逻辑信号的两种状态可以具有任意大小或符号,且并不必限定于制定的逻辑电压水平。
图5中示出了比较器12的更多细节。比较器12利用耗尽型(D-mode)HEMT进行设计,并且特别地,只利用D-mode HEMT Q1-Q9。在50处,偏置信号施加到HEMT Q1和Q2的漏极端。HEMT Q1至Q4形成上拉结构,以将输入信号提拉到特定的水平。HEMT Q5和Q6的栅极施加提升信号,其将通过增大HEMT的输出电阻而增大直流增益。HEMT Q9的栅极施加外部参考电压,例如-1.5V。对于作为负载的HEMT(Q1、Q2、Q3、Q4)来说,D-mode HEMT负载Q1、Q2的宽长比(W/L)(远)小于Q3、Q4的。这种配置给出了比单个HEMT负载更大的输出电阻。温度信号44送到第一输入端51。代表阈值的信号送到第二输入端52。比较器提供两个输出53和54。第一输出53包括逻辑信号。第二输出54提供互补输出。偏置信号施加到HEMT Q9的源极55处。
温度保护元件9进一步包括电平转换器14。电平转换器14配置为对由比较器12所接收的逻辑信号的电性属性进行转换,以便其适用于控制HEMT 3。从而,逻辑信号的电平可以被转换到适当的电压上,以向HEMT 3施加一个栅-源电压Vgs。通过施加该信号,HEMT可以被关断。可选地,HEMT可以运行在耗尽模式中,在这种情况下,关断HEMT 3所需的栅-源阈值电压Vgs(th)可以是负的。相应地,来自电平转换器14的控制信号需要比Vgs(th)负得更多,才能关断HEMT 3。从而,电平转换器14可以包括极性变换器,以变换逻辑信号的极性。
电平转换器14可配置为监听HEMT 3的运行状态,以保证其将逻辑信号转换到适当的电压,并具有适当的极性,从而关断HEMT 3。可选地,电平转换器14可以配置为输出具有预定的大小和极性的控制信号。
图6中示出了电平转换器的更多细节。电平转换器14在输入端60处接收逻辑信号,并在输入端61处接收参考电压。输入信号从而由放大器62进行放大至合适的电压,以便输出为控制信号(在图6中标记为“栅极保护”)。电平转换器可以是标准电路。其可以包括电阻分压器和GaNHEMT以及SBD作为有源元件。
相应地,如图2所示,控制信号被施加到HEMT 3的栅极16以将其关断,从而其转为关断状态。从而,由于HEMT 3不运行,其温度可以降低。由温度感应元件7所感测到的温度将会降低,直至比较器12确定温度信号不再超过预定的阈值温度。比较器随后将逻辑信号设置为逻辑“0”,施加到HEMT 3的栅极上的电压移除,允许其正常运行。比较器12可以配置为待温度下降到比阈值温度低一个预定量时才提供逻辑“0”信号。这将有利于防止由于HEMT的温度通过温度保护元件9进行启用和不启用而快速上升以及掉落阈值温度所引起的振荡。
图3所示的是温度感应结构8和温度保护元件9的第二种实施方式。在该实施方式中,绝对温度比例(PTAT)电路10由电压频率(Voltage To Frequency,VTF)转换器30所取代。图7中显示了VTF转换器30的更多细节,VTF转换器30配置为使用两个SBD 7c和7d作为温度感应元件。SBD 7c和7d具有相同的面积。两个SBD并联连接并且极性相反,并向放大器71的反相输入端提供一个输入。电路30的频率输出与输入处SBD 7c和7d的正向电压或膝点电压成比例。VTF转换器包括方波发生器(多谐振荡器),其使用SBD对7c和7d来在输出端72处产生具有适当频率的信号。输出频率与由SBD 7c和7d所感测到的温度成比例,从而当温度上升时,输出频率上升。方波信号包括温度信号,其中其频率代表了温度。
进一步地,在该第二实施方式中,比较器器件12包括频率电压变换器电路。电压与预定的阈值电压进行比较,当阈值被超过时,产生逻辑“1”信号。在可替换的实施方式中,比较器件包括频率捕获电路,其可以包括一个锁相回路(Phase Locked Loop,PLL),PLL配置为利用异或逻辑门作为鉴相器而闩锁在感兴趣的频率上(例如与预定的阈值温度相应的阈值频率)。从而,当温度信号频率到达一个相应于过温度条件的阈值时,PLL电路产生逻辑“1”信号。PLL提供电压输出,该电压输出相应于温度变化快速反应。因此,PLL作动为频率电压变换器。可以理解的是,逻辑电平不必要地对应于已知的逻辑电压水平,所述比较器件可以生成任意可能的信号以表示温度已经达到和/或超过预定的阈值。
如在前一个实施方式所述的,逻辑信号由电平转换器14接收。相应地,产生一个控制信号,以控制HEMT 3。在温度感应结构8和温度保护元件9之间还可以提供一个误差积分器。该误差积分器可以形成为锁相回路结构的一部分。
温度保护元件9可以只由肖特基二极管、电阻器、电容器和耗尽型晶体管构成。这些元件可以利用GaN半导体工艺便利地形成。结构1可能有必要接收负电压功率以及正电压功率。若使用增强型晶体管而不是耗尽型晶体管,将可能排除掉负电压供电单元的需求。
在上述实施方式中,SBD 7显示为分布在由HEMT 3所占据的管芯区域。在其他实施方式中,SBD可以设置为带状、阵列或群组。SBD可以设置在HEMT 3的中央,位于导通通道中。包括多个串联的SBD的带状或阵列胜于单个SBD。这将有利于生成足够大的电压,并有利于将信号与噪声区隔开来。在上述的实施方式中,温度感应结构、比较元件和电平转换器由SBD、D-mode HEMT、电阻以及电容形成。PTAT电路设计为使用SBD、电阻和D-mode HEMT。比较器使用D-mode HEMT和SBD来进行偏置,以及用作负载和驱动晶体管。电平转换器使用基于GaN的电阻分压器以及使用D-mode HEMT作为有源器件。可以预期的是,使用GaN工艺进行集成的其他元件的结构也是可行的。

Claims (14)

1.一种集成结构,其特征在于,包括:
具有有源区的高电子迁移率晶体管(HEMT);
温度感应结构,包括至少一个具有与高电子迁移率晶体管(HEMT)的有源区相集成的有源区的肖特基势垒二极管温度感应器,所述温度感应结构配置为提供至少一个指示温度的信号;以及
温度保护电路,配置为响应于所述至少一个指示温度的信号而生成关断所述高电子迁移率晶体管(HEMT)的控制信号。
2.如权利要求1所述的结构,其特征在于:所述温度感应结构包括数个分布于高电子迁移率晶体管(HEMT)上的温度感应元件,并包括所述肖特基势垒二极管,其中所述肖特基势垒二极管的有源区包括一部分有源区用作高电子迁移率晶体管(HEMT)的导通沟道。
3.如权利要求2所述的结构,其特征在于:每个温度感应元件包括肖特基势垒二极管。
4.如任一在前权利要求所述的结构,其特征在于:所述高电子迁移率晶体管(HEMT)是基于氮化镓的高电子迁移率晶体管(HEMT)。
5.如权利要求1所述的结构,其特征在于:所述温度保护电路配置为向高电子迁移率晶体管(HEMT)的栅极提供控制信号,以响应于来自所述温度感应结构的信号而关断所述高电子迁移率晶体管(HEMT)。
6.如权利要求1所述的结构,其特征在于:所述温度感应结构包括绝对温度比例电路,所述绝对温度比例电路配置为使用适应于运行在不同电流密度下的一对温度感应元件,来得到所述指示温度的信号。
7.如权利要求1所述的结构,其特征在于:所述温度感应结构包括多谐振荡器,多谐振荡器配置为使用由一对温度感应元件所得到的信号,多谐振荡器配置为生成指示温度信号的信号,所述指示温度信号的信号具有的频率是高电子迁移率晶体管(HEMT)的温度的函数。
8.如权利要求1所述的结构,其特征在于:所述温度保护电路包括比较元件,比较元件配置为将所述指示温度的信号与预定的设定点比较,并当所述设定点被超过时生成逻辑信号。
9.如权利要求8所述的结构,其特征在于:所述比较元件包括频率电压变换器,并配置为将指示温度的信号与预定的设定点比较,并当所述设定点被超过时生成逻辑信号。
10.如权利要求8或9所述的结构,其特征在于:所述温度保护电路包括电平转换器,电平转换器配置为响应于所述逻辑信号而生成控制信号,以施加到高电子迁移率晶体管(HEMT)的栅极。
11.如权利要求10所述的结构,其特征在于:所述电平转换器包括极性变换器。
12.如权利要求1所述的结构,其特征在于:所述高电子迁移率晶体管(HEMT)、温度感应结构以及温度保护电路集成在同样的GaN半导体主体中。
13.一种包括权利要求1至12中任意一项所述的结构的集成电路组件。
14.一种包括权利要求1至12中任意一项所述的结构的电子器件。
CN201510113995.7A 2014-03-19 2015-03-16 高电子迁移率晶体管温度传感器 Active CN104934389B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14160771.3A EP2922093B1 (en) 2014-03-19 2014-03-19 Hemt temperature sensor
EP14160771.3 2014-03-19

Publications (2)

Publication Number Publication Date
CN104934389A CN104934389A (zh) 2015-09-23
CN104934389B true CN104934389B (zh) 2018-03-02

Family

ID=50289568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510113995.7A Active CN104934389B (zh) 2014-03-19 2015-03-16 高电子迁移率晶体管温度传感器

Country Status (3)

Country Link
US (1) US20150270254A1 (zh)
EP (1) EP2922093B1 (zh)
CN (1) CN104934389B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102089881B1 (ko) * 2015-10-01 2020-03-16 로무 가부시키가이샤 반도체 장치
CN115000169A (zh) 2020-08-28 2022-09-02 英诺赛科(珠海)科技有限公司 半导体装置结构
WO2022191907A1 (en) * 2021-03-11 2022-09-15 Microchip Technology Inc. Ic thermal protection
CN113793870A (zh) * 2021-11-16 2021-12-14 深圳市时代速信科技有限公司 一种半导体器件及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549056B1 (en) * 1999-10-05 2003-04-15 Electronikkatyo Oy Method and apparatus for providing a galvanically isolating circuit for the transfer of analog signals
CN103187442A (zh) * 2011-12-28 2013-07-03 英飞凌科技奥地利有限公司 集成异质结半导体器件和用于生产该半导体器件的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2261321B (en) * 1991-11-06 1995-10-11 Motorola Inc Power semiconductor device with temperature sensor
US6479843B2 (en) * 2000-04-27 2002-11-12 Motorola, Inc. Single supply HFET with temperature compensation
US20030020132A1 (en) * 2001-07-25 2003-01-30 Motorola, Inc. Methods and apparatus for controlling temperature-sensitive devices
JP2004260364A (ja) * 2003-02-25 2004-09-16 Renesas Technology Corp 半導体装置及び高出力電力増幅装置並びにパソコンカード
WO2007006337A1 (en) * 2005-07-13 2007-01-18 Freescale Semiconductor, Inc. A temperature sensing device
US7701731B2 (en) * 2007-02-13 2010-04-20 Akros Silicon Inc. Signal communication across an isolation barrier
US7923996B2 (en) * 2008-02-26 2011-04-12 Allegro Microsystems, Inc. Magnetic field sensor with automatic sensitivity adjustment
US8076699B2 (en) * 2008-04-02 2011-12-13 The Hong Kong Univ. Of Science And Technology Integrated HEMT and lateral field-effect rectifier combinations, methods, and systems
JP2010050280A (ja) * 2008-08-21 2010-03-04 Toyota Motor Corp 窒化物半導体装置
US20110147796A1 (en) * 2009-12-17 2011-06-23 Infineon Technologies Austria Ag Semiconductor device with metal carrier and manufacturing method
US8492773B2 (en) * 2010-04-23 2013-07-23 Intersil Americas Inc. Power devices with integrated protection devices: structures and methods
US8350271B2 (en) * 2010-11-22 2013-01-08 Integra Technologies, Inc. Transistor including shallow trench and electrically conductive substrate for improved RF grounding
US9276097B2 (en) * 2012-03-30 2016-03-01 Infineon Technologies Austria Ag Gate overvoltage protection for compound semiconductor transistors
US9506817B2 (en) * 2012-05-12 2016-11-29 Integrated Device Technology, Inc Temperature detection method and device with improved accuracy and conversion time
US8901989B2 (en) * 2012-07-26 2014-12-02 Qualcomm Incorporated Adaptive gate drive circuit with temperature compensation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549056B1 (en) * 1999-10-05 2003-04-15 Electronikkatyo Oy Method and apparatus for providing a galvanically isolating circuit for the transfer of analog signals
CN103187442A (zh) * 2011-12-28 2013-07-03 英飞凌科技奥地利有限公司 集成异质结半导体器件和用于生产该半导体器件的方法

Also Published As

Publication number Publication date
CN104934389A (zh) 2015-09-23
EP2922093A1 (en) 2015-09-23
US20150270254A1 (en) 2015-09-24
EP2922093B1 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
CN104934389B (zh) 高电子迁移率晶体管温度传感器
US9829387B2 (en) System and method for temperature sensing
US10819102B2 (en) Electronic circuit for fast temperature sensing of a power switching device
US9575113B2 (en) Insulated-gate bipolar transistor collector-emitter saturation voltage measurement
US10823766B2 (en) Detector and a voltage converter
CN106301150B (zh) 电驱动系统中功率半导体器件中的温度估计
TWI554860B (zh) 基準補償模組及開關型電壓調整電路
US20140321506A1 (en) Temperature detection and reporting system and method in power driving and/or consuming system
CN104601019B (zh) 智能功率模块、功率器件及其温度检测电路和方法
US20160202954A1 (en) Voltage controlled nano-magnetic random number generator
CN209283092U (zh) 电子设备
CN101010650A (zh) 具有有效输出电流检测的功率变换器件
Osadchuk et al. The microelectronic transducers of pressure with the frequency output
Nguyen et al. Hybrid CMOS rectifier based on synergistic RF-piezoelectric energy scavenging
CN104596655B (zh) 智能功率模块、功率器件及其温度检测电路和方法
KR101625964B1 (ko) 터빈 엔진의 고온 환경에서 동작가능한 초퍼 회로소자
CN104702130B (zh) 电源转换电路的控制电路
Grgić et al. Ultra-low input voltage DC-DC converter for micro energy harvesting
CN105938178B (zh) 传感器装置及其检查方法
CN108427027A (zh) 用于检测电流的设备
CN105004900A (zh) 电源电压监视电路及具有该电源电压监视电路的电子电路
CN105977176B (zh) 用于半导体器件的传感器
US10811985B2 (en) Power conversion system and an associated method thereof
Hassan et al. Fully Integrated Digital GaN-Based LSK Demodulator for High-Temperature Applications
JP2007305618A (ja) 双方向単一電子計数素子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant