CN104923463A - Potassium dihydrogen phosphate (KDP) optical surface planarization method - Google Patents
Potassium dihydrogen phosphate (KDP) optical surface planarization method Download PDFInfo
- Publication number
- CN104923463A CN104923463A CN201510261654.4A CN201510261654A CN104923463A CN 104923463 A CN104923463 A CN 104923463A CN 201510261654 A CN201510261654 A CN 201510261654A CN 104923463 A CN104923463 A CN 104923463A
- Authority
- CN
- China
- Prior art keywords
- kdp
- optical
- time
- glue
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 25
- 235000019796 monopotassium phosphate Nutrition 0.000 title description 68
- 229910000402 monopotassium phosphate Inorganic materials 0.000 title description 2
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 title description 2
- 239000013078 crystal Substances 0.000 claims abstract description 59
- 238000010438 heat treatment Methods 0.000 claims abstract description 31
- 230000003746 surface roughness Effects 0.000 claims abstract description 31
- 238000007516 diamond turning Methods 0.000 claims abstract description 22
- 238000005498 polishing Methods 0.000 claims abstract description 22
- 229920006254 polymer film Polymers 0.000 claims abstract description 21
- 238000004528 spin coating Methods 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 14
- 229920000642 polymer Polymers 0.000 claims abstract description 10
- 238000012545 processing Methods 0.000 claims abstract description 10
- 239000003292 glue Substances 0.000 claims description 25
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 6
- 239000003085 diluting agent Substances 0.000 claims description 3
- 238000010790 dilution Methods 0.000 claims description 2
- 239000012895 dilution Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 abstract description 3
- 238000003672 processing method Methods 0.000 abstract description 2
- 238000004439 roughness measurement Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 238000001914 filtration Methods 0.000 description 8
- 238000010884 ion-beam technique Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000012876 topography Methods 0.000 description 8
- 230000007547 defect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 4
- 239000010432 diamond Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229920001688 coating polymer Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
本发明涉及KDP光学表面平坦化方法。目前KDP晶体的超精密加工方法会在KDP晶体表面残留抛光液,在KDP晶体表面产生小尺度波纹,影响KDP晶体的光学表面质量。本发明以经过单点金刚石车削抛光后的KH2PO4 光学晶体材料作为加工对象,采用自旋涂胶的方法在KH2PO4 光学晶体材料的光学表面涂覆一层聚合物膜,再经真空热处理后在KH2PO4 光学晶体材料表面形成一层表面粗糙度低的聚合物层,聚合物层的上表面为平坦化表面。本发明在KDP表面形成一层机械性能良好、性质稳定、表面粗糙度低的聚合物膜,工艺过程简单,对设备要求低,成本低廉,在KDP光学表面可获得较好的平坦化效果,且应用前景可观。
The invention relates to a KDP optical surface flattening method. At present, the ultra-precision processing method of KDP crystal will leave polishing liquid on the surface of KDP crystal, and produce small-scale ripples on the surface of KDP crystal, which will affect the optical surface quality of KDP crystal. In the present invention, the KH 2 PO 4 optical crystal material after single-point diamond turning and polishing is used as the processing object, and a layer of polymer film is coated on the optical surface of the KH 2 PO 4 optical crystal material by the method of spin coating, and then After the vacuum heat treatment, a polymer layer with low surface roughness is formed on the surface of the KH 2 PO 4 optical crystal material, and the upper surface of the polymer layer is a planarized surface. The invention forms a layer of polymer film with good mechanical properties, stable properties and low surface roughness on the surface of KDP, the process is simple, the requirements for equipment are low, the cost is low, and a better planarization effect can be obtained on the optical surface of KDP, and The application prospect is considerable.
Description
技术领域 technical field
本发明属于光学元件表面平坦化技术领域,具体涉及一种KDP光学表面平坦化方法。 The invention belongs to the technical field of optical component surface flattening, and in particular relates to a KDP optical surface flattening method.
背景技术 Background technique
KDP晶体是磷酸二氢钾(KH2PO4)晶体的简称。KDP晶体是一种非常优良的非线性光学晶体材料,具有较大的非线性光学系数、较宽的透光波段、优良的光学均匀性以及较高的激光损伤阈值等特点,现已被广泛地应用于激光倍频器件、参量振荡、电光调制、压电换能器和快速光开关等高科技领域,在激光惯性约束核聚变中KDP晶体则被用于光学倍频转换器和电光开关。但是,KDP晶体具有易潮解、脆性高、对温度变化敏感、硬度低等特点,十分不利于KDP晶体的加工,因此KDP晶体的抛光,特别是大尺寸高光学质量的KDP晶体的抛光十分困难。目前KDP晶体的超精密加工方法主要有单点金刚石车削技术、磁流变抛光技术、离子束刻蚀抛光技术等,但是磁流变抛光技术会在KDP晶体表面残留抛光液,无法去除。而单点金刚石车削技术则会在KDP晶体表面产生小尺度波纹,影响KDP晶体的光学表面质量。离子束直接刻蚀抛光KDP晶体表面则效率低且无法保证表面质量。 KDP crystal is the abbreviation of potassium dihydrogen phosphate (KH 2 PO 4 ) crystal. KDP crystal is a very good nonlinear optical crystal material, which has the characteristics of large nonlinear optical coefficient, wide light transmission band, excellent optical uniformity and high laser damage threshold, etc., and has been widely used It is used in high-tech fields such as laser frequency doubling devices, parametric oscillation, electro-optic modulation, piezoelectric transducers and fast optical switches. In laser inertial confinement fusion, KDP crystals are used in optical frequency doubling converters and electro-optic switches. However, KDP crystals are prone to deliquescence, high brittleness, sensitivity to temperature changes, and low hardness, which are not conducive to the processing of KDP crystals. Therefore, the polishing of KDP crystals, especially large-sized KDP crystals with high optical quality, is very difficult. At present, the ultra-precision processing methods of KDP crystal mainly include single-point diamond turning technology, magnetorheological polishing technology, ion beam etching and polishing technology, etc., but magnetorheological polishing technology will leave polishing fluid on the surface of KDP crystal, which cannot be removed. The single-point diamond turning technology will produce small-scale ripples on the surface of the KDP crystal, which will affect the optical surface quality of the KDP crystal. Direct etching and polishing of KDP crystal surface by ion beam is inefficient and cannot guarantee the surface quality.
发明内容 Contents of the invention
本发明的目的是提供一种KDP光学表面平坦化方法,可在KDP表面形成一层粗糙度低、无表面疵病的聚合物膜,将其利用在离子束刻蚀抛光技术中。 The purpose of the present invention is to provide a KDP optical surface planarization method, which can form a polymer film with low roughness and no surface defects on the KDP surface, and use it in the ion beam etching and polishing technology.
本发明所采用的技术方案是: The technical scheme adopted in the present invention is:
KDP光学表面平坦化方法,其特征在于: KDP optical surface planarization method is characterized in that:
包括以下步骤: Include the following steps:
以经过单点金刚石车削抛光后的KH2PO4 光学晶体材料作为加工对象,采用自旋涂胶的方法在KH2PO4 光学晶体材料的光学表面涂覆一层聚合物膜,再经真空热处理后在KH2PO4 光学晶体材料表面形成一层表面粗糙度低的聚合物层,聚合物层的上表面为平坦化表面。 Taking the KH 2 PO 4 optical crystal material after single-point diamond turning and polishing as the processing object, a layer of polymer film is coated on the optical surface of the KH 2 PO 4 optical crystal material by the method of spin coating, and then vacuum heat treatment Finally, a polymer layer with low surface roughness is formed on the surface of the KH 2 PO 4 optical crystal material, and the upper surface of the polymer layer is a planarized surface.
所述聚合物膜的涂覆胶选用BCB-1500胶; The coating glue of described polymer film selects BCB-1500 glue for use;
自旋涂胶的条件为:低转速500r/min~600r/min,时间18s,高转速4000r/min~5000r/min,时间50s~60s; The conditions of spin coating are: low speed 500r/min~600r/min, time 18s, high speed 4000r/min~5000r/min, time 50s~60s;
真空热处理的条件为:温度50℃~100℃,时间4h~38h,升温时间30min~1h。 The conditions of vacuum heat treatment are: temperature 50°C~100°C, time 4h~38h, heating time 30min~1h.
所述聚合物膜的涂覆胶选用BCB-700胶; The coating glue of described polymer film selects BCB-700 glue for use;
自旋涂胶的条件为:低转速500r/min~600r/min,时间18s,高转速2500r/min~3000r/min,时间50s~60s; The conditions of spin coating are: low speed 500r/min~600r/min, time 18s, high speed 2500r/min~3000r/min, time 50s~60s;
真空热处理的条件为:温度50℃~100℃,时间4h~38h,升温时间30min~1h。 The conditions of vacuum heat treatment are: temperature 50°C~100°C, time 4h~38h, heating time 30min~1h.
所述聚合物膜的涂覆胶选用BCB-700的稀释胶,胶与稀释剂乙酸正丁酯的体积比为2:1; The coating glue of described polymer film selects the dilution glue of BCB-700 for use, and the volume ratio of glue and diluent n-butyl acetate is 2:1;
自旋涂胶的条件为:低转速500r/min~600r/min,时间18s,高转速2000r/min~3000r/min,时间50s~60s; The conditions of spin coating are: low speed 500r/min~600r/min, time 18s, high speed 2000r/min~3000r/min, time 50s~60s;
真空热处理的条件为:温度50℃~100℃,时间4h~38h,升温时间30min~1h。 The conditions of vacuum heat treatment are: temperature 50°C~100°C, time 4h~38h, heating time 30min~1h.
本发明具有以下优点: The present invention has the following advantages:
本发明以经过单点金刚石车削抛光后的KDP作为加工对象,采用自旋涂胶的方法在KDP光学表面涂覆一层聚合物膜,经真空热处理后在KDP表面形成一层机械性能良好、性质稳定、表面粗糙度低的聚合物膜,工艺过程简单,对设备要求低,成本低廉,在KDP光学表面可获得较好的平坦化效果,且应用前景可观。 In the present invention, the KDP after single-point diamond turning and polishing is used as the processing object, and a layer of polymer film is coated on the optical surface of the KDP by the method of spin coating, and a layer of polymer film with good mechanical properties and properties is formed on the surface of the KDP after vacuum heat treatment. Stable polymer film with low surface roughness, simple process, low equipment requirements, low cost, good planarization effect on KDP optical surface, and promising application prospect.
附图说明 Description of drawings
图1为实例1所述的经过单点金刚石预抛光后,平坦化前的KDP晶体样件1光学表面粗糙度检测结果,所使用检测仪器为Talysurf CCI-2000非接触式表面轮廓仪,测量范围为0.18×0.18mm。 Fig. 1 is after single-point diamond pre-polishing described in example 1, the optical surface roughness detection result of KDP crystal sample 1 before planarization, and the detection instrument used is Talysurf CCI-2000 non-contact surface profilometer, measuring range It is 0.18×0.18mm.
其中: in:
a图为KDP表面的高斯滤波后的粗糙度测量结果; a shows the roughness measurement results of the KDP surface after Gaussian filtering;
b图为KDP表面测量点的三维形貌图。 Figure b is the 3D topography of the measurement points on the KDP surface.
图2为KDP晶体样件1在平坦化后的光学表面粗糙度检测结果。 Fig. 2 is the optical surface roughness test result of the KDP crystal sample 1 after planarization.
其中: in:
a图为KDP表面的高斯滤波后的粗糙度测量结果; a shows the roughness measurement results of the KDP surface after Gaussian filtering;
b图为KDP表面测量点的三维形貌图。 Figure b is the 3D topography of the measurement points on the KDP surface.
图3为实例2所述的经过单点金刚石预抛光后,平坦化前的KDP晶体样件2光学表面粗糙度检测结果,所使用检测仪器为Talysurf CCI-2000非接触式表面轮廓仪。 Fig. 3 is the test result of the optical surface roughness of the KDP crystal sample 2 before planarization after single-point diamond pre-polishing described in Example 2, and the testing instrument used is a Talysurf CCI-2000 non-contact surface profiler.
其中: in:
a图为KDP表面的高斯滤波后的粗糙度测量结果; a shows the roughness measurement results of the KDP surface after Gaussian filtering;
b图为KDP表面测量点的三维形貌图。 Figure b is the 3D topography of the measurement points on the KDP surface.
图4为KDP晶体样件2在平坦化后的光学表面粗糙度检测结果。 Fig. 4 is the optical surface roughness detection result of the KDP crystal sample 2 after planarization.
其中: in:
a图为KDP表面的高斯滤波后的粗糙度测量结果; a shows the roughness measurement results of the KDP surface after Gaussian filtering;
b图为KDP表面测量点的三维形貌图。 Figure b is the 3D topography of the measurement points on the KDP surface.
图5为实例3所述的经过单点金刚石预抛光后,平坦化前的KDP晶体样件3光学表面粗糙度检测结果,所使用检测仪器为Talysurf CCI-2000非接触式表面轮廓仪。 Fig. 5 is the test result of the optical surface roughness of the KDP crystal sample 3 before planarization after the single-point diamond pre-polishing described in Example 3, and the testing instrument used is a Talysurf CCI-2000 non-contact surface profiler.
其中: in:
a图为KDP表面的高斯滤波后的粗糙度测量结果; a shows the roughness measurement results of the KDP surface after Gaussian filtering;
b图为KDP表面测量点的三维形貌图。 Figure b is the 3D topography of the measurement points on the KDP surface.
图6为KDP晶体样件3在平坦化后的光学表面粗糙度检测结果。 FIG. 6 is the optical surface roughness detection result of the KDP crystal sample 3 after planarization.
其中: in:
a图为KDP表面的高斯滤波后的粗糙度测量结果; a shows the roughness measurement results of the KDP surface after Gaussian filtering;
b图为KDP表面测量点的三维形貌图。 Figure b is the 3D topography of the measurement points on the KDP surface.
图7为实例4所述的经过单点金刚石预抛光后,平坦化前的KDP晶体样件4光学表面粗糙度检测结果,所使用检测仪器为Talysurf CCI-2000非接触式表面轮廓仪。 Fig. 7 is the test result of optical surface roughness of KDP crystal sample 4 before planarization after single-point diamond pre-polishing described in Example 4, and the testing instrument used is Talysurf CCI-2000 non-contact surface profiler.
其中: in:
a图为KDP表面的高斯滤波后的粗糙度测量结果; a shows the roughness measurement results of the KDP surface after Gaussian filtering;
b图为KDP表面测量点的三维形貌图。 Figure b is the 3D topography of the measurement points on the KDP surface.
图8为KDP晶体样件4在平坦化后的光学表面粗糙度检测结果。 FIG. 8 is the test result of the optical surface roughness of the KDP crystal sample 4 after planarization.
其中: in:
a图为KDP表面的高斯滤波后的粗糙度测量结果; a shows the roughness measurement results of the KDP surface after Gaussian filtering;
b图为KDP表面测量点的三维形貌图。 Figure b is the 3D topography of the measurement points on the KDP surface.
具体实施方式 Detailed ways
下面结合具体实施方式对本发明进行详细的说明。 The present invention will be described in detail below in combination with specific embodiments.
本发明所涉及的KDP光学表面平坦化方法,为了解决单点金刚石车削KDP晶体表面会产生小尺度波纹以及用离子束直接刻蚀抛光KDP晶体表面无法保证表面质量的问题,而在单点金刚石车削KDP晶体的基础上,在KDP晶体表面涂覆一层聚合物膜,将表面小尺度波纹覆盖,在KDP表面形成一层粗糙度低、无表面疵病的聚合物膜,将其利用在离子束刻蚀抛光技术中,具体包括以下步骤: The KDP optical surface planarization method involved in the present invention, in order to solve the problem that the single-point diamond turning KDP crystal surface will produce small-scale ripples and the surface quality cannot be guaranteed by direct etching and polishing of the KDP crystal surface with ion beams, the single-point diamond turning On the basis of the KDP crystal, a polymer film is coated on the surface of the KDP crystal to cover the small-scale ripples on the surface, and a polymer film with low roughness and no surface defects is formed on the surface of the KDP, which is used in the ion beam Etching and polishing technology specifically includes the following steps:
以经过单点金刚石车削抛光后的KH2PO4 光学晶体材料作为加工对象(抛光后的KH2PO4 光学晶体材料表面粗糙度在2nm左右),采用自旋涂胶的方法在KH2PO4 光学晶体材料的光学表面涂覆一层聚合物膜,再经真空热处理后在KH2PO4 光学晶体材料表面形成一层机械性能良好、性质稳定、表面粗糙度低的聚合物层,聚合物层的上表面为平坦化表面。 Taking the KH 2 PO 4 optical crystal material after single-point diamond turning and polishing as the processing object (the surface roughness of the polished KH 2 PO 4 optical crystal material is about 2nm), the method of spin coating is used on KH 2 PO 4 The optical surface of the optical crystal material is coated with a layer of polymer film, and after vacuum heat treatment, a polymer layer with good mechanical properties, stable properties and low surface roughness is formed on the surface of the KH 2 PO 4 optical crystal material. The polymer layer The upper surface is a planarized surface.
(1)所述聚合物膜的涂覆胶选用BCB-1500胶时: (1) When the coating glue of the polymer film is BCB-1500 glue:
自旋涂胶的条件为:低转速500r/min~600r/min,时间18s,高转速4000r/min~5000r/min,时间50s~60s; The conditions of spin coating are: low speed 500r/min~600r/min, time 18s, high speed 4000r/min~5000r/min, time 50s~60s;
真空热处理的条件为:温度50℃~100℃,时间4h~38h,升温时间30min~1h。 The conditions of vacuum heat treatment are: temperature 50°C~100°C, time 4h~38h, heating time 30min~1h.
(2)所述聚合物膜的涂覆胶选用BCB-700胶时: (2) When the coating glue of the polymer film is BCB-700 glue:
自旋涂胶的条件为:低转速500r/min~600r/min,时间18s,高转速2500r/min~3000r/min,时间50s~60s; The conditions of spin coating are: low speed 500r/min~600r/min, time 18s, high speed 2500r/min~3000r/min, time 50s~60s;
真空热处理的条件为:温度50℃~100℃,时间4h~38h,升温时间30min~1h。 The conditions of vacuum heat treatment are: temperature 50°C~100°C, time 4h~38h, heating time 30min~1h.
(3)所述聚合物膜的涂覆胶选用BCB-700的稀释胶,胶与稀释剂乙酸正丁酯的体积比为2:1: (3) The coating glue of the polymer film is BCB-700 thinner glue, and the volume ratio of the glue to the diluent n-butyl acetate is 2:1:
自旋涂胶的条件为:低转速500r/min~600r/min,时间18s,高转速2000r/min~3000r/min,时间50s~60s; The conditions of spin coating are: low speed 500r/min~600r/min, time 18s, high speed 2000r/min~3000r/min, time 50s~60s;
真空热处理的条件为:温度50℃~100℃,时间4h~38h,升温时间30min~1h。 The conditions of vacuum heat treatment are: temperature 50°C~100°C, time 4h~38h, heating time 30min~1h.
将上述方法形成的聚合物层可以有效的覆盖KDP表面小尺度波纹,且该聚合物膜表面粗糙度在1.2nm左右,可以经离子束刻蚀将表面效果传递到KDP晶体表面,从而可对KDP晶体进行超精密抛光。该技术方案的提出利于基于离子束刻蚀抛光KDP晶体,弥补了单点金刚石车削抛光和离子束直接刻蚀抛光KDP晶体的技术缺陷。在超光滑光学元件表面涂覆聚合物可降低其表面粗糙度,是因为涂覆的聚合物具有液体流动性,用旋转涂布的方式在元件表面形成初始膜,由于液体的流动性,形成的初始膜可有效改善表面仍存在疵病的元件表面形貌,经固化后可形成具有良好电气和机械性能的稳定的介质膜层。经过反复实验,本发明的平坦化技术可以有效的提高KDP晶体光学表面的表面质量,不会使KDP 晶体的化学成分及晶体组成结构发生变化,不会影响原有晶体的光学性质。 The polymer layer formed by the above method can effectively cover the small-scale ripples on the KDP surface, and the surface roughness of the polymer film is about 1.2nm, and the surface effect can be transferred to the KDP crystal surface by ion beam etching, so that the KDP Crystals are ultra-precision polished. The proposal of this technical solution is beneficial to the polishing of KDP crystal based on ion beam etching, and makes up for the technical defects of single-point diamond turning polishing and direct ion beam etching polishing of KDP crystal. Coating polymers on the surface of ultra-smooth optical elements can reduce their surface roughness, because the coated polymers have liquid fluidity, and an initial film is formed on the surface of the element by spin coating. Due to the fluidity of the liquid, the formed The initial film can effectively improve the surface morphology of components that still have defects on the surface, and can form a stable dielectric film layer with good electrical and mechanical properties after curing. After repeated experiments, the planarization technology of the present invention can effectively improve the surface quality of the optical surface of the KDP crystal, without changing the chemical composition and crystal structure of the KDP crystal, and without affecting the optical properties of the original crystal.
实施例1: Example 1:
包括以下步骤:首先利用单点金刚石车削对尺寸均为50×50×10 mm2 的II 类KDP 晶体样件1 进行车削加工,再以经过单点金刚石车削的样件1作为加工对象,采用BCB-1500平坦化胶在样件1表面进行涂胶平坦化,平坦化主要工艺参数控制为:低转速600r/min,时间18s,高转速5000r/min,时间60s,真空热处理温度80℃,时间4h,升温时间1h。采用白光干涉仪对样件2 表面粗糙度进行测量,扫描范围为0.18×0.18mm,样件1在平坦化前和平坦化后的粗糙度测量结果如图1和图2所示,由图1和图2可见,单点金刚石车削后样件1的表面粗糙度均方根Sq为2.2592 nm,平坦化后样件1的表面粗糙度均方根Sq为1.2759 nm。在本实施例的平坦化后,KDP 晶体表面的粗糙度值有所降低,表面粗糙度得到改善。 The method includes the following steps: firstly, the class II KDP crystal sample 1 with a size of 50×50×10 mm 2 is turned by single-point diamond turning, and then the sample 1 after single-point diamond turning is used as the processing object, and the BCB -1500 flattening glue is applied on the surface of sample 1 for flattening. The main process parameters of flattening are controlled as follows: low speed 600r/min, time 18s, high speed 5000r/min, time 60s, vacuum heat treatment temperature 80℃, time 4h , Heating time 1h. The surface roughness of sample 2 was measured with a white light interferometer, and the scanning range was 0.18×0.18 mm. The roughness measurement results of sample 1 before and after planarization are shown in Figure 1 and Figure 2, from Figure 1 It can be seen from Figure 2 that the root mean square surface roughness Sq of sample 1 after single-point diamond turning is 2.2592 nm, and the root mean square roughness Sq of sample 1 after planarization is 1.2759 nm. After the planarization in this embodiment, the roughness value of the KDP crystal surface is reduced, and the surface roughness is improved.
实施例2: Example 2:
包括以下步骤:首先利用单点金刚石车削对尺寸均为50×50×10 mm2 的II 类KDP 晶体样件2进行车削加工,再以经过单点金刚石车削的样件2作为加工对象,采用BCB-1500平坦化胶在样件2表面进行涂胶平坦化,平坦化主要工艺参数控制为:低转速600r/min,时间18s,高转速5000r/min,时间60s,真空热处理温度80℃,时间4h,升温时间1h。采用白光干涉仪对样件2 表面粗糙度进行测量,扫描范围为0.18×0.18mm,样件2在平坦化前和平坦化后的粗糙度测量结果如图3和图4所示,由图3和图4可见,单点金刚石车削后样件2的表面粗糙度均方根Sq为2.1014nm,平坦化后样件2的表面粗糙度均方根Sq为1.3291 nm。在本实施例的平坦化后,KDP 晶体表面的粗糙度值有所降低,表面粗糙度得到改善。 It includes the following steps: first, turn the type II KDP crystal sample 2 with a size of 50×50×10 mm 2 by single-point diamond turning, and then take the sample 2 after single-point diamond turning as the processing object, and use BCB -1500 flattening glue is applied on the surface of sample 2 for flattening. The main process parameters of flattening are controlled as follows: low speed 600r/min, time 18s, high speed 5000r/min, time 60s, vacuum heat treatment temperature 80℃, time 4h , Heating time 1h. The surface roughness of sample 2 was measured with a white light interferometer, and the scanning range was 0.18×0.18mm. The roughness measurement results of sample 2 before and after planarization are shown in Fig. 3 and Fig. 4. It can be seen from Fig. 4 that the root mean square surface roughness Sq of sample 2 after single-point diamond turning is 2.1014 nm, and the root mean square roughness Sq of sample 2 after planarization is 1.3291 nm. After the planarization in this embodiment, the roughness value of the KDP crystal surface is reduced, and the surface roughness is improved.
实施例3: Example 3:
包括以下步骤:首先利用单点金刚石车削对尺寸均为50×50×10 mm2 的II 类KDP 晶体样件3 ,再以经过单点金刚石车削的样件3作为加工对象,采用BCB-700稀释的平坦化胶在样件3表面进行涂胶平坦化,平坦化主要工艺参数控制为:低转速600r/min,时间18s,高转速3000r/min,时间60s,真空热处理温度80℃,时间4h,升温时间1h。采用白光干涉仪对样件3表面粗糙度进行测量,扫描范围为0.18×0.18mm,样件3 在平坦化前和平坦化后的粗糙度测量结果如图5和图6所示,由图5和图6可见,单点金刚石车削后样件3表面粗糙度均方根Sq为2.0266nm,平坦化后样件3的表面粗糙度均方根Sq为1.3118 nm。在本实施例的平坦化后,KDP 晶体表面的粗糙度值有所降低,表面粗糙度得到改善。 The method includes the following steps: firstly use single-point diamond turning to class II KDP crystal sample 3 with a size of 50×50×10 mm 2 , and then take the sample 3 after single-point diamond turning as the processing object, and use BCB-700 to dilute The flattening glue is applied on the surface of the sample 3 for flattening. The main process parameters of the flattening are controlled as follows: low speed 600r/min, time 18s, high speed 3000r/min, time 60s, vacuum heat treatment temperature 80°C, time 4h, Heating time 1h. The surface roughness of sample 3 was measured with a white light interferometer, and the scanning range was 0.18×0.18 mm. The roughness measurement results of sample 3 before and after planarization are shown in Figure 5 and Figure 6, from Figure 5 It can be seen from Fig. 6 that the root mean square Sq of the surface roughness of the sample 3 after single-point diamond turning is 2.0266 nm, and the root mean square Sq of the surface roughness of the sample 3 after planarization is 1.3118 nm. After the planarization in this embodiment, the roughness value of the KDP crystal surface is reduced, and the surface roughness is improved.
实施例4: Example 4:
包括以下步骤:首先利用单点金刚石车削对尺寸均为50×50×10 mm2 的II 类KDP 晶体样件4 ,再以经过单点金刚石车削的样件4作为加工对象,采用BCB-700稀释的平坦化胶在样件4表面进行涂胶平坦化,平坦化主要工艺参数控制为:低转速600r/min,时间18s,高转速3000r/min,时间60s,真空热处理温度80℃,时间4h,升温时间1h。采用白光干涉仪对样件4表面粗糙度进行测量,扫描范围为0.18×0.18mm,样件4在平坦化前和平坦化后的粗糙度测量结果如图7和图8所示,由图7和图8可见,单点金刚石车削后样件4表面粗糙度均方根Sq为2.233nm,平坦化后样件4的表面粗糙度均方根Sq为1.2976 nm。在本实施例的平坦化后,KDP 晶体表面的粗糙度值有所降低,表面粗糙度得到改善。 It includes the following steps: firstly use single-point diamond turning to class II KDP crystal sample 4 with a size of 50×50×10 mm 2 , and then take the sample 4 after single-point diamond turning as the processing object, and use BCB-700 to dilute The flattening glue is applied on the surface of the sample 4 for flattening. The main process parameters of the flattening are controlled as follows: low speed 600r/min, time 18s, high speed 3000r/min, time 60s, vacuum heat treatment temperature 80°C, time 4h, Heating time 1h. The surface roughness of the sample 4 was measured with a white light interferometer, and the scanning range was 0.18×0.18mm. The roughness measurement results of the sample 4 before and after planarization are shown in Figure 7 and Figure 8, from Figure 7 It can be seen from FIG. 8 that the surface roughness root mean square Sq of sample 4 after single-point diamond turning is 2.233 nm, and the surface roughness root mean square Sq of sample 4 after planarization is 1.2976 nm. After the planarization in this embodiment, the roughness value of the KDP crystal surface is reduced, and the surface roughness is improved.
本发明的内容不限于实施例所列举,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。 The content of the present invention is not limited to the examples listed, and any equivalent transformation of the technical solution of the present invention adopted by those of ordinary skill in the art by reading the description of the present invention is covered by the claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510261654.4A CN104923463A (en) | 2015-05-21 | 2015-05-21 | Potassium dihydrogen phosphate (KDP) optical surface planarization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510261654.4A CN104923463A (en) | 2015-05-21 | 2015-05-21 | Potassium dihydrogen phosphate (KDP) optical surface planarization method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104923463A true CN104923463A (en) | 2015-09-23 |
Family
ID=54111072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510261654.4A Pending CN104923463A (en) | 2015-05-21 | 2015-05-21 | Potassium dihydrogen phosphate (KDP) optical surface planarization method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104923463A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105922083A (en) * | 2016-04-28 | 2016-09-07 | 西安工业大学 | Surface polishing method of monopotassium phosphate crystals |
CN106835035A (en) * | 2017-04-21 | 2017-06-13 | 西安工业大学 | A kind of method of potassium dihydrogen phosphate crystalloid optical surface planarization |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102990480A (en) * | 2012-12-19 | 2013-03-27 | 中国人民解放军国防科学技术大学 | Optical component surface cleaning method based on ion beam polishing |
US20140205742A1 (en) * | 2013-01-24 | 2014-07-24 | Tokyo Electron Limited | Real time process control of the polymer dispersion index |
-
2015
- 2015-05-21 CN CN201510261654.4A patent/CN104923463A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102990480A (en) * | 2012-12-19 | 2013-03-27 | 中国人民解放军国防科学技术大学 | Optical component surface cleaning method based on ion beam polishing |
US20140205742A1 (en) * | 2013-01-24 | 2014-07-24 | Tokyo Electron Limited | Real time process control of the polymer dispersion index |
Non-Patent Citations (1)
Title |
---|
姬娇等: ""光学元件表面平坦化工艺研究"", 《中国真空学会2014学术年会论文摘要集》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105922083A (en) * | 2016-04-28 | 2016-09-07 | 西安工业大学 | Surface polishing method of monopotassium phosphate crystals |
CN105922083B (en) * | 2016-04-28 | 2018-02-23 | 西安工业大学 | The surface polishing method of potassium dihydrogen phosphate crystalloid |
CN106835035A (en) * | 2017-04-21 | 2017-06-13 | 西安工业大学 | A kind of method of potassium dihydrogen phosphate crystalloid optical surface planarization |
CN106835035B (en) * | 2017-04-21 | 2019-01-18 | 西安工业大学 | A kind of method of potassium dihydrogen phosphate crystalloid optical surface planarization |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107843957A (en) | The heterogeneous integrated waveguide device architecture of silicon nitride lithium niobate and preparation method | |
Murray et al. | Creating arbitrary arrays of two-dimensional topological defects | |
CN107059128B (en) | Lithium tantalate or lithium niobate monocrystal film in a kind of micron silicon substrate and preparation method thereof | |
CN110618488B (en) | Monocrystalline film with silicon nitride layer and preparation method thereof | |
CN104898202A (en) | Optical waveguide and production method thereof | |
Tulli et al. | Room temperature direct bonding of LiNbO3 crystal layers and its application to high-voltage optical sensing | |
CN112269225A (en) | Wet etching method of lithium niobate thin film waveguide and lithium niobate thin film waveguide | |
CN104297948B (en) | Waveguide thermal optical switch based on long-period metal surface plasma and preparation method of waveguide thermal optical switch | |
CN1588233A (en) | Method for producing polymer light wave guide device based on silicon lining | |
WO2019061900A1 (en) | Lithium niobate waveguide having high polarization extinction ratio and manufacturing method thereof | |
CN111740008A (en) | A method for improving the thickness uniformity of ion beam exfoliated films | |
CN104923463A (en) | Potassium dihydrogen phosphate (KDP) optical surface planarization method | |
CN117865218A (en) | Dry deep etching process for thin film lithium niobate | |
CN111965854A (en) | Electro-optical crystal film, method for producing the same, and electro-optical modulator | |
CN113534343A (en) | High-quality waveguide structure and preparation method | |
CN103361614A (en) | Method for preparing Terahertz modulator film material based on flexible substrate | |
CN105002471B (en) | One kind is closed chemical etching and prepares KTiOPO using ion implanted junction4The method of monocrystal thin films | |
WO2025113042A1 (en) | Use of solid material in optical system | |
CN107871813A (en) | Temperature compensation layer planarization method of temperature compensation type surface acoustic wave device | |
CN104007489B (en) | A kind of photonic crystal plated film lens and preparation method thereof | |
CN109856821B (en) | Terahertz wave modulator based on flexible bismuth nano-column/graphene and preparation method | |
CN114318216B (en) | A high-binding optical film of diamond crystal and its preparation method | |
CN103368059A (en) | Graphene-based reflective type saturable absorber and preparation method | |
CN108878595B (en) | Substrate, semiconductor device and substrate manufacturing method | |
CN111834519B (en) | Method for improving thickness uniformity of single crystal piezoelectric film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150923 |