CN104899906B - 基于自适应正交基的磁共振图像重建方法 - Google Patents

基于自适应正交基的磁共振图像重建方法 Download PDF

Info

Publication number
CN104899906B
CN104899906B CN201510323802.0A CN201510323802A CN104899906B CN 104899906 B CN104899906 B CN 104899906B CN 201510323802 A CN201510323802 A CN 201510323802A CN 104899906 B CN104899906 B CN 104899906B
Authority
CN
China
Prior art keywords
image
reconstructed image
reconstruction
formula
orthogonal basis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510323802.0A
Other languages
English (en)
Other versions
CN104899906A (zh
Inventor
冯衍秋
黄进红
陈武凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern Medical University
Original Assignee
Southern Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern Medical University filed Critical Southern Medical University
Priority to CN201510323802.0A priority Critical patent/CN104899906B/zh
Publication of CN104899906A publication Critical patent/CN104899906A/zh
Application granted granted Critical
Publication of CN104899906B publication Critical patent/CN104899906B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种基于自适应正交基的磁共振图像重建方法,包括如下步骤:(1)获得原始的k空间数据,对采样的k空间数据进行傅里叶逆变换得到初始重建图像;(2)在正交基约束下建立基于压缩感知的重建模型;(3)对初始重建图像进行分块,随机提取部分图像块进行正交基学习,得到一组自适应正交基;(4)用硬域值法对所有图像块进行自适应正交基下的稀疏表示;(5)用最小二乘法更新重建图像得到当前重建图像;(6)判断当前重建图像是否满足收敛条件,如果收敛,以当前重建图像作为最终的重建图像,否则进入步骤(7);(7)减小正则化参数取值,以当前重建图像作为初始重建图像,返回步骤(3)。本发明重建速度快、图像质量良好。

Description

基于自适应正交基的磁共振图像重建方法
技术领域
本发明涉及磁共振成像技术领域,具体是涉及一种压缩感知理论下的基于自适应正交基的磁共振图像重建方法。
背景技术
压缩感知(CS)理论利用信号在一组基或字典下的稀疏性,只需采集部分样本,在满足一定条件的情况下,即可重建出高质量的原始信号。压缩感知理论应用于磁共振快速成像,可从部分采样的k空间中重建出原始图像,减少了k空间的采集数,实现了在成像速度快的条件下仍可获得高分辨率的磁共振图像这一目标。
在压缩感知的应用中,基于过完备字典学习的方法有较大的潜力,被广泛应用于图像去噪、图像修复等。近年来,也有学者应用到基于压缩感知的磁共振图像重建中,极大地提高了重建精度。然而,由于过完备基在这些方法中的应用,导致稀疏编码的计算耗时大大增加,使得这一方法难以用于实践。
最近有学者提出放弃使用过完备字典,改用方阵字典,并对其进行各种约束,以利于最优化问题的求解。这类方法在计算时间上有较明显的改进,然而在计算精度上与过完备字典相比,得到的结果非常接近,在重建精度上不具优势。
因此,设计一种耗时较短、重建质量较高的重建方法成为了这一领域中当前的一大挑战。
发明内容
本发明的目的是针对现有的磁共振图像重建方法的不足,提供一种可同时提高重建图像质量和减少计算耗时的基于自适应正交基的磁共振图像重建方法。
本发明的上述目的通过如下技术手段实现。
提供一种基于自适应正交基的磁共振图像重建方法,包括如下步骤:
(1)采用变密度随机欠采样方式得到原始的k空间数据,对采样的k空间数据进行傅里叶逆变换得到初始重建图像;
(2)在正交基约束下建立基于压缩感知的重建模型;
(3)对所述初始重建图像进行分块,随机提取部分图像块进行正交基学习,得到一组自适应正交基;
(4)用硬域值法对步骤(3)分块的所有图像块进行自适应正交基下的稀疏表示;
(5)用最小二乘法更新重建图像得到当前重建图像;
(6)判断当前重建图像是否满足收敛条件,如果收敛,以当前重建图像作为最终的重建图像,否则进入步骤(7);
(7)减小正则化参数取值,以当前重建图像作为初始重建图像,返回步骤(3)。
上述步骤(2),具体采用如下方式进行:
对基加以正交性约束,建立基于压缩感知重建模型:
其中,y表示欠采样的k空间数据,x为待重建图像,Fu为部分傅立叶变换算子,Ri为图像块提取操作算子,D为自适应正交基,λ和ν为两正则化参数,Γ是由所有系数αi组成的系数矩阵,αi表示第i个图像块在正交基D中的表示系数,In表示n×n维单位矩阵,C表示复数集。
上述步骤(3)具体包括:
把x和Γ看成已知常量,将式(I)变成式(Ⅱ):
利用奇异值分解方法求解式(Ⅱ),得到更新后的正交基:D*=UVH,其中U和V分别是矩阵XΓH的奇异向量和右奇异向量,即XΓH=UΣVH
上述步骤(4)具体包括:
把x和D看成已知常量,将式(I)变成式(Ⅲ):
利用硬域值法求解式(Ⅲ),得到图像块的稀疏表示:其中为硬域值操作算子,z为任一复数,硬域值操作算子逐像素点作用于矩阵DHX。
上述步骤(5)具体包括:
把Γ和D看成已知常量,将式(I)变成式(Ⅳ):
采用最小二乘法求解式(Ⅳ),得到更新的重建图像:
上述步骤(6)的判断当前重建图像是否满足收敛条件,收敛条件是当次的重建图像与前一次的重建图像之间的相对误差小于10^(-4)。
上述步骤(7)中的减小正则化参数取值,具体通过如下方式进行:
令λ=λ0·δk,ν=ν0·δk,其中λ0及ν0为选定的某个初值,δ<1为下降因子。
本发明的一种基于自适应正交基的磁共振图像重建方法,包括如下步骤:(1)采用变密度随机欠采样方式得到原始的k空间数据,对采样的k空间数据进行傅里叶逆变换得到初始重建图像;(2)在正交基约束下建立基于压缩感知的重建模型;(3)对所述初始重建图像进行分块,随机提取部分图像块进行正交基学习,得到一组自适应正交基;(4)用硬域值法对步骤(3)分块的所有图像块进行自适应正交基下的稀疏表示;(5)用最小二乘法更新重建图像得到当前重建图像;(6)判断当前重建图像是否满足收敛条件,如果收敛,以当前重建图像作为最终的重建图像,否则进入步骤(7);(7)减小正则化参数取值,以当前重建图像作为初始重建图像,返回步骤(3)。本发明的方法能够提高磁共振重建图像的精度,而且能够减少计算耗时,具有重建速度快,图像质量良好的特点。
附图说明
利用附图对本发明作进一步的说明,但附图中的内容不构成对本发明的任何限制。
图1是本发明方法的流程示意图;
图2本发明仿真实验所用的体模数据的原始图像;
图3是根据图2的数据采用DLMRI方法重建的图像;
图4是根据图2的数据采用本发明的方法重建的图像,本发明的方法简称SPODU方法;
图5是对图3、图4结果的峰值信噪比(PSNR)指标对比图;
图6是对图3、图4结果的高频归一化误差范数(HFEN)指标对比图;
图7本发明仿真实验所用的脑部数据的原始图像;
图8是根据图7的数据采用DLMRI方法重建的图像;
图9是根据图7的数据采用本发明的方法重建的图像,本发明的方法简称SPODU方法;
图10是对图8、图9结果的峰值信噪比(PSNR)指标对比图;
图11是对图8、图9结果的高频归一化误差范数(HFEN)指标对比图;
图12是两组实验数据在不同采样方案下比较DLMRI方法和本发明方法计算所用时间的对比。
具体实施方式
下面结合以下实施例对本发明作进一步描述。
实施例1。
一种基于自适应正交基的磁共振图像重建方法,如图1所示,包括如下步骤:
(1)采用变密度随机欠采样方式得到原始的k空间数据,对采样的k空间数据进行傅里叶逆变换得到初始重建图像;
(2)在正交基约束下建立基于压缩感知的重建模型;
(3)对所述初始重建图像进行分块,随机提取部分图像块进行正交基学习,得到一组自适应正交基;
(4)用硬域值法对步骤(3)分块的所有图像块进行自适应正交基下的稀疏表示;
(5)用最小二乘法更新重建图像得到当前重建图像;
(6)判断当前重建图像是否满足收敛条件,如果收敛,以当前重建图像作为最终的重建图像,否则进入步骤(7);
(7)减小正则化参数取值,以当前重建图像作为初始重建图像,返回步骤(3)。
上述步骤(2),具体采用如下方式进行:
对基加以正交性约束,建立基于压缩感知重建模型:
其中,y表示欠采样的k空间数据,x为待重建图像,Fu为部分傅立叶变换算子,Ri为图像块提取操作算子,D为自适应正交基,λ和ν为两正则化参数,Γ是由所有系数αi组成的系数矩阵,αi表示第i个图像块在正交基D中的表示系数,In表示n×n维单位矩阵,C表示复数集。
上述步骤(3)具体包括:
把x和Γ看成已知常量,将式(I)变成式(Ⅱ):
利用奇异值分解方法求解式(Ⅱ),得到更新后的正交基:D*=UVH,其中U和V分别是矩阵XΓH的奇异向量和右奇异向量,即XΓH=UΣVH
上述步骤(4)具体包括:
把x和D看成已知常量,将式(I)变成式(Ⅲ):
利用硬域值法求解式(Ⅲ),得到图像块的稀疏表示:其中为硬域值操作算子,z为任一复数,硬域值操作算子逐像素点作用于矩阵DHX。
上述步骤(5)具体包括:
把Γ和D看成已知常量,将式(I)变成式(Ⅳ):
采用最小二乘法求解式(Ⅳ),得到更新的重建图像:
上述步骤(6)的判断当前重建图像是否满足收敛条件,收敛条件是当次的重建图像与前一次的重建图像之间的相对误差小于10^(-4)。
上述步骤(7)中的减小正则化参数取值,具体通过如下方式进行:
令λ=λ0·δk,ν=ν0·δk,其中λ0及ν0为选定的两正则化参数的初始值,δ<1为下降因子,k为迭代次数。
本发明的一种基于自适应正交基的磁共振图像重建方法,能够提高磁共振重建图像质量,而且能够减少计算耗时,具有重建速度快,图像质量良好的特点。
实施例2。
为了验证本发明的效果,本实施例中以图2所示的体模数据为基础进行图像重建。
针对体模数据在不同的欠采样因子下,本发明的基于自适应正交基的磁共振图像重建方法,包括如下步骤:
(1)通过磁共振扫描得到全采样的原始k空间数据,根据给定的不同的欠采样因子,对原始k空间数据进行回顾性欠采样,得到欠采样k空间数据y;
然后对k空间数据y进行补零傅里叶重建,得到重建图像x的初始值,同时令Γ的初始值为零矩阵。
(2)建立基于正交性约束的压缩感知重建模型,具体如下:
对基加以正交性约束,建立基于压缩感知重建模型:
其中,y表示欠采样的k空间数据,x为待重建图像,Fu为部分傅立叶变换算子,Ri为图像块提取操作算子,D为自适应正交基,λ和ν为两正则化参数,Γ是由所有系数αi组成的系数矩阵,αi表示第i个图像块在正交基D中的表示系数,In表示n×n维单位矩阵,C表示复数集。
(3)对所述初始重建图像进行分块,随机提取部分图像块进行正交基学习,得到一组自适应正交基,具体如下:
把x和Γ看成已知常量,将式(I)变成式(Ⅱ):
利用奇异值分解方法求解式(Ⅱ),得到更新后的正交基:D*=UVH,其中U和V分别是矩阵XΓH的奇异向量和右奇异向量,即XΓH=UΣVH
(4)用硬域值法对步骤(3)分块的所有图像块进行自适应正交基下的稀疏表示,具体包括:
把x和D看成已知常量,将式(I)变成式(Ⅲ):
利用硬域值法求解式(Ⅲ),得到图像块的稀疏表示:其中为硬域值操作算子,z为任一复数,硬域值操作算子逐像素点作用于矩阵DHX。
(5)用最小二乘法更新重建图像得到当前重建图像,具体包括:
把Γ和D看成已知常量,将式(I)变成式(Ⅳ):
这是一典型的最小二乘问题,可采用最小二乘法求解式(Ⅳ),得到更新的重建图像:
(6)判断当前重建图像是否满足收敛条件,如果收敛,以当前重建图像作为最终的重建图像,否则进入步骤(7)。
(7)减小正则化参数取值,令λ=λ0·δk及ν=ν0·δk,以当前重建图像作为初始重建图像,返回步骤(3)。
最终输出的重建图像如图4所示。根据图4的重建图像结果计算PSNR和HFEN,分别如图5、图6所示。
目前典型的基于字典学习的压缩感知重建方法,简称DLMRI方法。该方法的具体操作方法可以参考期刊:S.Ravishankar et al.,MR image reconstruction from highlyundersampled k-space data by dictionary learning,IEEE Trans.on MedicalImaging,vol.30,no.5,pp.1028–1041,2011。为了进行对比,在本实施例中,以图2的数据采用DLMRI方法进行图像重建,结果如图3所示。
根据图3、图4的结果计算PSNR和HFEN指标,结果分别如图5、图6所示。根据重建结果及指标可以看出,本发明所提出的方法无论在定性方面或者定量方面都要好于DLMRI方法。
通过实验结果验证,本发明的一种基于自适应正交基的磁共振图像重建方法,能够提高磁共振重建图像质量,而且能够减少计算耗时,具有重建速度快,图像质量良好的特点。
实施例3。
为了验证本发明的效果,本实施例中以图7所示的脑部仿真数据为基础进行图像重建。
(1)对一幅理想的磁共振图像进行傅里叶变换,得到仿真的全采样k空间数据,根据给定的不同的欠采样因子,对所述k空间数据进行回顾性欠采样,得到欠采样k空间数据y;
对k空间数据y进行补零傅里叶重建,得到重建图像x的初始值,同时令Γ的初始值为零矩阵。
(2)建立基于正交性约束的压缩感知重建模型,具体如下:
对基加以正交性约束,建立基于压缩感知重建模型:
其中,y表示欠采样的k空间数据,x为待重建图像,Fu为部分傅立叶变换算子,Ri为图像块提取操作算子,D为自适应正交基,λ和ν为两正则化参数,Γ是由所有系数αi组成的系数矩阵,αi表示第i个图像块在正交基D中的表示系数,In表示n×n维单位矩阵,C表示复数集。
(3)对所述初始重建图像进行分块,随机提取部分图像块进行正交基学习,得到一组自适应正交基,具体如下:
把x和Γ看成已知常量,将式(I)变成式(Ⅱ):
利用奇异值分解方法求解式(Ⅱ),得到更新后的正交基:D*=UVH,其中U和V分别是矩阵XΓH的奇异向量和右奇异向量,即XΓH=UΣVH
(4)用硬域值法对步骤(3)分块的所有图像块进行自适应正交基下的稀疏表示,具体包括:
把x和D看成已知常量,将式(I)变成式(Ⅲ):
利用硬域值法求解式(Ⅲ),得到图像块的稀疏表示:其中为硬域值操作算子,z为任一复数,硬域值操作算子逐像素点作用于矩阵DHX。
(5)用最小二乘法更新重建图像得到当前重建图像,具体包括:
把Γ和D看成已知常量,将式(I)变成式(Ⅳ):
这是一典型的最小二乘问题,可采用最小二乘法求解式(Ⅳ),得到更新的重建图像:
(6)判断当前重建图像是否满足收敛条件,如果收敛,以当前重建图像作为最终的重建图像,否则进入步骤(7)。
(7)减小正则化参数取值,令λ=λ0·δk及ν=ν0·δk,以当前重建图像作为初始重建图像,返回步骤(3)。
最终输出的重建图像如图9所示。为了进行对比,在本实施例中,以图7的数据采用DLMRI方法进行图像重建,结果如图8所示。
根据图8、图9的结果计算PSNR和HFEN指标,结果分别如图10、图11所示。根据重建结果及指标可以看出,本发明所提出的方法无论在定性方面或者定量方面都要好于DLMRI方法。
通过实验结果验证,本发明的一种基于自适应正交基的磁共振图像重建方法,能够提高磁共振重建图像质量,而且能够减少计算耗时,具有重建速度快,图像质量良好的特点。
为了验证本发明方法在计算时间上的优势,如图12所示,根据所列出的在不同采样方案下及使用不同数据类型的计算时间,相比于DLMRI方法,本发明的方法可以获得10倍以上速度提高。
综上所述,本发明的一种基于自适应正交基的磁共振图像重建方法,能够提高磁共振重建图像质量,而且能够减少计算耗时,具有重建速度快,图像质量良好的特点。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (3)

1.一种基于自适应正交基的磁共振图像重建方法,其特征在于,所述方法包括:
(1) 采用变密度随机欠采样方式得到原始的k空间数据,对采样的k空间数据进行傅里叶逆变换得到初始重建图像;
(2) 在正交基约束下建立基于压缩感知的重建模型;
所述步骤(2),具体采用如下方式进行:
对基加以正交性约束,建立基于压缩感知重建模型:
(I);
其中,表示欠采样的k空间数据,为待重建图像,为部分傅立叶变换算子,为图像块提取操作算子,为自适应正交基,为两正则化参数,是由所有系数组成的系数矩阵,表示第i个图像块在正交基D中的表示系数,In表示n×n维单位矩阵,表示矩阵的共轭转置操作,表示复数集;
(3) 对所述初始重建图像进行分块,随机提取部分图像块进行正交基学习,得到一组自适应正交基;
所述步骤(3)具体包括:
看成已知常量,将式(I)变成式(Ⅱ):
(Ⅱ);
利用奇异值分解方法求解式(Ⅱ),得到更新后的正交基:,其中分别是矩阵的左奇异向量和右奇异向量,即
(4) 用硬域值法对步骤(3)分块的所有图像块进行自适应正交基下的稀疏表示;
所述步骤(4)具体包括:
看成已知常量,将式(I)变成式(Ⅲ):
(Ⅲ);
利用硬域值法求解式(Ⅲ),得到图像块的稀疏表示:其中为硬域值操作算子,为任一复数,硬域值操作算子逐像素点作用于矩阵
(5) 用最小二乘法更新重建图像得到当前重建图像;
所述步骤(5)具体包括:
看成已知常量,将式(I)变成式(Ⅳ):
(Ⅳ);
采用最小二乘法求解,得到更新的重建图像:
(6)判断当前重建图像是否满足收敛条件,如果收敛,以当前重建图像作为最终的重建图像,否则进入步骤(7);
(7) 减小正则化参数取值,以当前重建图像作为初始重建图像,返回步骤(3)。
2.根据权利要求1所述的基于自适应正交基的磁共振图像重建方法,其特征在于,所述步骤(6)的判断当前重建图像是否满足收敛条件,收敛条件是当次的重建图像与前一次的重建图像之间的相对误差小于
3.根据权利要求2所述的基于自适应正交基的磁共振图像重建方法,其特征在于,所述步骤(7) 中的减小正则化参数取值,具体通过如下方式进行:
, ,其中为选定的两正则化参数的初始值,为下降因子,k为迭代次数。
CN201510323802.0A 2015-06-12 2015-06-12 基于自适应正交基的磁共振图像重建方法 Active CN104899906B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510323802.0A CN104899906B (zh) 2015-06-12 2015-06-12 基于自适应正交基的磁共振图像重建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510323802.0A CN104899906B (zh) 2015-06-12 2015-06-12 基于自适应正交基的磁共振图像重建方法

Publications (2)

Publication Number Publication Date
CN104899906A CN104899906A (zh) 2015-09-09
CN104899906B true CN104899906B (zh) 2019-02-12

Family

ID=54032550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510323802.0A Active CN104899906B (zh) 2015-06-12 2015-06-12 基于自适应正交基的磁共振图像重建方法

Country Status (1)

Country Link
CN (1) CN104899906B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105678822B (zh) * 2016-01-13 2018-09-11 哈尔滨理工大学 一种基于Split Bregman迭代的三正则磁共振图像重构方法
CN105957029B (zh) * 2016-04-25 2019-06-04 南方医科大学 基于张量字典学习的磁共振图像重建方法
CN107274459B (zh) * 2017-05-29 2020-06-09 明峰医疗系统股份有限公司 一种用于加快锥形束ct图像迭代重建的预条件方法
CN107993205A (zh) * 2017-11-28 2018-05-04 重庆大学 一种基于学习字典与非凸范数最小化约束的mri图像重构方法
CN108416819B (zh) * 2018-02-24 2022-04-26 南京医科大学 一种基于curvelet-fista的压缩采样磁共振图像重建方法
CN109171727B (zh) * 2018-09-20 2022-03-15 上海东软医疗科技有限公司 一种磁共振成像方法和装置
CN109712119B (zh) * 2018-12-13 2020-07-03 深圳先进技术研究院 一种磁共振成像及斑块识别方法和装置
CN112927313B (zh) * 2019-12-05 2022-12-06 上海联影医疗科技股份有限公司 磁共振图像重建方法、装置、计算机设备及可读存储介质
CN112213674B (zh) * 2020-09-11 2023-03-21 上海东软医疗科技有限公司 磁共振压缩感知重建方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103049923A (zh) * 2012-12-10 2013-04-17 深圳先进技术研究院 磁共振快速成像的方法
CN103584835A (zh) * 2013-09-24 2014-02-19 南京大学 一种基于压缩感知的光声图像重建方法
US8666180B2 (en) * 2009-12-04 2014-03-04 Stc.Unm System and methods of compressed sensing as applied to computer graphics and computer imaging
CN104574456A (zh) * 2014-12-01 2015-04-29 南昌大学 一种基于图正则化稀疏编码的磁共振超欠采样k数据成像方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8666180B2 (en) * 2009-12-04 2014-03-04 Stc.Unm System and methods of compressed sensing as applied to computer graphics and computer imaging
CN103049923A (zh) * 2012-12-10 2013-04-17 深圳先进技术研究院 磁共振快速成像的方法
CN103584835A (zh) * 2013-09-24 2014-02-19 南京大学 一种基于压缩感知的光声图像重建方法
CN104574456A (zh) * 2014-12-01 2015-04-29 南昌大学 一种基于图正则化稀疏编码的磁共振超欠采样k数据成像方法

Also Published As

Publication number Publication date
CN104899906A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
CN104899906B (zh) 基于自适应正交基的磁共振图像重建方法
CN110490832B (zh) 一种基于正则化深度图像先验方法的磁共振图像重建方法
CN107991636B (zh) 一种基于适应性结构低秩矩阵的快速磁共振图像重建方法
CN103472419B (zh) 磁共振快速成像方法及其系统
CN104063886B (zh) 一种基于稀疏表示和非局部相似的核磁共振图像重建方法
CN107274462B (zh) 基于熵和几何方向的分类多字典学习磁共振图像重建方法
CN105118078B (zh) 欠采样的ct图像重建方法
CN106204447A (zh) 基于总变差分和卷积神经网络的超分辨率重建方法
CN107341776B (zh) 基于稀疏编码与组合映射的单帧超分辨率重建方法
CN104574456B (zh) 一种基于图正则化稀疏编码的磁共振超欠采样k数据成像方法
CN107154064B (zh) 基于深度稀疏编码的自然图像压缩感知重建方法
CN111754598B (zh) 基于变换学习的局部空间邻域并行磁共振成像重构方法
CN105631807A (zh) 基于稀疏域选取的单帧图像超分辨重建方法
CN103049923A (zh) 磁共振快速成像的方法
CN109920017B (zh) 基于特征向量的自一致性的联合全变分Lp伪范数的并行磁共振成像重构方法
CN109934884B (zh) 一种基于变换学习和联合稀疏性的迭代自一致性并行成像重构方法
CN109741258B (zh) 基于重建的图像超分辨率方法
CN112837220B (zh) 一种提高红外图像分辨率的方法及其用途
CN109165432A (zh) 一种基于部分奇异值和的磁共振波谱重建方法
CN109188327B (zh) 基于张量积复小波紧框架的磁共振图像快速重构方法
CN109559357B (zh) 一种基于小波包阈值的图像块压缩感知重构方法
CN116563409A (zh) 一种多尺度空频域特征信息引导的mri加速重建系统
CN104700436B (zh) 在多变量观测下基于边缘约束的图像重构方法
Zhang et al. Reweighted minimization model for MR image reconstruction with split Bregman method
CN114004764A (zh) 一种基于稀疏变换学习的改进灵敏度编码重建方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant