CN104900424A - 超分子石墨烯负载四氧化三铁自组装体的制备方法 - Google Patents

超分子石墨烯负载四氧化三铁自组装体的制备方法 Download PDF

Info

Publication number
CN104900424A
CN104900424A CN201510320165.1A CN201510320165A CN104900424A CN 104900424 A CN104900424 A CN 104900424A CN 201510320165 A CN201510320165 A CN 201510320165A CN 104900424 A CN104900424 A CN 104900424A
Authority
CN
China
Prior art keywords
graphene
tri
preparation
iron tetroxide
cyclodextrin polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510320165.1A
Other languages
English (en)
Other versions
CN104900424B (zh
Inventor
刁国旺
蔡寅
倪鲁彬
张旺
陈铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201510320165.1A priority Critical patent/CN104900424B/zh
Publication of CN104900424A publication Critical patent/CN104900424A/zh
Application granted granted Critical
Publication of CN104900424B publication Critical patent/CN104900424B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

超分子石墨烯负载四氧化三铁自组装体的制备方法,属于超分子化学技术领域,本发明通过结合Fe3O4的氧化还原反应,将Fe3O4修饰到石墨烯的表面,进一步提高电容性质。本发明以聚乙二醇二金刚烷为桥联剂,然后通过环糊精与金刚烷分子之间的超分子作用力。制备的石墨烯四氧化三铁三维自组装体不但解决了石墨烯本身团聚造成的比电容减小,反而大大的增加了其比电容,最大可达392.9F/g,这表明石墨烯四氧化三铁组装体有很大的超级电容器应用前景。

Description

超分子石墨烯负载四氧化三铁自组装体的制备方法
技术领域
本发明属于纳米复合材料的制备领域,尤其属于超分子化学技术领域,特别涉及超级电容器材料制备的技术领域。
背景技术
电化学电容器(或被称为超级电容器)在储能方面已经引起越来越多的关注,主要是由于由于其较高的能量密度和较高的比电容,以及较好的循环寿命。因此该电化学电容器将有效地辅助,甚至有可能会取代电池在许多方面的应用,比如在混合动力汽车方面的应用。
到目前为止,主要有碳材料,过渡金属氧化物以及导电高分子这三种材料一般可以用作为超级电容器的电极材料,碳材料主要用于双电层电容,这种材料电荷的储能过程是非法拉第过程,能量的存储主要是通过静电过程。提高双电层电容器的电容主要是提高其比表面积以及增加它的导电性。近几年,由于石墨烯的化学稳定性,优异的机械性能,较高的电导率以及较高比表面积,因此石墨烯在电化学储能应用中有很好的应用前景。由石墨烯片制成的膨松纸还可以制成柔性电极,它不需要额外的电流收集器,这可以消除电极与集电体之间的接触电阻。
过渡金属(如MnO2、RuO2、NiO或SnO2)的储能机理主要是法拉第过程,这可以生成大的赝电容。然而,这些材料低导电性以及较差的稳定性通常要求添加导电相来增加电荷的转移,比如炭黑或者乙炔黑。在这些过渡金属氧化物当中,Fe3O4由于其廉价以及其绿色环保因此有较好的应用前景。Fe3O4也拥有这高的锂离子理论存储电容,这说明Fe3O4在氧化反应过程中可以提供高充电赝电容。先前研究的Fe3O4作为超级电容器的电容只有60-80Fg-1,主要是由于Fe3O4低导电率从而限制离子的扩散。将Fe3O4与导电相(如碳纳米管)混合形成复合物可以有效的将整体电容提高到165Fg-1(电流密度为0.2Ag-1)。、
为了解决Fe3O4的低导电性以及稳定性较差的问题,将石墨烯和Fe3O4结合制备复合材料,通过结合Fe3O4的氧化还原反应与石墨烯的高比表面积和高导电性来提高电化学性能。
然而石墨烯剧烈的聚集,从而到时其比表面急剧的减小,从而到时了其在超级电容器应用方面的限制。通过石墨烯自组装技术可以改变石墨烯之间的堆积形式和结构,从而聚集程度得以减小。为了克服这个难题,可以将石墨烯进行多种形式的自组装。
在石墨烯的组装研究中,超分子作用也是十分有效的途径之一。超分子化学研究的主要领域之一为超分子自组装,超分子化学研究的对象不是传统的以共价键形式连接的体系,它研究的是基于分子间作用力更高层次的体系。基于超分子作用确实可以实现石墨烯的有序自组装。
发明内容
本发明的目的在于提出一种制备较高比表面积和较高导电性的石墨烯四氧化三铁自组装体超级电容器电极材料的制备方法。
本发明包括以下步骤:
1)制备石墨烯负载四氧化三铁:超声条件下,将氧化石墨粉、聚乙烯吡咯烷酮、乙酸钠和高氯化铁均匀分散于乙二醇中,经水热反应后冷却,再经离心取固相烘干,即得石墨烯负载四氧化三铁(rGOFe3O4);
2)制备β-聚环糊精修饰石墨烯负载四氧化三铁(rGO Fe3O4β-CDP):超声条件下,将石墨烯负载四氧化三铁(rGOFe3O4)粉末均匀分散于去离子水中,再加入β-聚环糊精,超声取得混合均匀的混合体系,然后用离心机离心,取固相烘干,得到β-聚环糊精修饰石墨烯负载四氧化三铁(rGO Fe3O4β-CDP)黑色粉末;
3)制备还原石墨烯负载四氧化铁自组装体(rGOFe3O4β-CDPPEG-AD):将β-聚环糊精修饰石墨烯负载四氧化三铁(rGO Fe3O4β-CDP)均匀分散在去离子水后,再加入聚乙二醇二金刚烷(PEG-AD),搅拌反应至结束,然后离心取相固洗涤后真空干燥,即得还原石墨烯夹心四氧化铁自组装体(rGOFe3O4β-CDPPEG-AD),产物为黑色固体。
石墨烯(Graphene)作为一种拥有独特结构和优异性能的新型材料,将石墨烯运用到超级电容当中时,由于石墨烯作为的电极拥有这比表面积大和电阻小等特点,因此它是一种优良的超级电容器电极材料。
本发明通过结合Fe3O4的氧化还原反应,将Fe3O4修饰到石墨烯的表面,进一步提高电容性质。本发明还以聚乙二醇二金刚烷(PEG-AD)为桥联剂,然后通过环糊精与金刚烷分子之间的超分子作用力。利用本发明制备的石墨烯四氧化三铁三维自组装体,不但解决了石墨烯本身团聚造成的比电容减小,反而大大的增加了其比电容,最大可达392.9F/g,这表明石墨烯四氧化三铁组装体有很大的超级电容器应用前景。
另外,本发明所述氧化石墨粉、聚乙烯吡咯烷酮、乙酸钠和高氯化铁的投料质量比为1:10:20:10.8。通过该优选比例制备出的四氧化三铁纳米颗粒大小均一,比电容性能优良,这其中,聚乙烯吡咯烷酮的比例是最关键的,这是获得形貌均一的四氧化三铁的关键。
所述步骤2)中,所述石墨烯负载四氧化三铁和β-聚环糊精的混合质量比为1:100。可以最大量地将β-聚环糊精修饰到石墨烯的表面且不会使石墨烯发生团聚。
且所述步骤2)中,将石墨烯负载四氧化三铁(rGOFe3O4)粉末散于去离子水中后制得浓度为1mg/L的石墨烯负载四氧化三铁悬浮液,加入的β-聚环糊精为浓度为0.5mg/L的β-聚环糊精水溶液。将石墨烯负载四氧化三铁制成水分散体系、将β-聚环糊精制成水溶液,再混合,目的是为了让β-聚环糊精更好的负载到石墨烯表面,各自的浓度是在保证石墨烯负载四氧化三铁、β-聚环糊精在水中较好的分散的前提下选取的较大浓度,这样方便制备。
优选的以上石墨烯石墨烯四氧化三铁水溶液浓度的优点在于可以得到分散均一的水溶液,利于后期超分子自组装。
本发明所述步骤3)中,β-聚环糊精修饰石墨烯负载四氧化三铁与聚乙二醇二金刚烷的投料质量比为 1 :25。通过该质量比可以较为明显使石墨烯发生超分子自组装,少于这个比例,石墨烯自组装现象不明显,多于这个比例,石墨烯超分子自组装现象不会发生太大的变化。
步骤3)中所述真空干燥的真空条件为1200~4800Pa,温度为50~70℃。在该真空条件下干燥可以加快样品的干燥速度,温度设置在50~70℃之间可以确保产物不会因为温度过高而被破坏。
本发明制备聚乙二醇二金刚烷(PEG-AD)的具体方法是:将摩尔比为2.5:1的金刚烷异氰酸酯和聚乙二醇溶解于二氯乙烷中,然后加二月桂酸二丁基锡和三乙胺,升温至65℃进行反应,反应结束后去除溶剂,即得聚乙二醇二金刚烷(PEG-AD)白色固体粉末,这样制得的产物产率较高。
附图说明
图1为本发明制备的石墨烯四氧化三铁自组装体扫描电镜图。
图2为本发明制备的石墨烯四氧化三铁自组装体比电容与电流密度关系图。
具体实施方式
一、制备石墨烯三维自组装体
1、制备水溶性β-聚环糊精:
将20g β-环糊精(β-CD)加入30wt% NaOH水溶液中,室温搅拌至β-CD溶解,得到混合物。将混合物经30℃水浴5小时后,将9.64 mL环氧氯丙烷加入混合物中,搅拌24h,冷却至室温。先用透析法除去盐后,再将溶液蒸干得白色固体,真空干燥24h(真空度为1200~4800 Pa,干燥温度为50~70℃),即得到水溶性β-CD聚合物(β-聚环糊精)。
2、制备石墨烯负载四氧化三铁(rGOFe3O4):
将10mg氧化石墨粉分散到10mL乙二醇中,超声得均一溶液,再向其中加入0.1g聚乙烯吡咯烷酮、0.2g乙酸钠、0.108g高氯化铁,超声分散均匀后转移到15mL特氟龙水热反应釜中,180℃反应20个小时后,自然冷却到室温后,离心分离,取固相用乙醇洗涤三次,再用去离子水洗三次,最后经过60℃烘箱12小时烘干,即得石墨烯负载四氧化三铁(rGOFe3O4)。
3、制备β-聚环糊精修饰石墨烯负载四氧化三铁(rGO Fe3O4β-CDP):
在一锥形瓶中,加入5mg石墨烯负载四氧化三铁(rGOFe3O4)固体粉末,加水超声得到均一的浓度为1mg/L的石墨烯四氧化三铁悬浮液,加入浓度为0.5mg/L的β-聚环糊精水溶液100mL,超声5小时后用1200rpm离心机离心10min后于50 ~ 70 ℃烘箱中烘干,得到的黑色粉末即为β-聚环糊精修饰石墨烯负载四氧化三铁(rGO Fe3O4β-CDP)。
4、聚乙二醇二金刚烷(PEG-AD)的合成:
按摩尔比为2.5:1加入金刚烷异氰酸酯和聚乙二醇(Mn=4600),并使其溶解到二氯乙烷中,然后加二月桂酸二丁基锡和三乙胺,升温至65℃反应6小时,去除溶剂即得聚乙二醇二金刚烷(PEG-AD),产物为白色固体粉末。
5、还原石墨烯四氧化铁层层自组装体(rGOFe3O4β-CDPPEG-AD)的制备:
在圆底烧瓶中,加入rGOFe3O4β-CDP和适量去离子水使其分散均匀,搅拌,加入聚乙二醇二金刚烷(PEG-AD),搅拌6 h,离心洗涤,去离子水洗涤二次,无水乙醇洗涤一次,分离出沉淀物,在真空条件为1200~4800Pa、温度为50~70℃的条件下干燥24 h,即得到还原石墨烯夹心四氧化铁层层自组装体(rGOFe3O4β-CDPPEG-AD),产物为黑色固体。
二、产品特性
1、将制成的产品石墨烯四氧化三铁自组装体扫描电镜表征,从图1中可以看出,石墨烯表面负载了大量的四氧化三铁纳米颗粒,通过超分子自组装后的石墨烯尺寸较大,厚度较厚。
2、将制成的产品——石墨烯四氧化三铁自组装体作为超级电容器的电极材料,测定了其比电容与电流密度关系,可以发现其比电容最大可达392.9F/g。 如图2所示。

Claims (7)

1.超分子石墨烯负载四氧化三铁自组装体的制备方法,其特征在于包括以下步骤:
1)制备石墨烯负载四氧化三铁:超声条件下,将氧化石墨粉、聚乙烯吡咯烷酮、乙酸钠和高氯化铁均匀分散于乙二醇中,经水热反应后冷却,再经离心取固相烘干,即得石墨烯负载四氧化三铁;
2)制备β-聚环糊精修饰石墨烯负载四氧化三铁:
超声条件下,将石墨烯负载四氧化三铁粉末均匀分散于去离子水中,再加入β-聚环糊精,超声取得混合均匀的混合体系,然后用离心机离心,取固相烘干,得到即为β-聚环糊精修饰石墨烯负载四氧化三铁;
3)制备还原石墨烯负载四氧化铁自组装体:
将β-聚环糊精修饰石墨烯负载四氧化三铁均匀分散在去离子水后,再加入聚乙二醇二金刚烷,搅拌反应至结束,然后离心取相固洗涤后真空干燥,即得还原石墨烯夹心四氧化铁自组装体。
2.根据权利要求1所述的制备方法,其特征在于所述氧化石墨粉、聚乙烯吡咯烷酮、乙酸钠和高氯化铁的投料质量比为1:10:20:10.8。
3.根据权利要求1所述的制备方法,其特征在于所述步骤2)中,所述石墨烯负载四氧化三铁和β-聚环糊精的混合质量比为1:100。
4.根据权利要1或3所述的制备方法,其特征在于所述步骤2)中,将石墨烯负载四氧化三铁粉末散于去离子水中后制得浓度为1mg/L的石墨烯负载四氧化三铁悬浮液,加入的β-聚环糊精为浓度为0.5mg/L的β-聚环糊精水溶液。
5.根据权利要求1所述的制备方法,其特征在于所述步骤3)中,β-聚环糊精修饰石墨烯负载四氧化三铁与聚乙二醇二金刚烷的投料质量比为1 :25 。
6.根据权利要求1所述的制备方法,其特征在于所述步骤3)中所述真空干燥的真空条件为1200~4800Pa,温度为50~70℃。
7.根据权利要求1所述的制备方法,其特征在于:将摩尔比为2.5:1的金刚烷异氰酸酯和聚乙二醇溶解于二氯乙烷中,然后加二月桂酸二丁基锡和三乙胺,升温至65℃进行反应,反应结束后去除溶剂,即得聚乙二醇二金刚烷。
CN201510320165.1A 2015-06-12 2015-06-12 超分子石墨烯负载四氧化三铁自组装体的制备方法 Active CN104900424B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510320165.1A CN104900424B (zh) 2015-06-12 2015-06-12 超分子石墨烯负载四氧化三铁自组装体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510320165.1A CN104900424B (zh) 2015-06-12 2015-06-12 超分子石墨烯负载四氧化三铁自组装体的制备方法

Publications (2)

Publication Number Publication Date
CN104900424A true CN104900424A (zh) 2015-09-09
CN104900424B CN104900424B (zh) 2017-05-03

Family

ID=54033031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510320165.1A Active CN104900424B (zh) 2015-06-12 2015-06-12 超分子石墨烯负载四氧化三铁自组装体的制备方法

Country Status (1)

Country Link
CN (1) CN104900424B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105540682A (zh) * 2015-12-30 2016-05-04 哈尔滨理工大学 一种以尿素铁为铁源制备四氧化三铁负载氮掺杂石墨烯复合材料的方法
CN105820377A (zh) * 2016-06-03 2016-08-03 江苏华昌织物有限公司 一种负载环糊精磁性石墨烯的制备方法
CN106421812A (zh) * 2016-08-26 2017-02-22 上海交通大学 一种自组装四氧化三铁纳米颗粒的制法和用途
CN108579786A (zh) * 2018-04-24 2018-09-28 辽宁师范大学 Fe3O4@g-C3N4/RGO复合光催化剂及制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3090187B1 (fr) * 2018-12-14 2021-06-25 Univ Rennes Matériau poreux fonctionnalisé et utilisation comme électrode de pseudo-supercondensateur

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021715A1 (ja) * 2009-08-20 2011-02-24 日本電気株式会社 基板、基板の製造方法、半導体素子および半導体素子の製造方法
CN102130334A (zh) * 2011-01-15 2011-07-20 中国矿业大学 石墨烯基纳米铁氧化物复合材料及其制备方法
CN103496693A (zh) * 2013-09-23 2014-01-08 郑州大学 溶胶静电自组装方法制备Fe3O4纳米颗粒/石墨烯复合材料的方法及应用
CN103920160A (zh) * 2014-04-25 2014-07-16 南开大学 环糊精为媒介的石墨烯/透明质酸组装体及其制备方法
CN104362304A (zh) * 2014-09-02 2015-02-18 青岛大学 一种高温溶剂热一步制备Fe3O4/石墨烯锂离子电池复合负极材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021715A1 (ja) * 2009-08-20 2011-02-24 日本電気株式会社 基板、基板の製造方法、半導体素子および半導体素子の製造方法
CN102130334A (zh) * 2011-01-15 2011-07-20 中国矿业大学 石墨烯基纳米铁氧化物复合材料及其制备方法
CN103496693A (zh) * 2013-09-23 2014-01-08 郑州大学 溶胶静电自组装方法制备Fe3O4纳米颗粒/石墨烯复合材料的方法及应用
CN103920160A (zh) * 2014-04-25 2014-07-16 南开大学 环糊精为媒介的石墨烯/透明质酸组装体及其制备方法
CN104362304A (zh) * 2014-09-02 2015-02-18 青岛大学 一种高温溶剂热一步制备Fe3O4/石墨烯锂离子电池复合负极材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙涛等: "环糊精-石墨烯超分子体系", 《有机化学》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105540682A (zh) * 2015-12-30 2016-05-04 哈尔滨理工大学 一种以尿素铁为铁源制备四氧化三铁负载氮掺杂石墨烯复合材料的方法
CN105820377A (zh) * 2016-06-03 2016-08-03 江苏华昌织物有限公司 一种负载环糊精磁性石墨烯的制备方法
CN106421812A (zh) * 2016-08-26 2017-02-22 上海交通大学 一种自组装四氧化三铁纳米颗粒的制法和用途
CN106421812B (zh) * 2016-08-26 2019-12-24 上海交通大学 一种自组装四氧化三铁纳米颗粒的制法和用途
CN108579786A (zh) * 2018-04-24 2018-09-28 辽宁师范大学 Fe3O4@g-C3N4/RGO复合光催化剂及制备方法
CN108579786B (zh) * 2018-04-24 2020-10-13 辽宁师范大学 Fe3O4@g-C3N4/RGO复合光催化剂及制备方法

Also Published As

Publication number Publication date
CN104900424B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
Yang et al. Three-dimensional graphene hydrogel supported ultrafine RuO 2 nanoparticles for supercapacitor electrodes
Li et al. Functional gels based on chemically modified graphenes
Zou et al. One-pot synthesis of ternary polypyrrole⿿ Prussian-blue⿿ graphene-oxide hybrid composite as electrode material for high-performance supercapacitors
Feng et al. Facile synthesis of shape-controlled graphene–polyaniline composites for high performance supercapacitor electrode materials
Bao et al. ZnCo2O4 ultrathin nanosheets towards the high performance of flexible supercapacitors and bifunctional electrocatalysis
Xiang et al. A reduced graphene oxide/Co3O4 composite for supercapacitor electrode
Wu et al. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors
Feng et al. Synthesis of shape-controlled NiO–graphene nanocomposites with enhanced supercapacitive properties
CN104900424B (zh) 超分子石墨烯负载四氧化三铁自组装体的制备方法
Guo et al. One-pot synthesis of 2D Ti3C2/Ni2CO3 (OH) 2 composite as electrode material with superior capacity and high stability for hybrid supercapacitor
Guo et al. Facile preparation of high-performance cobalt–manganese layered double hydroxide/polypyrrole composite for battery-type asymmetric supercapacitors
Chen et al. Facile self-assembly of sandwich-like MXene/graphene oxide/nickel–manganese layered double hydroxide nanocomposite for high performance supercapacitor
Wang et al. Design and fabrication of polypyrrole/expanded graphite 3D interlayer nanohybrids towards high capacitive performance
Shi et al. 3D mesoporous hemp-activated carbon/Ni3S2 in preparation of a binder-free Ni foam for a high performance all-solid-state asymmetric supercapacitor
Li et al. Design and electrosynthesis of monolayered MoS2 and BF4−-doped poly (3, 4-ethylenedioxythiophene) nanocomposites for enhanced supercapacitive performance
Stevenson et al. Supercapatteries with hybrids of redox active polymers and nanostructured carbons
CN113517143B (zh) 一种复合电极材料及其制备方法与用途
Feng et al. Facile synthesis of nickel cobalt layered double hydroxide nanosheets intercalated with sulfate anion for high-performance supercapacitor
Lin et al. Facile preparation of holey Anderson-type polyoxometalate/polyaniline/graphene nanocomposites for supercapacitors
Zhang et al. A nickel coordination supramolecular network synergized with nitrogen-doped graphene as an advanced cathode to significantly boost the rate capability and durability of supercapacitors
Zhang et al. Nanocellulose/nitrogen and fluorine co-doped graphene composite hydrogels for high-performance supercapacitors
Liu et al. Hexadecyl trimethyl ammonium bromide assisted growth of NiCo 2 O 4@ reduced graphene oxide/nickel foam nanoneedle arrays with enhanced performance for supercapacitor electrodes
Zhang et al. Facile synthesis of transition metal complexes wrapped Ti3C2Tx by a PVP-assisted liquid impregnation strategy with enhanced electrochemical performance for supercapacitors
CN105655133A (zh) 一种复合钽电容器的阴极材料及其制备方法
Huang et al. Controllable synthesis of hierarchically porous polyaniline/MnO2 composite with wide potential window towards symmetric supercapacitor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant