CN104900775A - Led结构及其形成方法 - Google Patents

Led结构及其形成方法 Download PDF

Info

Publication number
CN104900775A
CN104900775A CN201410083089.2A CN201410083089A CN104900775A CN 104900775 A CN104900775 A CN 104900775A CN 201410083089 A CN201410083089 A CN 201410083089A CN 104900775 A CN104900775 A CN 104900775A
Authority
CN
China
Prior art keywords
layer
nitride semiconductor
type nitride
semiconductor layer
led structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410083089.2A
Other languages
English (en)
Inventor
张旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201410083089.2A priority Critical patent/CN104900775A/zh
Publication of CN104900775A publication Critical patent/CN104900775A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种LED结构及其形成方法。其中该LED结构包括:衬底;位于衬底之上的第一掺杂类型氮化物半导体层,第一掺杂类型为N型和P型中的一种;位于第一掺杂类型氮化物半导体层之上的多量子阱发光层;位于多量子阱发光层之上的第二掺杂类型氮化物半导体层,第二掺杂类型与第一掺杂类型相反;与N型氮化物半导体层相连的N电极;与P型氮化物半导体层相连的P电极;位于P型氮化物半导体层和P电极之间的电流扩散层;以及位于N型氮化物半导体层之中的极化插入层,其中,极化插入层与N型氮化物半导体层具有晶格失配。本发明的LED结构及其形成方法,利用极化插入层降低了N型氮化物半导体层的电阻率,最终使发光效率得到提升。

Description

LED结构及其形成方法
技术领域
本发明属于LED制造领域,具体涉及一种LED结构及其形成方法。
背景技术
由于LED具有环保、节能、寿命长等优点,得到的广泛的应用。尤其是氮化镓(GaN)基LED可以发出紫光、蓝光等可见光中短波长的光线,从而使LED固态照明在生产生活中大量使用成为可能。目前GaN基LED芯片的基本结构自下而上为衬底、N型GaN层、N电极、多量子阱发光层、P型GaN层、电流扩散层、P电极等等。其中衬底通常可以采用碳化硅、蓝宝石、硅单晶等异质衬底。其中碳化硅衬底价格较高且其单晶生长技术尚未普及。硅单晶衬底由于晶格失配大,生长的GaN薄膜晶体质量不高。而蓝宝石由于其价格优势易于外延生产工艺相对成熟,仍是目前GaN基LED中最常使用的衬底。
但是蓝宝石外延GaN仍有晶格失配,导热导电性差,从而只能制作水平结构LED。蓝宝石外延GaN制成的水平结构芯片通常会由于电流拥挤效应导致发光效率不高。
发明内容
本发明旨在至少在一定程度上解决上述发光效率低的技术问题。
为此,本发明的目的在于提出一种发光效率高的LED结构及其形成方法。
申请人通过研究得知:LED结构中,位于P型GaN之上的电流扩散层的材料为导电材料氧化铟锡(ITO),电流扩散层的电阻率小于N型GaN层的电阻率,容易导致电流扩散不均、在靠近N电极部分电流密度较大。而多量子阱发光层具有droop效应,即在电流增大时发光效率下降,所以电流不均进一步导致发光效率降低,同时也会引起局部温度过高,诱发死灯漏电等不良结果。
为实现上述目的,本发明第一方面提出一种LED结构,包括:衬底;位于所述衬底之上的第一掺杂类型氮化物半导体层,所述第一掺杂类型为N型和P型中的一种;位于所述第一掺杂类型氮化物半导体层之上的多量子阱发光层;位于所述多量子阱发光层之上的第二掺杂类型氮化物半导体层,所述第二掺杂类型与所述第一掺杂类型相反;与N型氮化物半导体层相连的N电极;与P型氮化物半导体层相连的P电极;位于所述P型氮化物半导体层和所述P电极之间的电流扩散层;以及位于所述N型氮化物半导体层之中的极化插入层,其中,所述极化插入层与所述N型氮化物半导体层具有晶格失配。根据本发明实施例的LED结构,利用极化插入层与N型氮化物半导体层的晶格失配产生极化场,从而在极化插入层中形成二维电子气结构。利用二维电子气在水平方向上的高迁移率,降低N型氮化物半导体层的电阻率,使电流在外延层中扩散更均匀,从而提高了LED结构的发光效率。
为实现上述目的,本发明第二方面提出一种LED结构的形成方法,包括以下步骤:提供衬底;在所述衬底之上形成第一掺杂类型氮化物半导体层,所述第一掺杂类型为N型和P型中的一种;在所述第一掺杂类型氮化物半导体层之上形成多量子阱发光层;在所述多量子阱发光层之上的第二掺杂类型氮化物半导体层,所述第二掺杂类型与所述第一掺杂类型相反;形成与N型氮化物半导体层相连的N电极,以及形成与P型氮化物半导体层相连的P电极;在形成P型氮化物半导体层和形成P电极的过程之间形成电流扩散层;以及在形成N型氮化物半导体层的过程中插入极化插入层,其中,所述极化插入层与所述N型氮化物半导体层具有晶格失配。
根据本发明实施例的LED结构的形成方法,通过在N型氮化物半导体层中插入极化插入层,利用极化插入层与N型氮化物半导体层的晶格失配产生极化场,从而在极化插入层中形成二维电子气结构。然后,利用二维电子气在水平方向上的高迁移率,降低N型氮化物半导体层的电阻率,使电流在外延层中扩散更均匀,从而提高了LED结构的发光效率。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明一个实施例的LED结构的结构示意图;
图2是本发明另一个实施例的LED结构的结构示意图;
图3是在N型GaN层中插入AlN层的能带示意图和结构示意图;
图4是本发明第三实施例的LED结构的结构示意图;
图5是本发明一个实施例的LED结构的形成方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面结合说明书附图详细介绍本发明的LED结构及其形成方法。
图1为本发明一个实施例的LED结构的结构示意图,该LED结构从下至上包括:衬底10、N型氮化物半导体层20、多量子阱发光层30、P型氮化物半导体层40、电流扩散层70,与N型氮化物半导体层20直接相连的N电极50、与P型氮化物半导体层40间接相连的P电极60,以及,位于N型氮化物半导体层20之中的极化插入层80。其中,极化插入层80与N型氮化物半导体层20具有晶格失配。
需要说明的是,本发明实施例的LED结构除了可以为图1示出的N型氮化物半导体层20在下、P型氮化物半导体层40在上的形式之外,也可以为N型氮化物半导体层20在上、P型氮化物半导体层40在下的形式,这并不改变本发明的原理。以及,本发明实施例的LED结构除了可以为图1示出的水平结构之外,也可以为垂直结构,这也并不改变本发明的原理。例如图2所示,本发明另一实施例的LED结构从下至上包括:P电极60、衬底10、P型氮化物半导体层40、多量子阱发光层30、N型氮化物半导体层20、电流扩散层70、N电极50,以及,位于N型氮化物半导体层20之中的极化插入层80。
需要说明的是,本领域技术人员还可以根据需要加入以下可选结构以进一步改善LED结构的发光效果:缓冲层、本征氮化物半导体层、电子阻挡层、电流阻挡层等等。此为本领域技术人员的已知技术,本文不赘述。
由上可知,根据本发明实施例的LED结构,利用极化插入层80与N型氮化物半导体层20的晶格失配产生极化场,从而在极化插入层80中形成二维电子气结构。利用二维电子气在水平方向上的高迁移率,降低N型氮化物半导体层20的电阻率,使电流在外延层中扩散更均匀,从而提高了LED结构的发光效率。
在本发明上述实施例的LED结构中,衬底10可以根据需要灵活选用硅衬底或蓝宝石衬底等等。其中,蓝宝石衬底具有常见易得、适合外延GaN材料的优点。
在本发明上述实施例的LED结构中,当氮化物半导体为GaN时,极化插入层80的材料可以为InN、AlN、InGaN或AlGaN。以极化插入层80选用AlN为例,GaN的c轴晶格常数为3.19,AlN的c轴晶格常数为3.11,二者的晶格失配率较大,为2.5%。因此在N型GaN层20中插入AlN层80时,容易由晶格失配产生极化场,并在AlN层中形成二维电子气结构,如图3所示。
在本发明上述实施例的LED结构中,优选极化插入层80位于N型氮化物半导体层20之中邻近多量子阱发光层30的位置,如图4所示。这样可以保证电流从多量子阱发光层30流向N电极50时,必然穿经极化插入层80,也就是说必然穿经形成的二维电子气,更好地实现本发明的效果。
在本发明上述实施例的LED结构中,极化插入层80的厚度可以为5-50nm,优选厚度为20nm。极化插入层80厚度太薄将导致难以产生足够的二维电子气,厚度太厚则容易导致难以进一步继续生长N型氮化物半导体薄膜。
在本发明上述实施例的LED结构中,电流扩散层70的材料可以为ITO。ITO具有透光率高、工艺成熟、成本较低等优点。
如图5所示,根据本发明一个实施例的LED结构的形成方法,包括以下步骤:
S11.提供衬底。
具体地,可以提供可以根据需要灵活选用为硅衬底或蓝宝石衬底等等。其中,蓝宝石衬底具有常见易得、适合外延GaN材料的优点。
S12.形成包括极化插入层的N型氮化物半导体层。
具体地,可以在衬底之上形成先生长一层N型氮化物半导体层,然后插入一层较薄的极化插入层,随后再生长一层N型氮化物半导体层。其中,极化插入层的材料的极化效应强于N型氮化物半导体层的材料的极化效应,并且极化插入层与N型氮化物半导体层的晶格失配率大于预设失配率阈值。
S13.形成多量子阱发光层。
具体地,可以在N型氮化物半导体层的第一区域之上形成多量子阱发光层。
S14.形成P型氮化物半导体层。
具体地,可以在多量子阱发光层之上形成P型氮化物半导体层。
S15.形成电流扩散层。
具体地,可以在P型氮化物半导体层之上形成电流扩散层。
S16.形成P电极和N电极。
具体地,可以在电流扩散层之上形成P电极,以及在N型氮化物半导体层之上形成N电极。需要说明的是,通过调整P电极和N电极的形成工艺,可以根据需要形成水平结构的LED结构或者垂直结构的LED结构,这并不改变本发明的原理。
需要说明的是,步骤S12和步骤S14的顺序可以对调。若先执行步骤S14后执行步骤S12,最终可以得到N型氮化物半导体层在上、P型氮化物半导体层在下的LED结构。
需要说明的是,本领域技术人员还可以根据需要加入以下可选步骤以进一步改善LED结构的发光效果:增设缓冲层、增设本征氮化物半导体层、增设电子阻挡层、增设电流阻挡层等等。此为本领域技术人员的已知技术,本文不赘述。
由上可知,根据本发明实施例的LED结构的形成方法,通过在N型氮化物半导体层中插入极化插入层,利用极化插入层与N型氮化物半导体层的晶格失配产生极化场,从而在极化插入层中形成二维电子气结构。然后,利用二维电子气在水平方向上的高迁移率,降低N型氮化物半导体层的电阻率,使电流在外延层中扩散更均匀,从而提高了LED结构的发光效率。
在本发明上述实施例的LED结构的形成方法中,当氮化物半导体为GaN时,极化插入层的材料可以为InN、AlN、InGaN或AlGaN。以极化插入层选用AlN为例,GaN的c轴晶格常数为3.19,AlN的c轴晶格常数为3.11,二者的晶格失配率较大,为2.5%。因此在N型GaN层中插入AlN层时,容易由晶格失配产生极化场,并在AlN层中形成二维电子气结构。
在本发明上述实施例的LED结构的形成方法中,优选极化插入层位于N型氮化物半导体层之中邻近多量子阱发光层的位置。以生长多量子阱发光层之前生长N型氮化物半导体层的形成方法为例,需要在生长N型氮化物半导体层过程的后期插入极化插入层。这样可以保证电流从多量子阱发光层流向N电极时,必然穿经极化插入层,也就是说必然穿经形成的二维电子气,更好地实现本发明的效果。
在本发明上述实施例的LED结构中,极化插入层的厚度可以为5-50nm,优选厚度为20nm。极化插入层厚度太薄将导致难以产生足够的二维电子气,厚度太厚则容易导致难以进一步继续生长N型氮化物半导体薄膜。
在本发明上述实施例的LED结构中,电流扩散层的材料可以为ITO。ITO具有透光率高、工艺成熟、成本较低等优点。
为使本领域技术人员更好地理解本发明,下面详细介绍一个GaN基LED结构的形成过程。
A.提供蓝宝石衬底。
B.在蓝宝石衬底上利用MOCVD的方法外延生长缓冲层。
C.在缓冲层上高温生长本征GaN,本征GaN的生长过程中通过对温度、压强、III/V族化合物比例等工艺参数的控制实现高晶体质量的外延生长。
D.在本征GaN上生长硅掺杂N型GaN。具体地,生长80nm厚的N型GaN,然后插入20nm厚的AlN,接着继续生长80nm厚的N型GaN。
E.生长InGaN/GaN多量子阱发光层。该多量子阱发光层包括1-20个周期的交替生长的阱层和垒层。每层InGaN阱层厚度为2~3纳米,每层GaN垒层厚度为8~15纳米。多量子阱发光层的生长温度为700~850℃。
F.在多量子阱发光层上生长AlGaN电子阻挡层。
G.在AlGaN电子阻挡层上生长镁掺杂的P型GaN。随后,对P型GaN中掺杂的Mg离子激活。激活可以采取在温度为600-800℃的真空或氮气氛围下退火的方式。
H.在P型GaN上采用蒸镀溅镀等的方法生长ITO透明导电层。
I.采用ICP蚀刻和化学刻蚀等方法将部分区域蚀刻到N型GaN层。
J.在ITO透明导电层上制备金属P电极,以及在暴露的N型GaN层上制备金属N电极。电极可以为Cr、Ti、Pt、Au多层结构,或者多种金属合金。
K.在ITO透明导电层和外延层侧面采用PECVD方法镀上二氧化硅绝缘层。
实验结果表明,插入AlN层厚的LED结构的发光效率提升了9%
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。尽管上面已经示出和描述了本发明的实施例,但上述实施例不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种LED结构,其特征在于,包括:
衬底;
位于所述衬底之上的第一掺杂类型氮化物半导体层,所述第一掺杂类型为N型和P型中的一种;
位于所述第一掺杂类型氮化物半导体层之上的多量子阱发光层;
位于所述多量子阱发光层之上的第二掺杂类型氮化物半导体层,所述第二掺杂类型与所述第一掺杂类型相反;
与N型氮化物半导体层相连的N电极;
与P型氮化物半导体层相连的P电极;
位于所述P型氮化物半导体层和所述P电极之间的电流扩散层;以及
位于所述N型氮化物半导体层之中的极化插入层,其中,
所述极化插入层与所述N型氮化物半导体层具有晶格失配。
2.如权利要求1所述的LED结构,其特征在于,所述极化插入层位于所述N型氮化物半导体层之中邻近所述多量子阱发光层的位置。
3.如权利要求1所述的LED结构,其特征在于,所述极化插入层的厚度为5-50nm。
4.如权利要求1所述的LED结构,其特征在于,所述氮化物半导体为GaN,并且所述极化插入层的材料为InN、AlN、InGaN或AlGaN。
5.如权利要求1所述的LED结构,其特征在于,所述电流扩散层的材料为ITO。
6.一种LED结构的形成方法,其特征在于,包括以下步骤:
提供衬底;
在所述衬底之上形成第一掺杂类型氮化物半导体层,所述第一掺杂类型为N型和P型中的一种;
在所述第一掺杂类型氮化物半导体层之上形成多量子阱发光层;
在所述多量子阱发光层之上的第二掺杂类型氮化物半导体层,所述第二掺杂类型与所述第一掺杂类型相反;
形成与N型氮化物半导体层相连的N电极,以及形成与P型氮化物半导体层相连的P电极;
在形成P型氮化物半导体层和形成P电极的过程之间形成电流扩散层;以及
在形成N型氮化物半导体层的过程中插入极化插入层,其中,
所述极化插入层与所述N型氮化物半导体层具有晶格失配。
7.如权利要求6所述的LED结构的形成方法,其特征在于,所述极化插入层位于所述N型氮化物半导体层中邻近所述多量子阱发光层的位置。
8.如权利要求6所述的LED结构的形成方法,其特征在于,所述极化插入层的厚度为5-50nm。
9.如权利要求6所述的LED结构的形成方法,其特征在于,所述氮化物半导体为GaN,并且所述极化插入层的材料为InN、AlN、InGaN或AlGaN。
10.如权利要求6所述的LED结构的形成方法,其特征在于,所述电流扩散层的材料为ITO。
CN201410083089.2A 2014-03-06 2014-03-06 Led结构及其形成方法 Pending CN104900775A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410083089.2A CN104900775A (zh) 2014-03-06 2014-03-06 Led结构及其形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410083089.2A CN104900775A (zh) 2014-03-06 2014-03-06 Led结构及其形成方法

Publications (1)

Publication Number Publication Date
CN104900775A true CN104900775A (zh) 2015-09-09

Family

ID=54033311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410083089.2A Pending CN104900775A (zh) 2014-03-06 2014-03-06 Led结构及其形成方法

Country Status (1)

Country Link
CN (1) CN104900775A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992233A (zh) * 2017-04-13 2017-07-28 聚灿光电科技股份有限公司 反极性紫外led外延结构及其制备方法
CN107404067A (zh) * 2017-06-29 2017-11-28 南京邮电大学 基于分布式布拉格反射镜波导微腔的硅衬底GaN激光器
CN109671816A (zh) * 2018-11-21 2019-04-23 华灿光电(浙江)有限公司 一种发光二极管的外延片及其制备方法
CN110635006A (zh) * 2019-08-28 2019-12-31 映瑞光电科技(上海)有限公司 GaN基发光二极管外延结构
CN113471343A (zh) * 2021-07-15 2021-10-01 西安电子科技大学芜湖研究院 基于ScAlGaN超强极化n型层的GaN绿光发光二极管及制备方法
EP4345924A3 (en) * 2022-09-29 2024-04-24 Bolb Inc. Current spreading structure for light-emitting diode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201749864U (zh) * 2010-04-23 2011-02-16 山东华光光电子有限公司 具有较高静电击穿电压的GaN基LED
CN102064254A (zh) * 2010-11-10 2011-05-18 中国科学院半导体研究所 高质量氮化镓系发光二极管
CN102185055A (zh) * 2011-04-28 2011-09-14 映瑞光电科技(上海)有限公司 发光二极管及其制造方法
US20120112162A1 (en) * 2006-05-23 2012-05-10 Johng Eon Shin Nitride based light emitting device
CN103137808A (zh) * 2013-02-27 2013-06-05 中国科学院半导体研究所 具有低温n型插入层的氮化镓系发光二极管及其制备方法
CN103165777A (zh) * 2013-03-26 2013-06-19 合肥彩虹蓝光科技有限公司 具有梯形结构的n型插入层的led外延片及其生长方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120112162A1 (en) * 2006-05-23 2012-05-10 Johng Eon Shin Nitride based light emitting device
CN201749864U (zh) * 2010-04-23 2011-02-16 山东华光光电子有限公司 具有较高静电击穿电压的GaN基LED
CN102064254A (zh) * 2010-11-10 2011-05-18 中国科学院半导体研究所 高质量氮化镓系发光二极管
CN102185055A (zh) * 2011-04-28 2011-09-14 映瑞光电科技(上海)有限公司 发光二极管及其制造方法
CN103137808A (zh) * 2013-02-27 2013-06-05 中国科学院半导体研究所 具有低温n型插入层的氮化镓系发光二极管及其制备方法
CN103165777A (zh) * 2013-03-26 2013-06-19 合肥彩虹蓝光科技有限公司 具有梯形结构的n型插入层的led外延片及其生长方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992233A (zh) * 2017-04-13 2017-07-28 聚灿光电科技股份有限公司 反极性紫外led外延结构及其制备方法
CN107404067A (zh) * 2017-06-29 2017-11-28 南京邮电大学 基于分布式布拉格反射镜波导微腔的硅衬底GaN激光器
CN109671816A (zh) * 2018-11-21 2019-04-23 华灿光电(浙江)有限公司 一种发光二极管的外延片及其制备方法
CN109671816B (zh) * 2018-11-21 2021-01-19 华灿光电(浙江)有限公司 一种发光二极管的外延片及其制备方法
CN110635006A (zh) * 2019-08-28 2019-12-31 映瑞光电科技(上海)有限公司 GaN基发光二极管外延结构
CN113471343A (zh) * 2021-07-15 2021-10-01 西安电子科技大学芜湖研究院 基于ScAlGaN超强极化n型层的GaN绿光发光二极管及制备方法
CN113471343B (zh) * 2021-07-15 2023-11-10 西安电子科技大学芜湖研究院 基于ScAlGaN超强极化n型层的GaN绿光发光二极管及制备方法
EP4345924A3 (en) * 2022-09-29 2024-04-24 Bolb Inc. Current spreading structure for light-emitting diode

Similar Documents

Publication Publication Date Title
CN104900775A (zh) Led结构及其形成方法
CN101834248B (zh) 氮化镓系发光二极管
CN104205297B (zh) 制造非极性氮化镓基半导体层的方法、非极性半导体器件及其制造方法
CN102185062B (zh) 一种iii族氮化物发光二极管及其制作方法
Chiu et al. Reduction of efficiency droop in semipolar (1101) InGaN/GaN light emitting diodes grown on patterned silicon substrates
CN106229390B (zh) 一种GaN基发光二极管芯片的生长方法
CN102005513A (zh) 具有低温p型GaN层的氮化镓系发光二极管
CN104538517A (zh) 一种具有n型超晶格结构的LED外延结构及其生长方法
CN103165785A (zh) 用于制造半导体器件的方法
CN104576852A (zh) 一种GaN基LED外延结构的发光量子阱应力调控方法
CN103413877A (zh) 外延结构量子阱应力释放层的生长方法及其外延结构
CN104465898B (zh) 一种发光二极管外延片的生长方法及发光二极管外延片
CN103915534A (zh) 一种led外延片及其形成方法
CN105514234A (zh) 一种氮化物发光二极管及其生长方法
CN101147268A (zh) 氧化锌系化合物半导体元件
JP2005210050A (ja) 窒化物半導体発光素子及びその製造方法
CN114824019A (zh) 一种半导体发光元件
JP6298462B2 (ja) Si基板上に成長した閃亜鉛鉱型(立方晶とも言う。)AlyInxGa1−y−xN結晶(y≧0、x>0)からなる母結晶にナノドット(「量子ドット」とも言う。)を有する活性領域及びこれを用いた発光デバイス(LED及びLD)
JP4079926B2 (ja) 窒化物系発光装置の三元窒化物系バッファ層の製造方法及び窒化物系発光装置の製造方法
CN203434181U (zh) 一种GaN基LED外延片
CN108231964A (zh) 一种提高发光二极管内量子效率的方法
CN201766093U (zh) 一种氮化镓系发光二极管
CN104966767B (zh) 一种GaN基发光二极管外延片的生长方法
CN105957935A (zh) 一种led外延层及其生长方法
US7812354B2 (en) Alternative doping for group III nitride LEDs

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150909