CN104922105A - 一种载姜黄色素和茶多酚的固体脂质纳米粒及其制备方法 - Google Patents

一种载姜黄色素和茶多酚的固体脂质纳米粒及其制备方法 Download PDF

Info

Publication number
CN104922105A
CN104922105A CN201510243205.7A CN201510243205A CN104922105A CN 104922105 A CN104922105 A CN 104922105A CN 201510243205 A CN201510243205 A CN 201510243205A CN 104922105 A CN104922105 A CN 104922105A
Authority
CN
China
Prior art keywords
curcumin
tea polyphenols
solid lipid
lipid nanoparticle
tween
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510243205.7A
Other languages
English (en)
Inventor
李锐
贾坤
陈琛
孙良堃
何宇新
李玲
唐洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xihua University
Original Assignee
Xihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xihua University filed Critical Xihua University
Priority to CN201510243205.7A priority Critical patent/CN104922105A/zh
Publication of CN104922105A publication Critical patent/CN104922105A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种载姜黄色素和茶多酚的固体脂质纳米粒及其制备方法,包括姜黄色素0.1%~0.5%,茶多酚0.1%~2%,硬脂酸0.8%~5%,卵磷脂1.5%~8%,吐温-80 0.4%~2.5%,其余为蒸馏水;按重量百分比分别称取,室温下将硬脂酸和卵磷脂溶于二氯甲烷中;姜黄色素和茶多酚溶解于丙酮中,充分混匀后置于40℃恒温水浴中旋转蒸发除去有机溶剂,使成膜材料在瓶壁形成薄膜;再加入吐温-80,超声处理40min。本发明载姜黄色素和茶多酚固体脂质纳米粒性质稳定,纳米粒粒径分布均匀,粒径范围为120nm~150nm,姜黄色素和茶多酚的总包埋率为85%-95%,载药量为10%~15%。

Description

一种载姜黄色素和茶多酚的固体脂质纳米粒及其制备方法
技术领域
本发明属于药物制备技术领域,尤其涉及一种载姜黄色素和茶多酚的固体脂质纳米粒及其制备方法。
背景技术
固体脂质纳米粒(solid lipid nanoparticles,SLN)是一种极有发展前景的新型药物载体,可以有效的提高被包裹药物的生物利用度且对人体无毒性,具有控制药物释放、避免药物的降解以及良好的靶向性等优点。SLN是一种以天然或合成的脂质或类脂为基质,将药物包裹在类脂核中制成粒径约在50~1000nm的固体脂质纳米粒的亚微给药系统。
姜黄色素(curcuminoids)是从姜科植物姜黄(Curcuma Longa L.)根茎中提取的一类天然酚类色素,从中主要分离出三种姜黄素类化合物:姜黄素(curcumin,CUR)、脱甲氧基姜黄素(demethoxycurcumin,DMC)和双脱甲氧基姜黄素(bisdemethoxycurcumin,BDMC)。相关研究表明,姜黄素类化合物具有显著的抗氧化、抗肿瘤和抗炎症作用等。但是由于姜黄素类化合物难溶于水,在体内吸收差,生物利用度低,从而限制了其在临床的直接推广应用。
茶多酚(tea polyphenols,TP),是茶叶中多酚类物质的总称,是绿茶中最主要的生物活性成分。茶多酚主要由儿茶素类成分组成,包括有表儿茶素(epicatechin,EC)、表没食子儿茶素(epigallocatechin,EGC)、表儿茶素没食子酸酯(epicatechin gallate,ECG)以及表没食子儿茶素没食子酸酯(epigallocatechin gallate,EGCG)。
现有固体脂质纳米粒制剂的稳定性低,包埋率低,载药量低。
发明内容
本发明的目的在于提供一种载姜黄色素和茶多酚的固体脂质纳米粒及其制备方法,旨在解决现有固体脂质纳米粒制剂存在的稳定性低,包埋率低,载药量低的问题。
本发明是这样实现的,一种载姜黄色素和茶多酚的固体脂质纳米粒,该载姜黄色素和茶多酚的固体脂质纳米粒按重量百分比为:姜黄色素0.1%~0.5%,茶多酚0.1%~2%,硬脂酸0.8%~5%,卵磷脂1.5%~8%,吐温-80 0.4%~2.5%,其余为蒸馏水。
本发明的另一目的在于提供一种载姜黄色素和茶多酚的固体脂质纳米粒的制备方法,该载姜黄色素和茶多酚固体脂质纳米粒的制备方法包括以下步骤:
步骤一,按姜黄色素0.1%~0.5%,茶多酚0.1%~2%,硬脂酸0.8%~5%,卵磷脂1.5%~8%,吐温-80 0.4%~2.5%,其余为蒸馏水的重量百分比分别称取姜黄色素、茶多酚、硬脂酸、卵磷脂和吐温-80,室温下将硬脂酸和卵磷脂溶于二氯甲烷中;
步骤二,姜黄色素和茶多酚溶解于丙酮中,将两种溶液充分混匀后置于40℃恒温水浴中旋转蒸发除去有机溶剂,使成膜材料在瓶壁形成均匀的薄膜;
步骤三,再加入适量的吐温-80,超声240W处理40min,即得固体脂质纳米粒的均匀混悬体系;
进一步,载姜黄色素和茶多酚固体脂质纳米粒性质纳米粒粒径为120nm~150nm,姜黄色素和茶多酚的总包埋率为85%~95%,载药量为10%~15%。
本发明的载姜黄色素和茶多酚固体脂质纳米粒性质稳定,纳米粒粒径分布均匀,粒径范围为120nm~150nm,PDI(polydispersity index,多分散指数)0.133~0.152,Zeta电位为-40.4~-44.5mV,姜黄色素和茶多酚的总包埋率为85%-95%,载药量为10%~15%;将同属植物多酚类的姜黄色素和茶多酚联合使用,发挥药物间协同作用,提高药效,工艺简单,操作简便;制剂具有性质稳定,包埋率高,载药量高等特点;同时,MTT实验表明复方纳米粒有明显的抗肿瘤活性,且较姜黄色素和茶多酚有明显的增强,说明姜黄色素和茶多酚两类物质在抗肿瘤作用方面体现了很好的协同作用。
附图说明
图1是本发明实施例提供的载姜黄色素和茶多酚的固体脂质纳米粒的制备方法流程图;
图2是本发明实施例提供的CTP~SLN透射电镜图;
图3A和图3B是本发明实施例提供的姜黄色素和茶多酚固体脂质纳米粒电位图及粒径图;
图4A和图4B是本发明实施例提供的姜黄色素、茶多酚单体纳米粒和复方纳米粒对HepG2和Hela细胞生长的抑制作用示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图及具体实施例对本发明的应用原理作进一步描述。
本发明实施例的载姜黄色素和茶多酚固体脂质纳米粒的各组分及其重量百分比为:姜黄色素0.1%~0.5%,茶多酚0.1%~2%,硬脂酸0.8%~5%,卵磷脂1.5%~8%,吐温-80 0.4%~2.5%,其余为蒸馏水。
如图1所示,本发明实施例的载姜黄色素和茶多酚固体脂质纳米粒的制备方法包括以下步骤:
S101:按姜黄色素0.1%~0.5%,茶多酚0.1%~2%,硬脂酸0.8%~5%,卵磷脂1.5%~8%,吐温-80 0.4%~2.5%,其余为蒸馏水的重量百分比分别称取姜黄色素、茶多酚、硬脂酸、卵磷脂和吐温-80,室温下将硬脂酸和卵磷脂溶于二氯甲烷中;
S102:姜黄色素和茶多酚溶解于丙酮中,将两种溶液充分混匀后置于40℃恒温水浴中旋转蒸发除去有机溶剂,使成膜材料在瓶壁形成均匀的薄膜;
S103:再加入适量的吐温-80,超声(240W)处理40min,即得固体脂质纳米粒的均匀混悬体系。
本发明制备的载姜黄色素和茶多酚固体脂质纳米粒性质稳定,纳米粒粒径分布均匀,粒径范围为120nm~150nm,姜黄色素和茶多酚的总包埋率为85%~95%,载药量为10%~15%,制备的纳米粒稳定性良好。
本发明的具体实施例:
实施例1
按重量比分别称取0.25g姜黄色素、0.65g茶多酚、3.50g大豆卵磷脂、1.80g硬脂酸和1.20g吐温-80。姜黄色素与茶多酚混合后溶于50mL丙酮中,超声溶解。称取适量的硬脂酸和卵磷脂溶于二氯甲烷中,与前者充分混合后置于40℃恒温水浴中旋转蒸发除去有机溶剂,使成膜材料在瓶壁形成均匀的薄膜,再加入100mL含有1g吐温-80,超声处理40min,即得固体脂质纳米粒的均匀混悬液。
将得到的姜黄色素和茶多酚固体脂质纳米粒的理化性质进行研究,结果表明纳米粒平均粒径为145.2nm,Zeta电位-40.5mV,包埋率为93.6%,载药量为12.6%。
实施例2
按重量比分别称取0.20g姜黄色素、0.60g茶多酚、3.20g大豆卵磷脂、1.60g硬脂酸和1.00g吐温-80。姜黄色素与茶多酚混合后溶于50mL丙酮中,超声溶解。称取适量的硬脂酸和卵磷脂溶于二氯甲烷中,与前者充分混合后置于40℃恒温水浴中旋转蒸发除去有机溶剂,使成膜材料在瓶壁形成均匀的薄膜,再加入100mL含有1g吐温-80,超声处理40min,即得固体脂质纳米粒的均匀混悬液。
将得到的姜黄色素和茶多酚固体脂质纳米粒的理化性质进行研究,结果表明纳米粒平均粒径为130.8nm,Zeta电位-40.5mV,包埋率为93.6%,载药量为12.6%。
实施例3
按重量比分别称取0.20g姜黄色素、0.60g茶多酚、3.20g大豆卵磷脂、1.60g硬脂酸和1.00g吐温-80。姜黄色素与茶多酚混合后溶于50mL丙酮中,超声溶解。称取适量的硬脂酸和卵磷脂溶于二氯甲烷中,与前者充分混合后置于40℃恒温水浴中旋转蒸发除去有机溶剂,使成膜材料在瓶壁形成均匀的薄膜,再加入100mL含有1g吐温-80,超声处理40min,即得固体脂质纳米粒的均匀混悬液。
通过以下试验对本发明的应用效果做进一步的说明:
如图2和图3所示,姜黄色素和茶多酚固体脂质纳米粒的形态、粒径、Zeta电位、包埋率、载药量、细胞毒活性等指标的评价试验如下:
1、形态观察
取CTP~SLN溶液一滴置于覆有支撑膜的铜网上,固定染色后在透射电镜下观察其形态。
2、粒径与Zeta电位测定
取适量的CTP~SLN溶液,用适量蒸馏水稀释后,在Zetasizer 1000HSA激光电位粒径分析仪上测定其粒径和电位。
3、包埋率和载药量测定
以Sephadex葡聚糖凝胶柱层析法分离CTP~SLN和游离药物,测定其包封率和载药量,精密吸取0.1mL纳米粒混悬体系上葡聚糖凝胶G50柱,用10mL蒸馏水洗脱于25mL容量瓶中,加甲醇定容,得到样品1,另取0.1mL样品直接加甲醇溶解并定容于25mL容量瓶中,即得样品2,HPLC法分别测定样品1和样品2中姜黄色素(CUR、DMC、BDMC)和茶多酚(EC、EGC、ECG、EGCG)两大类物质的总含量,分别记为W1和W2,按下式计算包埋率:
包封率(%)=W1/W2×100%;
载药量计算按照公式:载药量(%)=W1/(W硬脂酸+W硬脂酸)×100%,W 脂酸+W硬脂酸分别为硬脂酸和卵磷脂的质量。
4、体外活性初步评价
采用MTT法测定姜黄色素、茶多酚单体纳米粒以及复方纳米粒对HepG2和Hela细胞增殖的抑制效应。在DEME低糖培养基(含10%胎牛血清)中培养细胞至对数期,按5×104/mL接种于96孔板。将不同浓度的纳米粒药物准确加入到细胞培养基中,在37℃、5%CO2和饱和湿度的培养箱中培养48h。于每孔加入20μL的MTT溶液继续培养4h,再向每孔中加入150μL DMSO,摇床振荡10min后于全自动酶联免疫检测仪测定各孔在490nm波长的吸光值(OD)。按下列公式计算细胞存活率:细胞存活率(%)=OD加药组/OD对照组×100%。分别设计对照组(不加药物)和空白组(不加细胞)。所有实验结果均测量三次取平均值,数据进行统计学分析,P<0.05具有统计学意义。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种载姜黄色素和茶多酚的固体脂质纳米粒,其特征在于,所述载姜黄色素和茶多酚的固体脂质纳米粒按重量百分此包括:姜黄色素0.1%~0.5%,茶多酚0.1%~2%,硬脂酸0.8%~5%,卵磷脂1.5%~8%,吐温-800.4%~2.5%,其余为蒸馏水。
2.一种载姜黄色素和茶多酚的固体脂质纳米粒的制备方法,其特征在于,该载姜黄色素和茶多酚固体脂质纳米粒的制备方法包括以下步骤:
步骤一,按姜黄色素0.1%~0.5%,茶多酚0.1%~2%,硬脂酸0.8%~5%,卵磷脂1.5%~8%,吐温-800.4%~2.5%,其余为蒸馏水的重量百分此分别称取姜黄色素、茶多酚、硬脂酸、卵磷脂和吐温-80,室温下将硬脂酸和卵磷脂溶于二氯甲烷中;
步骤二,姜黄色素和茶多酚溶解于丙酮中,将两种溶液充分混匀后置于40℃恒温水浴中旋转蒸发除去有机溶剂,使成膜材料在瓶壁形成薄膜;
步骤三,再加入吐温-80,超声240W处理40min,即得固体脂质纳米粒的均匀混悬体系。
3.如权利要求2所述的载姜黄色素和茶多酚的固体脂质纳米粒,其特征在于,载姜黄色素和茶多酚固体脂质纳米粒性质纳米粒粒径为120nm~150nm,姜黄色素和茶多酚的总包埋率为85%~95%,载药量为10%~15%。
4.如权利要求2所述的载姜黄色素和茶多酚的固体脂质纳米粒的制备方法,其特征在于,所述载姜黄色素和茶多酚固体脂质纳米粒的制备方法包括以下步骤:
按重量此分别称取0.25g姜黄色素、0.65g茶多酚、3.50g大豆卵磷脂、1.80g硬脂酸和1.20g吐温-80,姜黄色素与茶多酚混合后溶于50mL丙酮中,超声溶解,称取硬脂酸和卵磷脂溶于二氯甲烷中,充分混合后置于40℃恒温水浴中旋转蒸发除去有机溶剂,使成膜材料在瓶壁形成薄膜,再加入100mL含有1g吐温-80,超声处理40min,即得固体脂质纳米粒混悬液。
5.如权利要求2所述的载姜黄色素和茶多酚的固体脂质纳米粒的制备方法,其特征在于,所述载姜黄色素和茶多酚固体脂质纳米粒的制备方法包括以下步骤:
按重量此分别称取0.20g姜黄色素、0.60g茶多酚、3.20g大豆卵磷脂、1.60g硬脂酸和1.00g吐温-80,姜黄色素与茶多酚混合后溶于50mL丙酮中,超声溶解,称取硬脂酸和卵磷脂溶于二氯甲烷中,充分混合后置于40℃恒温水浴中旋转蒸发除去有机溶剂,使成膜材料在瓶壁形成薄膜,再加入100mL含有1g吐温-80,超声处理40min,即得固体脂质纳米粒混悬液。
6.如权利要求2所述的载姜黄色素和茶多酚的固体脂质纳米粒的制备方法,其特征在于,所述载姜黄色素和茶多酚固体脂质纳米粒的制备方法包括以下步骤:
按重量此分别称取0.20g姜黄色素、0.60g茶多酚、3.20g大豆卵磷脂、1.60g硬脂酸和1.00g吐温-80,姜黄色素与茶多酚混合后溶于50mL丙酮中,超声溶解,称取硬脂酸和卵磷脂溶于二氯甲烷中,充分混合后置于40℃恒温水浴中旋转蒸发除去有机溶剂,使成膜材料在瓶壁形成的薄膜,再加入100mL含有1g吐温-80,超声处理40min,即得固体脂质纳米粒的混悬液。
CN201510243205.7A 2015-05-13 2015-05-13 一种载姜黄色素和茶多酚的固体脂质纳米粒及其制备方法 Pending CN104922105A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510243205.7A CN104922105A (zh) 2015-05-13 2015-05-13 一种载姜黄色素和茶多酚的固体脂质纳米粒及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510243205.7A CN104922105A (zh) 2015-05-13 2015-05-13 一种载姜黄色素和茶多酚的固体脂质纳米粒及其制备方法

Publications (1)

Publication Number Publication Date
CN104922105A true CN104922105A (zh) 2015-09-23

Family

ID=54109766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510243205.7A Pending CN104922105A (zh) 2015-05-13 2015-05-13 一种载姜黄色素和茶多酚的固体脂质纳米粒及其制备方法

Country Status (1)

Country Link
CN (1) CN104922105A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109125508A (zh) * 2018-11-01 2019-01-04 山东师范大学 一种茶多酚溶致液晶分散体及制备方法
CN111888481A (zh) * 2020-07-28 2020-11-06 四川大学 基于多酚复合物的纳米药物及其制备方法
US11642316B2 (en) 2021-04-30 2023-05-09 Henan Zhongda Hengyuan Biotechnology Stock Co., Ltd. Water-soluble curcumin mixture with high bioavailability and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1723890A (zh) * 2005-07-22 2006-01-25 中南大学湘雅二医院 一种抗氧化药物
WO2014093631A1 (en) * 2012-12-12 2014-06-19 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Formulations and carrier systems including compound interactive domains

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1723890A (zh) * 2005-07-22 2006-01-25 中南大学湘雅二医院 一种抗氧化药物
WO2014093631A1 (en) * 2012-12-12 2014-06-19 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Formulations and carrier systems including compound interactive domains

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109125508A (zh) * 2018-11-01 2019-01-04 山东师范大学 一种茶多酚溶致液晶分散体及制备方法
CN111888481A (zh) * 2020-07-28 2020-11-06 四川大学 基于多酚复合物的纳米药物及其制备方法
CN111888481B (zh) * 2020-07-28 2022-03-11 四川大学 基于多酚复合物的纳米药物及其制备方法
US11642316B2 (en) 2021-04-30 2023-05-09 Henan Zhongda Hengyuan Biotechnology Stock Co., Ltd. Water-soluble curcumin mixture with high bioavailability and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Maji et al. Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy
McCarthy et al. Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: protective effects of fisetin
De La Ossa et al. Poly-ε-caprolactone microspheres as a drug delivery system for cannabinoid administration: Development, characterization and in vitro evaluation of their antitumoral efficacy
Kunjiappan et al. Capsaicin-loaded solid lipid nanoparticles: Design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation
Yang et al. TPGS-modified liposomes for the delivery of ginsenoside compound K against non-small cell lung cancer: formulation design and its evaluation in vitro and in vivo
Anwar et al. Formulation and evaluation of phytosome-loaded maltodextrin-gum Arabic microsphere system for delivery of Camellia sinensis extract
Mohammed et al. Formulation of ethyl cellulose microparticles incorporated pheophytin a isolated from suaeda vermiculata for antioxidant and cytotoxic activities
Ramadon et al. Novel transdermal ethosomal gel containing green tea (Camellia sinensis L. Kuntze) leaves extract: formulation and in vitro penetration study
Musielak et al. Optimization of the conditions of solid lipid nanoparticles (SLN) synthesis
CN104288784B (zh) 纳米羟基磷灰石‑基因‑药物复合物及制备方法和应用
CN104922105A (zh) 一种载姜黄色素和茶多酚的固体脂质纳米粒及其制备方法
Liu et al. Preparation, characterization, in vivo pharmacokinetics, and biodistribution of polymeric micellar dimethoxycurcumin for tumor targeting
Đoković et al. Curcumin loaded pegylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: a pilot study on rats
Sohail et al. Cell to rodent: toxicological profiling of folate grafted thiomer enveloped nanoliposomes
Calderon-Jacinto et al. Dual nanostructured lipid Carriers/Hydrogel system for delivery of Curcumin for topical skin applications
Cortesi et al. Monoolein aqueous dispersions as a delivery system for quercetin
Liang et al. Engineering multifunctional coatings on nanoparticles based on oxidative coupling assembly of polyphenols for stimuli-responsive drug delivery
Shrivastava et al. Solid self-nano emulsifying nanoplatform loaded with tamoxifen and resveratrol for treatment of breast cancer
Kiran Rompicharla et al. Polymeric micelles of suberoylanilide hydroxamic acid to enhance the anticancer potential in vitro and in vivo
Patel et al. Formulation, solubilization, and in vitro characterization of quercetin-incorporated mixed micelles of PEO-PPO-PEO block copolymers
Ali et al. Preparation and in vitro antiproliferative effect of tocotrienol loaded lipid nanoparticles
Lin et al. Myricetin nanofibers enhanced water solubility and skin penetration for increasing antioxidant and photoprotective activities
Alyami et al. Tamoxifen citrate containing topical nanoemulgel prepared by ultrasonication technique: formulation design and in vitro evaluation
Patel et al. Silibinin loaded inhalable solid lipid nanoparticles for lung targeting
Ghazwani et al. Quality-by-design-assisted optimization of carvacrol oil-loaded niosomal gel for anti-inflammatory efficacy by topical route

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150923