CN104911662A - Preparation method of composite ceramic coating layer - Google Patents

Preparation method of composite ceramic coating layer Download PDF

Info

Publication number
CN104911662A
CN104911662A CN201510223610.2A CN201510223610A CN104911662A CN 104911662 A CN104911662 A CN 104911662A CN 201510223610 A CN201510223610 A CN 201510223610A CN 104911662 A CN104911662 A CN 104911662A
Authority
CN
China
Prior art keywords
aluminum alloy
alloy member
preparation
coating
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510223610.2A
Other languages
Chinese (zh)
Other versions
CN104911662B (en
Inventor
吴护林
陈海涛
李忠盛
张隆平
易同斌
贾代金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
No 59 Research Institute of China Ordnance Industry
Original Assignee
No 59 Research Institute of China Ordnance Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by No 59 Research Institute of China Ordnance Industry filed Critical No 59 Research Institute of China Ordnance Industry
Priority to CN201510223610.2A priority Critical patent/CN104911662B/en
Publication of CN104911662A publication Critical patent/CN104911662A/en
Application granted granted Critical
Publication of CN104911662B publication Critical patent/CN104911662B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A preparation method of a composite ceramic coating layer includes successively pretreating the surface of an aluminum alloy element, preparing an arc-striking barrier layer on the surface of the aluminum alloy element, preparing a thermal insulation composite ceramic coating layer on the aluminum alloy surface and post-processing; the arc-striking barrier layer on the surface of the aluminum alloy element is prepared by coating in a deionized water-electrolysis solution system composed of NaOH, Na2SiO3, (NaPO3)6 and K2ZrF6; a preparation system of the aluminum alloy element surface coating layer is composed of a stainless steel solution tank (7), a tooling (4), the aluminum alloy element (5), a stirrer (2), a thermometer (6), a cooling water circulation heat-dissipation device (1) and a power source device (8). The composite ceramic coating layer prepared by the method and the system has the advantages of high toughness, strong binding force with the surface of the aluminum alloy element, long service life, and excellent heat insulation performance.

Description

A kind of preparation method of composite ceramic coat
To be application number be the application 201210143986.9, the divisional application of the patent of invention of on 05 10th, 2012 applying date.
Technical field
The present invention relates to and prepare a kind of method and the system thereof with the composite ceramic coat of heat-proof quality excellence on the working face of aluminum alloy spare part.
Background technology
The aluminium alloy as an alternative metallic substance such as steel has industrially been widely applied with the weight alleviating component and has been advocated, but aluminium alloy exists the defects such as fusing point is low, heat transfer is fast, high temperature is oxidizable.Zirconium white obtains the attention of various countries as the heat insulating coat of excellence, and carried out large quantifier elimination, but due to the restriction of himself characteristic and preparation technology, prior art carries out coating preparation mainly through the technique means such as plasma spraying, physical vapor deposition, the method such as plasma spraying, physical vapor deposition be all by zirconium white melt after in hydatogenesis to matrix surface, due to aluminum alloy materials characteristic determine be difficult to employing ordinary method prepare zirconia ceramics coating on its surface.
Generally speaking, there is coating binding force deficiency in the existing preparation technology of zirconia ceramics coating, easy embrittlement, therefore work-ing life is not long, and existing preparation technology is as plasma spraying, hydatogenesis is surperficial to workpiece substrate again due to needs high temperature melting zirconium white for the technique means such as electro beam physics vapour deposition, therefore can only at steel, the materials with high melting point surface preparation coatings such as matrix material, and crack because the difference of thermal expansivity between coating and matrix easily causes in coating cool to room temperature process, affect coating binding force, limit the application of zirconium white on light alloy material surfaces such as aluminium alloys.
Summary of the invention
The object of the present invention is to provide a kind of preparation method of composite ceramic coat with excellent thermal insulation performance, long service life.
The present invention seeks to be achieved through the following technical solutions:
A preparation method for composite ceramic coat, is characterized in that: it comprises carries out pre-treatment, starting the arc blocking layer, preparation aluminum alloy member surface, the preparation heat insulation composite ceramic coat of aluminum alloy surface and aftertreatment to aluminum alloy member surface successively; The preparation on starting the arc blocking layer, described aluminum alloy member surface is with NaOH, Na 2siO 3, (NaPO 3) 6, K 2zrF 6carry out coating in the deionized water electrolyte system of composition, described coating is that coating prepares starting the arc blocking layer, wherein current density 3 ~ 5A/dm with the negative electrode that aluminum alloy member frock is sandwiched in the anode of high-voltage dc pulse power, aluminum alloy member frock is connected to power supply 2, frequency 800 ~ 1000Hz, the pulsewidth 30% ~ 50% of positive pulse, treatment time 20 ~ 45min; Behind the starting the arc blocking layer on preparation aluminum alloy member surface, carry out the preparation of the heat insulation composite ceramic coat of aluminum alloy surface, the aluminum alloy member specifically described surface with starting the arc blocking layer is with NaOH, Na 2siO 3, (NaPO 3) 6, Zr (NO 3) 4, Y (NO 3) 3, Al (NO 3) 3, and nanometer ZrO 2be carry out coating in the deionized water electrolyte system of moiety with aqueous high-temperature-resistant mineral binder bond, described coating has the Al alloy parts on starting the arc blocking layer to be clamped in the negative electrode of high-voltage dc pulse power preparation, frock is connected to the anode of power supply, add positive and negative to voltage, wherein current density 5 ~ 8A/dm simultaneously 2, frequency 800 ~ 1200Hz, the pulsewidth of positive pulse gets 20% ~ 50%, positive negative pulse stuffing than 1:1,1:2 or 2:1, treatment time 30 ~ 100min.
In deionized water electrolyte system prepared by the heat insulation composite ceramic coat of above-mentioned aluminum alloy surface, above-mentioned nanometer ZrO 2be preferably the nanometer ZrO of particle diameter 20-40nm 2, its add-on is preferably 27-33g/L (more preferably 30g/L), in order to improve the resistance to elevated temperatures of final obtained coating further, above-mentioned aqueous high-temperature-resistant inorganic adhesive is preferably oxide nano rare earth composite water soluble mineral binder bond, described oxide nano rare earth composite water soluble mineral binder bond is in aqueous high-temperature-resistant glue, add the lanthanum trioxide that weight percent is 0.5% ~ 1%, yttrium oxide is or/and cerium oxide reacts obtained high temperature resistant composite water soluble mineral binder bond through bunching, for commercially available prod (as Beijing will contains the oxide nano rare earth aqueous high-temperature-resistant inorganic adhesive ZS-1071 of prestige China Tech skill Development Co., Ltd production), its consumption is 31-33g/L (being preferably 32g/L).
Above-mentioned each composition is commercially available prod; By above preparation method first obtained be Al 2o 3mass percentage is that 88%-95% is as Al 2o 3principal phase, ZrO 2mass percentage is the starting the arc blocking layer, aluminum alloy member surface of 5-12%, and finally that obtained is ZrO 2mass percentage is that 75%-85% is as ZrO 2principal phase, Y 2o 3mass percentage is 5-10%, Al 2o 3mass percentage is the heat insulation composite ceramic coat of aluminum alloy surface of 10-20%.
In the preparation on starting the arc blocking layer, above-mentioned aluminum alloy member surface, more preferably also control its voltage at 0 ~ 400V; In the preparation of the heat insulation composite ceramic coat of above-mentioned aluminum alloy surface, more preferably also control its generating positive and negative voltage than being 3:1.
Specifically, a preparation method for composite ceramic coat, is characterized in that: it comprises carries out pre-treatment oil removing dedusting, starting the arc blocking layer, preparation aluminum alloy member surface, the preparation heat insulation composite ceramic coat of aluminum alloy surface and aftertreatment to aluminum alloy member surface successively;
The preparation on starting the arc blocking layer, described aluminum alloy member surface is with NaOH, Na 2siO 3, (NaPO 3) 6, K 2zrF 6coating is carried out, wherein NaOH 8g/L, Na in the deionized water electrolyte system of composition 2siO 320g/L, (NaPO 3) 610g/L, K 2zrF 625g/L, described coating carries out coating with the negative electrode that aluminum alloy member frock is sandwiched in the anode of high-voltage dc pulse power, aluminum alloy member frock is connected to power supply to prepare starting the arc blocking layer, wherein current density 4A/dm 2, frequency 950Hz, the pulsewidth 40% of positive pulse, treatment time 33min, voltage is at 0 ~ 400V;
Behind the starting the arc blocking layer on preparation aluminum alloy member surface, carry out the preparation of the heat insulation composite ceramic coat of aluminum alloy surface, the aluminum alloy member specifically described surface with starting the arc blocking layer is with NaOH, Na 2siO 3, (NaPO 3) 6, Zr (NO 3) 4, Y (NO 3) 3, Al (NO 3) 3, and nanometer ZrO 2be carry out coating in the deionized water electrolyte system of moiety, wherein NaOH 6g/L, Na with oxide nano rare earth composite water soluble mineral binder bond 2siO 316g/L, (NaPO 3) 68g/L, Zr (NO 3) 420g/L, Y (NO 3) 38g/L, Al (NO 3) 310g/L, described nanometer ZrO 2for the nanometer ZrO of particle diameter 20-40nm 2, its add-on is 30g/L; Oxide nano rare earth composite water soluble mineral binder bond be lanthanum trioxide, yttrium oxide or/and cerium oxide is through the obtained high temperature resistant composite water soluble inorganic adhesive of bunching reaction, be commercially available prod, its consumption is 32g/L; Described coating has the Al alloy parts on starting the arc blocking layer to be clamped in the negative electrode of high-voltage dc pulse power preparation, and frock is connected to the anode of power supply, adds positive and negative to voltage, wherein current density 6A/dm simultaneously 2, frequency 1000Hz, the pulsewidth of positive pulse gets 40%, positive negative pulse stuffing than 1:2, generating positive and negative voltage than 3:1, treatment time 75min.
The most specifically, a kind of preparation method of composite ceramic coat, carries out according to the following steps:
A. the pre-treatment on aluminum alloy member surface:
Aluminum alloy member adopted ultrasonic washing instrument to carry out dedusting, oil removing cleaning, then adopt H 3pO 4with Al (OH) 3reaction, obtain the aqueous solution treatment solution of biphosphate Alumina gel, aluminum alloy member is immersed 2 ~ 3min in this solution, to remove the oxide skin of aluminum alloy surface, process rear washed with de-ionized water, then aluminum alloy member is immersed 10 ~ 20g/LNaOH solution and carry out surperficial alkali cleaning and Passivation Treatment at least 5 minutes;
B. the preparation on starting the arc blocking layer, aluminum alloy member surface
The preparation on starting the arc blocking layer, described aluminum alloy member surface is with NaOH, Na 2siO 3, (NaPO 3) 6, K 2zrF 6coating is carried out, wherein NaOH 8g/L, Na in the deionized water electrolyte system of composition 2siO 320g/L, (NaPO 3) 610g/L, K 2zrF 625g/L, described coating carries out coating with the negative electrode that aluminum alloy member frock is sandwiched in the anode of high-voltage dc pulse power, aluminum alloy member frock is connected to power supply to prepare starting the arc blocking layer, do not add negative voltage, wherein current density 4A/dm in coating preparation process 2, frequency 950Hz, the pulsewidth 40% of positive pulse, treatment time 33min, voltage is at 0 ~ 400V; Al is obtained by above-mentioned steps 2o 3mass percentage is the Al of 95% 2o 3principal phase, ZrO 2mass percentage is the starting the arc blocking layer, aluminum alloy member surface of 5%;
C. the preparation of the heat insulation composite ceramic coat of aluminum alloy surface
Behind the starting the arc blocking layer on preparation aluminum alloy member surface, carry out the preparation of the heat insulation composite ceramic coat of aluminum alloy surface, the aluminum alloy member specifically described surface with starting the arc blocking layer is with NaOH, Na 2siO 3, (NaPO 3) 6, Zr (NO 3) 4, Y (NO 3) 3, Al (NO 3) 3, and nanometer ZrO 2be carry out coating in the deionized water electrolyte system of moiety, wherein NaOH 6g/L, Na with oxide nano rare earth composite water soluble mineral binder bond 2siO 316g/L, (NaPO 3) 68g/L, Zr (NO 3) 420g/L, Y (NO 3) 38g/L, Al (NO 3) 310g/L, described nanometer ZrO 2for the nanometer ZrO of particle diameter 20-40nm 2, its add-on is 30g/L; Oxide nano rare earth composite water soluble mineral binder bond be lanthanum trioxide, yttrium oxide or/and cerium oxide is through the obtained high temperature resistant composite water soluble inorganic adhesive of bunching reaction, be commercially available prod, its consumption is 32g/L; Described coating has the Al alloy parts on starting the arc blocking layer to be clamped in the negative electrode of high-voltage dc pulse power preparation, and frock is connected to the anode of power supply, adds positive and negative to voltage, wherein current density 6A/dm simultaneously 2, frequency 1000Hz, the pulsewidth of positive pulse gets 40%, positive negative pulse stuffing than 1:2, generating positive and negative voltage than 3:1, treatment time 75min, positive voltage 0 ~ 560V, negative voltage 0 ~ 300V; ZrO is obtained by above-mentioned steps 2mass percentage is the ZrO of 75%-85% 2principal phase, Y 2o 3mass percentage is 5-10%, Al 2o 3mass percentage is the heat insulation composite ceramic coat of aluminum alloy surface of 10-20%;
Chemical composition in above-mentioned two kinds of electrolyte systems preferably adopts analytical reagent, preparation is using deionized water as solvent, quality of de-ionized water require preferred 10M Ω cm@25 DEG C and more than, the distilled water of high purity (three times distillation and more than) can better replace deionized water as solvent, and alcohol adopts purity to be 99.7% and above analytical pure;
D. aftertreatment
The aluminum alloy member of the tool coating after step c process is cleaned, then adopts hair dryer tool coating aluminum alloy member to be dried up;
Preferably, in order to further be improved obtained aluminum alloy member resistance to elevated temperatures, after above-mentioned aftertreatment, also sealing pores being carried out to tool coating aluminum alloy member, specifically adopt ZrO 2the organosilicon resol (for commercially available prod) of modification carries out even application to coating aluminum alloy member.
The present invention has following beneficial effect:
The aluminum alloy member top coat that preparation method of the present invention obtains is ZrO 2-Y 2o 3-Al 2o 3heat insulation composite ceramic coat; Present invention utilizes zirconium white and there is c-ZrO 2→ t-ZrO 2(2370 DEG C) and t-ZrO 2(2370 DEG C) → M-ZrO 2the phase-change characteristic of (1170 DEG C), introduces aluminum oxide, c-ZrO that yttrium composition makes high-temperature stable 2and t-ZrO 2also can exist at ambient-temp-stable or meta mutually, toughening effect be served to zirconia coating, to improve the bonding force of zirconia coating in aluminum alloy surface further; Meanwhile, the high-temperature behavior of aluminum oxide, yttrium oxide excellence forms strengthening action to the heat-proof quality of zirconia coating, further increases coating heat-proof quality.This composite ceramic coat is primarily of oxide ceramics phase composites such as zirconium white, yttrium oxide, aluminum oxide, being formed with zirconium white is principal phase, the composite coating structure of aluminum oxide, yttria toughened, non-master phase composition aluminum oxide, yttrium oxide have toughness reinforcing and that phase structure is stable effect to principal phase zirconium white, the zirconic fusing point of principal phase is 2677 DEG C, and thermal conductivity is 0.92wmK -1, thermal expansivity is 10 × 10 -6dEG C -1, have that fusing point is high, high-temperature heat-conductive rate is low, thermal expansivity and aluminum substrate close to etc. characteristic.
The aluminum alloy member top coat that the present invention obtains has high tenacity, strong with aluminum alloy member surface bonding power, and experimental result shows coat-thickness, and when about 350um, bonding force is at 7.5Mpa-10Mpa, and its long service life, heat-proof quality is excellent.Contriver is by long-term theoretical investigation and a large amount of tests, solve aluminum alloy member and cannot go out the composite ceramic coat that zirconium white is principal phase by low-temperature growth, be difficult to the service requirements of satisfied more than 2000 DEG C high temperature, short times, improve the heat-proof quality of aluminum alloy member, achieve under the hot environment of the aluminum alloy member that the present invention obtains more than 2000 DEG C and reliably use 10s-30s; The inventive method is not only applicable to small-sized aluminum alloy member, is applicable to large aluminum alloy component yet; Be not only applicable to the aluminum alloy member of circle, the regular shape such as square, be applicable to the aluminum alloy member of the arbitrary shape such as ellipse, flat yet.The preparation system of aluminum alloy member top coat of the present invention is simple, workable, is convenient to industrialization promotion.
Accompanying drawing explanation
Fig. 1: be the ZrO that embodiment 1 is obtained 2-Y 2o 3-Al 2o 3composite ceramic coat surface microscopic topographic figure;
Fig. 2: be the ZrO that embodiment 1 is obtained 2-Y 2o 3-Al 2o 3composite ceramic coat section microscopic appearance figure;
Fig. 3: be the ZrO that embodiment 1 is obtained 2-Y 2o 3-Al 2o 3composite ceramic coat EDAX results figure;
Fig. 4: be composite ceramic coat preparation system structural representation of the present invention; Wherein, the cooling water circulation heat abstractor of 1-, 2-agitator, 3-electrolytic solution, 4-frock, 5-aluminum alloy member, 6-thermometer, 7-stainless steel solution tank, 8-power unit;
Fig. 5: the pulse waveform preparing the power supply output on starting the arc blocking layer, aluminum alloy member surface for embodiment 1, wherein T: cycle, f: pulsewidth;
Fig. 6: the pulse waveform preparing the power supply output of the heat insulation composite ceramic coat of aluminum alloy surface for embodiment 1, wherein T: cycle, f: pulsewidth;
Fig. 7: be the main power circuit schematic diagram of power unit in composite ceramic coat preparation system of the present invention.
Embodiment
Below by example, the present invention is specifically described; what be necessary to herein means out is; following instance is only used to further illustrate the present invention; can not be interpreted as limiting the scope of the invention, the person skilled in the art in this field can make some nonessential improvement and adjustment according to foregoing invention content to the present invention.
Embodiment 1
A kind of preparation system of composite ceramic coat, as shown in Figure 4, be made up of stainless steel solution tank 7, frock 4, aluminum alloy member 5, agitator 2, thermometer 6, cooling water circulation heat abstractor 1 and power unit 8, wherein fill above-mentioned electrolytic solution 3 in stainless steel solution tank 7, thermometer 6, agitator 2, frock 4 and aluminum alloy member 5 is provided with in stainless steel solution tank 7, and be all immersed in described electrolytic solution 3, wherein aluminum alloy member 5 is arranged in frock 4, and the positive and negative electrode of power unit 8 is connected respectively with aluminum alloy member 5, frock 4; Described cooling water circulation heat abstractor 1 is arranged on stainless steel solution tank 7 bottom and is communicated with stainless steel solution tank 7 by pipeline; Wherein power unit 8 is commercially available prod, and its main power circuit schematic diagram is see Fig. 7.
Adopt this system to prepare composite ceramic coat, carry out according to the following steps:
(1) preparation of high-voltage dc pulse power and aluminum alloy member frock: adopt that generating positive and negative voltage is symmetrical, generating positive and negative voltage is adjustable, positive negative pulse stuffing is than the high-voltage direct-current pulse power of adjustable and positive negative pulse stuffing pulsewidth, frequency-adjustable; Generating positive and negative voltage is all at more than 700V, generating positive and negative voltage can be smoothly adjustable between 0 ~ 700V, it is adjustable that positive negative pulse stuffing ratio can carry out 1:2,2:1,1:1 Three models, positive negative pulse stuffing width can be adjustable between 0 ~ 100%, the frequency of positive negative pulse stuffing can be adjustable between 300Hz ~ 3000Hz, the supporting electrolytic bath of this power supply has cooling power, ensures that in experimentation, solution temperature remains on less than 30 DEG C; And go out the aluminum alloy member frock required for coating preparation for the Structural Feature Design of aluminum alloy member, the another one electrode that this frock is prepared as coating simultaneously, therefore this frock needs firm clamping aluminum alloy member and has excellent conductivity, the treated side preparing coating with aluminum alloy member is needed to be matching relationship in addition, ensure the field uniformity between frock and aluminium alloy, frock preferably adopts the material identical with aluminum alloy member, to ensure the symmetry between frock and aluminum alloy member; Adopt the sand paper of granularity more than 600 orders to polish to frock, make wearing surface surfaceness at Ra more than 0.47;
(2) pre-treatment on aluminum alloy member surface:
Aluminum alloy member adopted ultrasonic washing instrument to carry out dedusting, oil removing cleaning, then adopt H 3pO 4with Al (OH) 3reaction, obtain the aqueous solution treatment solution of biphosphate Alumina gel, aluminum alloy member is immersed 2 ~ 3min in this solution, to remove the oxide skin of aluminum alloy surface, process rear washed with de-ionized water, then aluminum alloy member is immersed 10 ~ 20g/LNaOH solution and carry out surperficial alkali cleaning and Passivation Treatment at least 5 minutes;
(3) preparation on starting the arc blocking layer, aluminum alloy member surface
The preparation on starting the arc blocking layer, described aluminum alloy member surface is with NaOH, Na 2siO 3, (NaPO 3) 6, K 2zrF 6coating is carried out, wherein NaOH 8g/L, Na in the deionized water electrolyte system of composition 2siO 320g/L, (NaPO 3) 610g/L, K 2zrF 625g/L, described coating carries out coating with the negative electrode that aluminum alloy member frock is sandwiched in the anode of high-voltage dc pulse power, aluminum alloy member frock is connected to power supply to prepare starting the arc blocking layer, do not add negative voltage, wherein current density 4A/dm in coating preparation process 2, frequency 950Hz, the pulsewidth 40% of positive pulse, treatment time 33min; The pulse waveform that the power supply that its power unit uses exports as shown in Figure 5.Al is obtained by above-mentioned steps 2o 3mass percentage is the Al of 95% 2o 3principal phase, ZrO 2mass percentage is the starting the arc blocking layer, aluminum alloy member surface of 5%;
(4) preparation of the heat insulation composite ceramic coat of aluminum alloy surface
Behind the starting the arc blocking layer on preparation aluminum alloy member surface, carry out the preparation of the heat insulation composite ceramic coat of aluminum alloy surface, the aluminum alloy member specifically described surface with starting the arc blocking layer is with NaOH, Na 2siO 3, (NaPO 3) 6, Zr (NO 3) 4, Y (NO 3) 3, Al (NO 3) 3, and nanometer ZrO 2be carry out coating in the deionized water electrolyte system of moiety, wherein NaOH 6g/L, Na with oxide nano rare earth composite water soluble mineral binder bond 2siO 316g/L, (NaPO 3) 68g/L, Zr (NO 3) 420g/L, Y (NO 3) 38g/L, Al (NO 3) 310g/L, described nanometer ZrO 2for the nanometer ZrO of particle diameter 20-40nm 2, its add-on is 30g/L; Oxide nano rare earth composite water soluble mineral binder bond be lanthanum trioxide, yttrium oxide or/and cerium oxide is through the obtained high temperature resistant composite water soluble inorganic adhesive of bunching reaction, be commercially available prod, its consumption is 32g/L; Described coating has the Al alloy parts on starting the arc blocking layer to be clamped in the negative electrode of high-voltage dc pulse power preparation, and frock is connected to the anode of power supply, adds positive and negative to voltage, wherein current density 6A/dm simultaneously 2, frequency 1000Hz, the pulsewidth of positive pulse gets 40%, positive negative pulse stuffing than 1:1, generating positive and negative voltage than 3:1, treatment time 75min; The pulse waveform that the power supply that its power unit uses exports as shown in Figure 6.
Chemical composition in above-mentioned two kinds of electrolyte systems adopts analytical reagent, preparation is using deionized water as solvent, quality of de-ionized water requires the distilled water of preferred 10M Ω cm@25 DEG C and above or high purity (three distillations and more than), and alcohol adopts purity to be 99.7% and above analytical pure;
(5) aftertreatment
The aluminum alloy member of the tool coating after step c process is cleaned, then adopts hair dryer tool coating aluminum alloy member to be dried up; After above-mentioned aftertreatment, also sealing pores is carried out to tool coating aluminum alloy member, specifically adopt ZrO 2the organosilicon resol (for commercially available prod) of modification carries out even application to coating aluminum alloy member, and in 160 ~ 180 DEG C of temperature ranges to organosilicon resol be cured 5h and more than.
Above-mentioned obtained aluminum alloy member top coat has high tenacity, strong with aluminum alloy member surface bonding power (adopt the circular specimen of band coating to pull open method and test bonding force).Adopt the sample heat-proof quality of GJB323A-1996 " ablator ablative test method " calibration tape coating: achieve under the hot environment of 2200-2500 DEG C and reliably use 20s-24s, meet aluminum alloy member at high temperature service requirements in short-term completely.Its obtained ZrO 2-Y 2o 3-Al 2o 3composite ceramic coat is see shown in Fig. 1, Fig. 2, Fig. 3.
Embodiment 2,3: undertaken by following raw material and processing parameter, all the other are with embodiment 1.
Above-mentioned obtained composite ceramic coat has high tenacity, strong with aluminum alloy member surface bonding power, achieves and reliably use 15s-28s under the hot environment of 2000-3000 DEG C, meets its service requirements in high temperature environments.

Claims (1)

1. a preparation method for composite ceramic coat, is characterized in that, carries out according to the following steps:
The preparation system that described coating adopts, by stainless steel solution tank (7), frock (4), aluminum alloy member (5), agitator (2), thermometer (6), cooling water circulation heat abstractor (1) and power unit (8) composition, wherein fill described electrolytic solution (3) in stainless steel solution tank (7), thermometer (6) is provided with in stainless steel solution tank (7), agitator (2), frock (4) and aluminum alloy member (5), and be all immersed in described electrolytic solution (3), wherein aluminum alloy member (5) is arranged in frock (4), power unit (8) just, negative pole and aluminum alloy member (5), frock (4) connects respectively, described cooling water circulation heat abstractor (1) is arranged on stainless steel solution tank (7) bottom and is communicated with stainless steel solution tank (7) by pipeline,
A. the preparation of high-voltage dc pulse power and aluminum alloy member frock: adopt that generating positive and negative voltage is symmetrical, generating positive and negative voltage is adjustable, positive negative pulse stuffing is than the high-voltage direct-current pulse power of adjustable and positive negative pulse stuffing pulsewidth, frequency-adjustable; Generating positive and negative voltage is all at 700 more than V, generating positive and negative voltage is smoothly adjustable between 0 ~ 700 V, it is adjustable that positive negative pulse stuffing ratio can carry out 1:2,2:1,1:1 Three models, positive negative pulse stuffing width is adjustable between 0 ~ 100%, the frequency of positive negative pulse stuffing is adjustable between about 300 Hz ~ 3000 Hz, the supporting electrolytic bath of this power supply has cooling power, ensures that in experimentation, solution temperature remains on less than 30 DEG C; And go out the aluminum alloy member frock required for coating preparation for the Structural Feature Design of aluminum alloy member, the another one electrode that this frock is prepared as coating simultaneously;
B. the pre-treatment on aluminum alloy member surface:
Aluminum alloy member adopted ultrasonic washing instrument to carry out dedusting, oil removing cleaning, then adopt H 3pO 4with Al (OH) 3reaction, obtain the aqueous solution treatment solution of biphosphate Alumina gel, aluminum alloy member is immersed 2 ~ 3 min in this solution, to remove the oxide skin of aluminum alloy surface, process rear washed with de-ionized water, then aluminum alloy member is immersed the NaOH solution of about 10 ~ 20 g/L and carry out surperficial alkali cleaning and Passivation Treatment at least 5 minutes;
C. the preparation on starting the arc blocking layer, aluminum alloy member surface
The preparation on starting the arc blocking layer, described aluminum alloy member surface is with NaOH, Na 2siO 3, (NaPO 3) 6, K 2zrF 6coating is carried out, wherein NaOH 10 g/L, Na in the deionized water electrolyte system of composition 2siO 318 g/L, (NaPO 3) 613 g/L, K 2zrF 627g/L, described coating carries out coating with the negative electrode that aluminum alloy member frock is sandwiched in the anode of high-voltage dc pulse power, aluminum alloy member frock is connected to power supply to prepare starting the arc blocking layer, do not add negative voltage, wherein current density 3A/dm in coating preparation process 2, voltage 220V, frequency 1000 Hz, the pulsewidth 50% of positive pulse, treatment time 25 min;
D. the preparation of the heat insulation composite ceramic coat of aluminum alloy surface
Behind the starting the arc blocking layer on preparation aluminum alloy member surface, carry out the preparation of the heat insulation composite ceramic coat of aluminum alloy surface, the aluminum alloy member specifically described surface with starting the arc blocking layer is with NaOH, Na 2siO 3, (NaPO 3) 6, Zr (NO 3) 4, Y (NO 3) 3, Al (NO 3) 3, and nanometer ZrO 2be carry out coating in the deionized water electrolyte system of moiety with oxide nano rare earth composite water soluble mineral binder bond, wherein NaOH 6 g/L, Na 2siO 317 g/L, (NaPO 3) 65 g/L, Zr (NO 3) 417 g/L, Y (NO 3) 39g/L, Al (NO 3) 39 g/L, described nanometer ZrO 2for the nanometer ZrO of particle diameter 20-40nm 2, its add-on is 27g/L; Oxide nano rare earth composite water soluble mineral binder bond be lanthanum trioxide, yttrium oxide or/and cerium oxide is through the obtained high temperature resistant composite water soluble inorganic adhesive of bunching reaction, its consumption is 33g/L; Described coating has the Al alloy parts on starting the arc blocking layer to be clamped in the negative electrode of high-voltage dc pulse power preparation, and frock is connected to the anode of power supply, adds positive and negative to voltage, wherein current density 5A/dm simultaneously 2, positive voltage 560V, negative voltage 200V, frequency 1200Hz, the pulsewidth of positive pulse gets 50%, positive negative pulse stuffing than 2:1, treatment time 80min;
E. aftertreatment
The aluminum alloy member of the tool coating after steps d process is cleaned, then adopts hair dryer tool coating aluminum alloy member to be dried up; Also sealing pores is carried out to tool coating aluminum alloy member, specifically adopt ZrO 2the organosilicon resol of modification carries out even application to coating aluminum alloy member, and in 160 ~ 180 DEG C of temperature ranges to organosilicon resol be cured 5h and more than.
CN201510223610.2A 2012-05-10 2012-05-10 Preparation method of composite ceramic coating layer Active CN104911662B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510223610.2A CN104911662B (en) 2012-05-10 2012-05-10 Preparation method of composite ceramic coating layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210143986.9A CN102634832B (en) 2012-05-10 2012-05-10 Method for preparing aluminum alloy element surface coating and system thereof
CN201510223610.2A CN104911662B (en) 2012-05-10 2012-05-10 Preparation method of composite ceramic coating layer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201210143986.9A Division CN102634832B (en) 2012-05-10 2012-05-10 Method for preparing aluminum alloy element surface coating and system thereof

Publications (2)

Publication Number Publication Date
CN104911662A true CN104911662A (en) 2015-09-16
CN104911662B CN104911662B (en) 2017-05-10

Family

ID=46619405

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201210143986.9A Active CN102634832B (en) 2012-05-10 2012-05-10 Method for preparing aluminum alloy element surface coating and system thereof
CN201510223912.XA Active CN104911663B (en) 2012-05-10 2012-05-10 Durable surface coating layer preparation method and system
CN201510223610.2A Active CN104911662B (en) 2012-05-10 2012-05-10 Preparation method of composite ceramic coating layer

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201210143986.9A Active CN102634832B (en) 2012-05-10 2012-05-10 Method for preparing aluminum alloy element surface coating and system thereof
CN201510223912.XA Active CN104911663B (en) 2012-05-10 2012-05-10 Durable surface coating layer preparation method and system

Country Status (1)

Country Link
CN (3) CN102634832B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106757265A (en) * 2016-12-05 2017-05-31 中国科学院兰州化学物理研究所 A kind of preparation method of aluminum alloy surface sun light reflectivity white hot control coating high
CN107723781A (en) * 2017-08-28 2018-02-23 中国兵器工业第五九研究所 The manufacture method and plater of coating
CN107794558A (en) * 2016-08-31 2018-03-13 昆山汉鼎精密金属有限公司 Aluminum alloy surface color method and its products formed
CN107915476A (en) * 2017-12-06 2018-04-17 王增倍 A kind of perforating head and preparation method
CN108517484A (en) * 2018-04-16 2018-09-11 西安工业大学 A kind of dead-end pore structure ceramic coat and its preparation process
CN109267131A (en) * 2018-09-06 2019-01-25 福铂斯(天津)科技有限公司 A kind of preparation method of incombustible material
CN111676499A (en) * 2020-07-30 2020-09-18 华南理工大学 Hydrogen-resistant coating based on cathode plasma electrolytic deposition and preparation method thereof
CN112760694A (en) * 2020-12-30 2021-05-07 牡丹江师范学院 Method for preparing high-temperature-resistant oxide film on surface of titanium alloy through double-electrode discharge
CN113089047A (en) * 2021-04-12 2021-07-09 四川九洲电器集团有限责任公司 Aluminum alloy component and preparation method and application thereof
CN113294261A (en) * 2021-06-29 2021-08-24 潍柴动力股份有限公司 Cylinder cover, coating preparation device and coating preparation method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104372394A (en) * 2014-07-03 2015-02-25 西安工业大学 Preparation method for oxide ceramic layer
CN104562128B (en) * 2015-01-09 2017-10-03 西安工业大学 A kind of method for preparing thermal protection ceramic layer on metal or metallic composite surface
CN105369270A (en) * 2015-11-06 2016-03-02 和县隆盛精密机械有限公司 Dust removing and cleaning technology for metal part
KR102210971B1 (en) * 2016-03-11 2021-02-01 어플라이드 머티어리얼스, 인코포레이티드 Method for forming yttrium oxide on semiconductor processing equipment
CN108385156B (en) * 2018-05-31 2023-12-15 东北大学 Plating layer or passivation layer preparation device capable of flexibly controlling environmental parameters and application method
CN109441023A (en) * 2018-11-06 2019-03-08 河南金拇指防水科技股份有限公司 A kind of method that water-proof acrylic acid paint is laid with
CN116351685B (en) * 2023-04-10 2023-12-29 江西瑞一韵承科技有限公司 Preparation process of aluminum alloy hub surface coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080226938A1 (en) * 2007-03-16 2008-09-18 Calvary Design Team, Inc. Wear resistant ceramic coated aluminum alloy article and method for making same
CN102277606A (en) * 2010-06-09 2011-12-14 西安康博新材料科技有限公司 Preparation method of thermal barrier coating on surface of aluminum-magnesium alloy and composite material of alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2072000C1 (en) * 1993-08-23 1997-01-20 Институт химии Дальневосточного отделения РАН Method of multicolored dying of aluminium and aluminium-alloy objects
CN1138023C (en) * 2001-05-31 2004-02-11 北京科技大学 Cathode micro arc electrodepositing method for preparing oxide ceramic coating
JP2005023422A (en) * 2003-06-09 2005-01-27 Nippon Paint Co Ltd Metal surface treatment method and surface-treated metal
CN1309875C (en) * 2004-07-30 2007-04-11 哈尔滨工业大学 Process for preparing zirconium oxide coating of titanium alloy surface
WO2008120046A1 (en) * 2007-04-02 2008-10-09 Gostevs, Vladimirs Method of forming a protective ceramic coating on the surface of metal products
EP2371996B1 (en) * 2008-12-26 2016-03-09 Nihon Parkerizing Co., Ltd. Method of electrolytic ceramic coating for metal, electrolysis solution for electrolytic ceramic coating for metal, and metallic material
CN102154644B (en) * 2011-03-18 2013-03-06 中国兵器工业第五九研究所 Preparation method of composite coating for light alloy component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080226938A1 (en) * 2007-03-16 2008-09-18 Calvary Design Team, Inc. Wear resistant ceramic coated aluminum alloy article and method for making same
CN102277606A (en) * 2010-06-09 2011-12-14 西安康博新材料科技有限公司 Preparation method of thermal barrier coating on surface of aluminum-magnesium alloy and composite material of alloy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANG XIAOZHAN ET AL.: "Cathodic micro-arc electrodeposition of yttrium stabilized zirconia(YSZ)coatings", 《CHINESE SCIENCE BULLETIN》 *
韩伟 等: "阴极气膜微弧放电沉积ZrO2-Y2O3陶瓷涂层", 《稀有金属》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107794558A (en) * 2016-08-31 2018-03-13 昆山汉鼎精密金属有限公司 Aluminum alloy surface color method and its products formed
CN106757265B (en) * 2016-12-05 2018-12-28 中国科学院兰州化学物理研究所 A kind of preparation method of the high sun light reflectivity white hot control coating of aluminum alloy surface
CN106757265A (en) * 2016-12-05 2017-05-31 中国科学院兰州化学物理研究所 A kind of preparation method of aluminum alloy surface sun light reflectivity white hot control coating high
CN107723781B (en) * 2017-08-28 2020-05-08 中国兵器工业第五九研究所 Method for producing coating and coating apparatus
CN107723781A (en) * 2017-08-28 2018-02-23 中国兵器工业第五九研究所 The manufacture method and plater of coating
CN107915476A (en) * 2017-12-06 2018-04-17 王增倍 A kind of perforating head and preparation method
CN108517484A (en) * 2018-04-16 2018-09-11 西安工业大学 A kind of dead-end pore structure ceramic coat and its preparation process
CN108517484B (en) * 2018-04-16 2020-12-18 西安工业大学 Ceramic coating with closed pore structure and preparation process thereof
CN109267131A (en) * 2018-09-06 2019-01-25 福铂斯(天津)科技有限公司 A kind of preparation method of incombustible material
CN109267131B (en) * 2018-09-06 2020-03-27 福铂斯(天津)科技有限公司 Preparation method of non-combustible material
CN111676499A (en) * 2020-07-30 2020-09-18 华南理工大学 Hydrogen-resistant coating based on cathode plasma electrolytic deposition and preparation method thereof
CN112760694A (en) * 2020-12-30 2021-05-07 牡丹江师范学院 Method for preparing high-temperature-resistant oxide film on surface of titanium alloy through double-electrode discharge
CN112760694B (en) * 2020-12-30 2021-08-24 牡丹江师范学院 Method for preparing high-temperature-resistant oxide film on surface of titanium alloy through double-electrode discharge
CN113089047A (en) * 2021-04-12 2021-07-09 四川九洲电器集团有限责任公司 Aluminum alloy component and preparation method and application thereof
CN113294261A (en) * 2021-06-29 2021-08-24 潍柴动力股份有限公司 Cylinder cover, coating preparation device and coating preparation method

Also Published As

Publication number Publication date
CN104911663B (en) 2017-04-19
CN104911662B (en) 2017-05-10
CN102634832B (en) 2015-04-22
CN104911663A (en) 2015-09-16
CN102634832A (en) 2012-08-15

Similar Documents

Publication Publication Date Title
CN102634832B (en) Method for preparing aluminum alloy element surface coating and system thereof
CN101514473B (en) Method for preparing yttrium silicate coat by cathode rotation hydrothermal electrophoretic deposition
CN101885623A (en) Method for preparing carbon/carbon composite material mullite external coating by pulsed hydrothermal electrophoresis sedimentation method
CN106350849B (en) The oxidation film electro-deposition preparation method of aluminium surface high-selenium corn and low transmitting solar spectrum
CN103044086B (en) Method for preparing carbon/carbon composite yttrium silicate whisker reinforced C-AlPO4-SiCn complex external coating
CN106048730B (en) A kind of method of titanium alloy differential arc oxidation preparing nano titanium dioxide ceramic whisker
CN111676499A (en) Hydrogen-resistant coating based on cathode plasma electrolytic deposition and preparation method thereof
CN102924108B (en) Method for preparing Y2Si2O7 whisker-toughened mullite composite coating
CN103044076B (en) Method for preparing carbon/carbon composite yttrium silicate whisker reinforced mullite-C-AlPO4 complex external coating
CN103601533A (en) Preparation method of carbon/carbon composite material HfB2 anti-oxidation outer coating
CN106906505A (en) It is a kind of that the method that ceramic coating improves titanium-base alloy high temperature oxidation resistance is obtained based on halide effect and pretreatment
CN102936145B (en) Preparation method of Y2SiO5 whisker toughened mullite composite coating
CN105198500A (en) Preparation method of sheet-shaped C/C-MoSi2 composite
CN106083208B (en) A method of preparing SiCN- hafnium acid yttrium composite coatings
CN104130022B (en) Carbon/carbon compound material ZrO 2the preparation method of particle and SiC whisker coordination plasticizing mullite compound coating
CN104130021B (en) The preparation method of the crystal whisker toughened mullite compound coating of a kind of carbon/carbon composite mullite
CN104313664B (en) Surface treatment method for rare earth magnesium alloy product
CN102942387B (en) Preparation method of Y2Si2O7 crystal whisker toughening Y2Si2O7 composite coatings
CN109537024A (en) A kind of thermal control film layer on magnesium lithium alloy surface and preparation method thereof
CN102951920B (en) Preparation method of Y4Si3O12 whisker toughened mullite composite coating
CN102951921B (en) Preparation method of Y4Si3O12 whisker toughened Y2SiO5 composite coating
CN106978606A (en) A kind of high heat conduction graphene/titanium composite material and preparation method thereof
CN104130016B (en) A kind of preparation method of carbon/carbon compound material SiC nanowire plasticizing mullite-SiC compound coating
CN102924107B (en) Method for preparing Y2SiO5 whisker toughened Y4Si3O12 composite coating
CN102942379B (en) Preparation method of Y4Si3O12 crystal whisker toughening Y4Si3O12 composite coatings

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant