CN104896773A - Solar phase change heat storage system - Google Patents

Solar phase change heat storage system Download PDF

Info

Publication number
CN104896773A
CN104896773A CN201510380776.5A CN201510380776A CN104896773A CN 104896773 A CN104896773 A CN 104896773A CN 201510380776 A CN201510380776 A CN 201510380776A CN 104896773 A CN104896773 A CN 104896773A
Authority
CN
China
Prior art keywords
heat
module
air
energy
accumulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510380776.5A
Other languages
Chinese (zh)
Other versions
CN104896773B (en
Inventor
翟传伟
何奕
侯钦鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Kerui new environmental protection materials Group Co. Ltd.
Original Assignee
Qingdao Creek New Environmental Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Creek New Environmental Materials Co Ltd filed Critical Qingdao Creek New Environmental Materials Co Ltd
Priority to CN201510380776.5A priority Critical patent/CN104896773B/en
Publication of CN104896773A publication Critical patent/CN104896773A/en
Application granted granted Critical
Publication of CN104896773B publication Critical patent/CN104896773B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Abstract

A solar heat storage system comprises a heat collection module, a heat exchange module, a heat storage module and a fluid module, wherein the heat collection module absorbs solar energy and transfers the solar energy to the heat storage module by the heat exchange module, the fluid module comprises a fluid channel, and the fluid channel and the heat storage module exchange heat to transfer the heat to fluid in the fluid channel. The solar heat can be stored and reused, energy is saved, and the aims of energy conservation and environment protection are achieved.

Description

A kind of solar energy phase transition heat accumulation system
Technical field
The invention belongs to accumulation of heat field, particularly relate to a kind of solar energy phase transition heat accumulation system.
Background technology
Along with the high speed development of modern social economy, the demand of the mankind to the energy is increasing.But the traditional energy storage levels such as coal, oil, natural gas constantly reduce, day by day in short supply, cause rising steadily of price, simultaneously the problem of environmental pollution that causes of conventional fossil fuel is also further serious, and these limit the development of society and the raising of human life quality all greatly.One of energy problem's most distinct issues having become contemporary world.Thus seek the new energy, particularly free of contamination clean energy resource has become the focus of present people research.Solar energy is a kind of inexhaustible clean energy resource, and stock number is huge, and the solar radiant energy total amount that earth surface is received every year is 1 × 10 18kWh, for world's year consumes more than 10,000 times of gross energy.Countries in the world are all using as new energy development important one of the utilization of solar energy, and the Chinese government also clearly proposes to want develop actively new forms of energy at Report on the Work of the Government already, and wherein the utilization of solar energy is especially in occupation of prominent position.But arrive tellurian energy density little (about a kilowatt every square metre) due to solar radiation, and be again discontinuous, thus cause and have difficulties directly utilizing, this brings certain difficulty to large-scale exploitation.Therefore, in order to extensively utilize solar energy, the invention provides new solar heat-preservation system, discontinuous solar energy being got up continuously, thus reaches Btu utilization.
China's atmosphere pollution is more and more serious, and the bad air such as sandstorm, haze phenomenon is more and more serious, and the city dweller of 3/4 absorbs less than clean air.The time of modern 80 ~ 90% is spent in indoor simultaneously, the seal of modern building increases, various decorating and renovating material, furniture and household chemicals etc. enter indoor in a large number, and the source of indoor pollutant benzene homologues, volatile organic matter (VOC), PM2.5 and kind are increased.These pernicious gases retain, accumulate, and cause IAQ to worsen, and one deck has more been increased the weight of on the basis of outdoor air pollution, cause serious impact to person health.Cause leukaemia, lung cancer, nervous system, respiratory system and immune system, the generation of the diseases such as fetal congenital defect.
Ventilation is the key improving IAQ, dilutes indoor air pollutants with outdoor fresh air, and concentration is reduced.If but outdoor air severe contamination (as sandstorm or pellet or other pollutant levels high) ventilation of directly windowing will be avoided.The Per capita area of current house is usually larger, design specifies that the rate of ventilation of 0.3 time/hour is as fresh-air ventilation standard in winter usually, the constantly supplementary increase that can bring air conditioning energy consumption undoubtedly of indoor fresh air, calculate according to relevant department, current house total energy consumption has accounted for 37% of national energy consumption, and in building energy consumption, 35% ~ 50% of building energy consumption has been accounted in energy consumption for air-conditioning, heating, along with the frequent appearance of Summer and winter extreme climate and the duration increase, air-conditioner power consumption energy will constantly rise.
The novel high-efficiency and energy-saving solar energy system of invention, multi-layer filtrating equipment is put in import air channel, effectively can filter formaldehyde, VOC, PM2.5 dusty gas reaches more than 99.9%, total-heat exchanger, energy-storage modules etc. carry out the recycling of waste heat, after phase-change material temperature adjustment, heating, the energy that air-conditioning and hot water etc. are born obviously reduces, phase-change material is as a kind of hot functional material that can absorb or discharge latent heat, when environment temperature is higher than phase transition temperature, phase-change material undergoes phase transition absorption heat, when environment temperature is down to below phase transition temperature, phase-change material undergoes phase transition release heat, thus reach the effect of regulating and controlling temperature and storage power, and be easy to timely recovery after phase-change material phase transformation.Result of study shows, relatively common VMC, and the tender hold over system of the sun of this patent introduction has a clear superiority in energy-saving effect and comfort level, significant to the sustainable development of the energy.
Summary of the invention
The invention provides a kind of new type solar energy hold over system, this system can reach the sustainable utilization of solar energy, and can provide high-quality pure air and/or hot water.
For achieving the above object, technical scheme of the present invention is:
A kind of solar heat-preservation system, comprise heat collecting module, heat exchange module, accumulation of heat module, fluid modules, described collecting system absorbs solar energy, then accumulation of heat module is passed to by heat-exchange system, fluid modules comprises fluid passage, described fluid passage and accumulation of heat module carry out heat exchange, transfer heat to the fluid in fluid passage.
As preferably, described fluid passage is air intake passage and/or intake tunnel.
As preferably, also comprise filter, described filter is arranged in air intake passage, roughing efficiency air filter, precipitator, active carbon filter and high efficiency particulate air filter is disposed with in described filter, distance between roughing efficiency air filter and precipitator is D1, distance between precipitator and active carbon filter is D2, distance between active carbon filter and high efficiency particulate air filter is D3, D1, meets following relation between D2, D3: D1>D2>D3.
As preferably, distance between roughing efficiency air filter and precipitator is D1, distance between precipitator and active carbon filter is D2, and the distance between active carbon filter and high efficiency particulate air filter is D3, D3:D2:D1=1:(1.15-1.3): (1.20-1.4).
As preferably, energy storage module comprises phase-change heat accumulation medium, described phase-change heat accumulation medium mass component comprises as follows: by heat storage medium paraffin 50-70 part of 18-23 carbon atom, high density polyethylene filler 10-20 part, melamine phosphate fire retardant 10-30 part, expanded graphite heat-conducting medium 5-15 part.
As preferably, heat storage medium is set to polylith, and along on the flow direction of new wind, in different masses, the number of paraffin increases gradually, and the amplitude that wherein number of paraffin increases reduces gradually.
As preferably, the coated insulation heat-insulation layer of outer wall of accumulation of heat module, this heat-insulation layer be employing 3 % by weight pentane blowing agent, to be comprised 60-80 % by weight polypropylene by extrusion molding, 5-15 % by weight deca-BDE fire retardant, 2-10 % by weight polyvinyl chloride foaming stabilizer composition make.
As preferably, fluid passage arranges bypass channel, and bypass channel arranges by-passing valve, and main channel, fluid passage arranges main valve, and by the opening and closing of main valve and by-passing valve, switch fluids direction, makes fluid pass through or walk around hold over system.
As preferably, comprise controller, described fluid passage is air intake passage, and controller comes automatic switch fluids direction according to the indoor air temperature measured; Or described fluid passage is intake tunnel, intake tunnel connects water tank, and controller comes automatic switch fluids direction according to the temperature of water in the water tank measured.
Relative to prior art, the present invention has following beneficial effect or advantage:
1. provide a kind of new solar heat-preservation system, solar energy heating utilization can be made continuously.
2. provide the hold over system that a kind of solar energy and supply air system combine, solar energy and the public accumulation of heat module of wind energy, achieve compact conformation, the effect of heat focus utilization.
3. the hold over system that the present invention relates to, because new wind is by the optimization of the distance between fourfold filter purification in filtering module and filter, high-quality clean fresh air can be obtained, the fine particle purification efficiency of right >=2.5 μm will >=99.9%, improve the filter efficiency of VMC, and extend the service life of high efficiency particulate air filter greatly.This VMC has significant practicality and generalization in green building and green energy conservation industry.
4. realize adjusting size of current automatically according to particle concentration by control module, thus reach economize energy.
5. hold over system of the present invention is relative to prior art, avoids air draft and is connected with energy storage module, thus avoids heat to pass to air draft, ensures that heat all passes to air-supply, thus has greatly saved the energy.
6. the present invention is by coated energy-accumulation material on the inwall or outer wall of supply air duct, can reduce the volume of energy storage module further, and not increase any equipment in appearance, reach the clean and tidy of the entirety of equipment, save the device space.
7. provide a kind of hold over system, take full advantage of the ability that phase-change material is inhaled amplification quantity latent heat and recycled for a long time, by the temperature regulation characteristic of phase-change material in heat exchanger, phase-change accumulation energy module and air supply duct, new wind and return air is made to carry out abundant heat exchange, ensure retaining of indoor heat to greatest extent, avoid unnecessary additional energy source consumption, make new air temperature more comfortable; This system heat exchange efficiency is high, pollution-free, energy-conserving and environment-protective.
8. the present invention is synchronously exchanged by supply air duct and return airway, makes new wind can blow to indoor different position, thus room air is formed without dead angle systemic circulation, thoroughly improves IAQ.
Accompanying drawing explanation
Fig. 1 is solar heat-preservation system architecture schematic diagram of the present invention;
Fig. 2 is the embodiment that solar heat-preservation system of the present invention is combined with air inlet system;
Fig. 3 is regenerative heat exchanger of the present invention example structure schematic diagram;
Fig. 4 is ventilation system setups schematic diagram of the present invention;
Fig. 5 is that ventilation system setups of the present invention improves schematic diagram;
Fig. 6 is the present invention's solar energy system of the present invention and ventilating system combination schematic diagram;
Fig. 7 is the present invention's solar energy system of the present invention and ventilating system combining structure schematic diagram;
Fig. 8 is solar ventiduct bypass line structural representation of the present invention;
Fig. 9 is solar energy system filtering module control structure schematic diagram of the present invention.
In figure: 1, new wind air channel, 2, return airway, 3, supply air duct, 4, wind output channel, 5, filtering module, 6, heat exchanger, 7, phase-change accumulation energy module, 8, blower fan, 9, control module, 10, detection module, 11, roughing efficiency air filter, 12, precipitator, 13, active carbon filter, 14, high efficiency particulate air filter, 15, heat storage medium, 16, storage heater housing, 17, fluid intake, 18, fluid issuing, 19, triple valve; 20, triple valve, 21, passage, 22, passage, 23, phase transformation heat-storage module, 24, air intake passage, 25, intake tunnel, 26, heat exchange module, 27, solar energy heat collecting module, 28, airduct by-passing valve, 29, water pipe by-passing valve, 30, heat exchange fin, 31, main valve.
Detailed description of the invention
Below in conjunction with accompanying drawing, the invention will be further described.
As shown in Figure 1, a kind of solar heat-preservation system, comprise heat collecting module 27, heat exchange module 26, accumulation of heat module 23, fluid modules, described heat collecting module 27 absorbs solar energy, then pass to accumulation of heat module 23 by heat exchange module 26, fluid modules comprises fluid passage, such as, air intake passage 24 in embodiment 1 and intake tunnel 25, described fluid passage 24,25 and hold over system carry out heat exchange, transfer heat to the fluid in fluid passage.
As preferably, described heat exchange module 26 is metal heat-conducting tube, is preferably heat pipe.
As preferably, accumulation of heat module 23 is phase-changing energy-storing casing.
Solar energy heat collecting module is arranged on exterior wall, and phase-change accumulation energy casing is arranged at indoor; Metal fever conduit UNICOM's solar energy heat collecting module and phase-change accumulation energy casing; Metal fever conduit quantity is at 1 ~ 10.
As preferably, as shown in Figure 1, described fluid passage is air intake passage and/or intake tunnel.Further preferably, described air intake passage and/or intake tunnel are airduct and/or water pipe.
As preferably, described solar heat-preservation system also comprises filtering module 5, described filtering module 5 is arranged between fluid modules and accumulation of heat module, for filtering inlet air, or be arranged in fluid modules, preferably be arranged in air intake passage 24, as preferably, in described filtering module 5, be disposed with roughing efficiency air filter 11, precipitator 12, active carbon filter 13 and high efficiency particulate air filter 14.
Find in experiment, distance between roughing efficiency air filter 11, precipitator 12, active carbon filter 13 and high efficiency particulate air filter 14 can not be too small, too small words, cause air intake resistance excessive, noise is excessive, simultaneously can not be excessive, and excessive words can cause VMC volume excessive, therefore, the position relationship of the best between each filter is found by great many of experiments:
Distance between roughing efficiency air filter 11 and precipitator 12 is D1; distance between precipitator 12 and active carbon filter 13 is D2; distance between active carbon filter 13 and high efficiency particulate air filter 14 is D3, D1, meets following relation between D2, D3: D1>D2>D3;
Further preferably, D1-D2<D2-D3;
Further preferably, D3:D2:D1=1:(1.15-1.3): (1.20-1.4);
By above-mentioned preferred setting, filter blast is relatively little, and noise is lower and filter effect better, and volume is also moderate.
As preferably, the distance between every two kinds of roughing efficiency air filter 11, precipitator 12, active carbon filter 13 and high efficiency particulate air filter 14 is 1cm-10cm; Distance preferably between every two kinds is 2cm-5cm.
D1, D2, D3 refer to the distance in the face that two parts are adjacent, the distance in that such as D1 refers to roughing efficiency air filter 11 and adjacent between precipitator 12 face.
As preferably, described primary efficient filter screen is one or more in non-woven fabrics, nylon wire, fluffy Chopped Strand Mat, plastic wire or woven wire.As preferably, primary efficient filter screen is at least comprise two-layer composite construction, and in the composite construction of adjacent two layers, the direction of the skeleton structure fiber alignment of screen pack is orthogonal, is arranged, filter effect can be made to reach medium air filtration by this kind.
As preferably, precipitator 12 is Double-region electrostatic dust collect plant, and first region endoparticle obtains electric charge; in Two Areas; collecting plate is arranged in second area, and the particle obtaining electric charge is trapped by collecting plate, and adopts positive corona discharge to reduce ozone generation.
As preferably, collecting plate arranges multiple control of dust sheet, forms air flow channel between collecting plate, and the spacing of collecting plate adopts 3.5-7mm, preferred 3.5-5mm.
As preferably, described active carbon filter comprises the catalyst MnO that can carry out catalytic decomposition to ozone 2/ CuO, CuO/Ni, MnO 2/ Pt, Fe 3o 4/ CuO, Ag/Fe 2o 3, Ni/SiO 2in one or more.
Preferred MnO 2be carrier compound use by a certain percentage with CuO with active carbon, wherein MnO 2consumption accounts for 50%-80%, and the consumption of CuO accounts for 20%-60%, preferred MnO 2consumption accounts for 60%-70%, and the consumption of CuO accounts for 30%-40%.In transition metal oxide, MnO 2catalytic activity more excellent, the CuO added serve synergy and compared with noble metal catalyst, cost is lower.
As preferably, catalyst is attached on active carbon filter screen pack through-hole structure together with active carbon, and through-hole structure is the one in aluminium honeycomb, plastic honeycomb or paper honeycomb.The material of active carbon is one or more in wood activated charcoal, active fruit shell carbon, coal mass active carbon, petroleum-type active carbon, regenerated carbon mineral raw material active carbon, preferably adopts the shell class active carbon that activation method is obtained.
As preferably, described high efficiency particulate air material is one or more in PP filter paper, glass fiber paper, PET filter paper.
As preferably, described solar heat-preservation system also comprises control module 9, and described control module 9 is connected with precipitator 12, to control precipitator 12.Such as comprise the size etc. of opening and closing, electricity.
As preferably, described solar heat-preservation system also comprises detection module 10, detection module 10 is for detecting the particle concentration of new wind, fine particle data exceed and arrange threshold value, it sends a signal to control module 9, now open the electrostatic precipitator 12 in filtering module 5, increase the filtering times of new wind.When running into the good weather of air quality, detection module 10 receives and judges that the fine particle data made new advances in wind are lower than arranging threshold value, and it sends a signal to control module 9, closes the electrostatic precipitator 12 in filtering module 5, reduces the consumption of electricity.
As preferably, control module 9 according to the size automatically adjusting electric current in electrostatic precipitator 12, such as, when particulate count is large according to change, then increases electric current according to particulate count automatically, when particulate count is according to when diminishing, then automatically turns the size of electric current down.
Can arrange a control function in control module 9, control module adjusts the size of electric current automatically according to control function.Described control function I=F (X), wherein I is size of current, X is particle concentration data, wherein F (X) ' >0, F''(X) >0, wherein F (X) ', F''(X) be F(X) first order derivative and second derivative.Above-mentioned formula shows, along with the increase of particle concentration, electric current is increasing, and the amplitude increased is also increasing.The relation of above-mentioned formula is obtained by great many of experiments, because along with concentration increase, the electric current of needs is increasing, but electric current is not that proportional example increases with the increase of particle concentration, but the amplitude increased is increasing, only in this way, just can better meet the needs of room air.
As preferably, detection module 10 is arranged on the air intake passage with filtering module 5 downstream, such as, in the supply air duct 3 of Fig. 4, can directly test the particle concentration entered in the air in room like this.
Described control module 9 can realize adjusting electric current automatically according to particle concentration.Control mode is as follows: when supposing electric current I, new wind air channel particle concentration X, represents the filter effect meeting certain condition.Above-mentioned electric current I, particle concentration X reference data.Described reference data is stored in control module 9.
When particle concentration becomes x time, current i change is as follows:
I=I*(x/X) a, wherein a is parameter, 1.08<a<1.14; Preferably, a=1.11;
0.8< x/X <1.2。
By above-mentioned formula, the function according to particle concentration Intelligent purifying air can be realized, save electric energy.
As preferably, can input in control module 9 and organize reference data more.When under appearance two groups or many group reference data situations, the interface of the reference data that user can be provided to select, preferably, system can be selected (1-x/X) automatically 2minimum one of value.
As preferably, in described energy storage module, phase-change heat accumulation medium is set, the mass component of described heat storage medium comprises as follows: by heat storage medium paraffin 50-70 part of 18-23 carbon atom, high density polyethylene filler 10-20 part, melamine phosphate fire retardant 10-30 part, expanded graphite heat-conducting medium 5-15 part.
The paraffin of 18-23 carbon atom, latent heat of phase change is about 160-270KJ/Kg; Liquid paraffin is bound in high density polyethylene (HDPE) and solidifies in advance in the space net structure of formation, forms qualitative phase change paraffin, solves the problem that paraffin is easily revealed in engineering; Graphite has good adsorptivity and bound to paraffin, has good compatibility, and has excellent heat conductivility, solve the problem that paraffin thermal conductivity factor is low with paraffin, makes the latent heat of phase change of the qualitative phase change composite material of paraffin can up to 80% of paraffin refined wax latent heat.
As preferably, heat storage medium is set to polylith, and along on the flow direction of new wind, in different masses, the number of paraffin increases gradually, and the amplitude wherein increased reduces gradually.Increased by the mark of paraffin and increase the setting of ratio, the heat storage capacity that can meet in energy storage heat exchanger raises gradually, and the amplitude raised reduces gradually.
As preferably, the described coated insulation material of supply air duct 3 outer wall, insulation material is polyurathamc, expanded polypropylene, ceramic fiber blanket or aerogel blanket.
The coated insulation material of outer wall of metal fever conduit and phase-change accumulation energy casing.
As preferably, insulation material, be the heat-insulation layer of a kind of thickness at 5 ~ 20mm, this heat-insulation layer be the pentane blowing agent of employing 3 % by weight, 60-80 % by weight polypropylene, 5-15 % by weight deca-BDE fire retardant, 2-10 % by weight polyvinyl chloride foaming stabilizer composition and make.The apparent thermal conductivity of above-mentioned insulation material is between 0.005 ~ 0.030W/mk.
As preferably, along the flow direction of fluid, the heat storage capacity of described energy-accumulation material raises gradually.
As preferably, along the direction of fluid flowing, the amplitude that the heat storage capacity of energy-accumulation material raises reduces gradually.
As preferably, along the flow direction of air-supply, the phase transition temperature of phase change heat storage material raises gradually.Be further used as preferably, phase change heat storage material is set to polylith, and along air-supply flow direction, the phase transition temperature of every block phase-change material raises gradually.
As preferably, described energy-accumulation material is identical with heat storage medium above.
As preferably, heat storage medium is set to polylith, and along on the flow direction of air, in different masses, the number of paraffin increases gradually.
As preferably, along on the flow direction of air, the amplitude that wherein number of paraffin increases reduces gradually.
As preferably, as shown in Figure 8, fluid passage arranges bypass channel, bypass channel is arranged by-passing valve 28,29, main channel, fluid passage arranges main valve 31, by the opening and closing of main valve and by-passing valve, switch fluids direction, makes fluid pass through or walks around hold over system.
Certainly, Fig. 8 illustrate only the structural representation of air intake passage, adopts identical structure for intake tunnel, is not just describing in detail.
As preferably, comprise control module, described fluid passage is air intake passage, and control module comes automatic switch fluids direction according to the indoor air temperature measured; Or described fluid passage is intake tunnel, intake tunnel connects water tank, and control module comes automatic switch fluids direction according to the temperature of water in the water tank measured.
As preferably, control module can the amplitude of opening and closing of control bound door and bypath valve, to make a part of fluid flow through bypass passageways, a part of inner fluid flows through main channel and enters the heating of accumulation of heat module.
Such as indoor temperature is too high, higher than setting peak, then directly close main valve, open bypath valve, if indoor temperature is too low, lower than setting minimum, then close bypath valve, open main valve, if indoor temperature is between setting minimum and peak, then bypath valve and main valve all open certain aperture.
In like manner, control also to take above-mentioned mode for utilizing the temperature of water tank to carry out.
Described control module can be control module 9.
Fig. 3 illustrates a kind of regenerative heat exchanger, described heat exchanger comprises housing 16, heat storage medium 15, fluid passage, described heat storage medium 15 is positioned at housing 16, described fluid passage is positioned at heat storage medium 15, described fluid passage has fluid intake 17 and outlet 18, wherein along the flow direction of fluid, the heat storage capacity of described heat storage medium 15 raises gradually, namely the heat storage capacity of described regenerative heat exchanger is S, heat storage capacity S is set to the function of distance fluid intake x, i.e. S=f(x), in regenerative heat exchanger, f'(x) >0, wherein f'(x) be f(x) first order derivative.
If fluid is high temperature fluid, because along with the flowing of fluid, the temperature of fluid can decline gradually, also therefore its emission capacity reduces gradually, and progressively raised by the heat storage capacity of heat storage medium, the heat storage medium made overall accumulation of heat on fluid flow direction is even, avoids producing the uneven situation of accumulation of heat, thus the part affecting the uneven accumulation of heat caused of the inner accumulation of heat of regenerative heat exchanger too much is easily damaged.In like manner, if fluid is cryogen, along with the flowing of fluid, the temperature of fluid can raise gradually, also therefore its heat absorption capacity reduces gradually, and progressively raised by the heat storage capacity of heat storage medium, the heat storage medium made overall heat absorption on fluid flow direction evenly, is avoided producing the uneven situation of heat absorption.
Certainly, as preferably, along the direction of fluid flowing, the amplitude that the heat storage capacity of heat storage medium raises reduces gradually, i.e. f''(x) <0, wherein f''(x) be f(x) and second derivative.Because along the flowing of fluid, high temperature fluid temperature can be more and more lower, by setting like this, avoids fluid temperature (F.T.) to decline too fast, thus affect the uniformity of accumulation of heat.Prove by experiment, in this, set-up mode makes the accumulation of heat of storage heater more even.
Above-mentioned function do not represent that the heat storage capacity of heat-storing material is continually varying, and in fact the heat storage capacity of heat-storing material is change that can be discrete.Such as, the heat-storing material that described storage heater comprises comprises polylith, and such as, the left and right directions along Fig. 1 arranges polylith, and the heat storage capacity that arbitrary neighborhood is two pieces is different, and along the flow direction of fluid, the heat storage capacity of adjacent two pieces raises gradually.Further preferably, the amplitude of rising reduces gradually.This kind of situation be also included within above-mentioned function f (x) in.
As preferably, fluid passage outer setting fin, with augmentation of heat transfer.As preferably, along with the flow direction of fluid, the height of fin increases gradually.Because along with fluid flowing, fluid temperature (F.T.) constantly reduces, by the increase of fin height, make on the path of fluid flowing, the quantity of the heat radiation of unit length is substantially identical, thus reaches even accumulation of heat.
As preferably, along with the flow direction of fluid, the amplitude that fin increases is increasing.Found through experiments, overall accumulation of heat can be made more even by arranging like this.
As an improvement, as an improvement, described solar heat-preservation system can be combined with supply air system, a common use accumulation of heat module.
As shown in Figure 6, a kind of solar energy system and the comprehensive hold over system of supply air system, comprise solar energy heat collecting module 27, heat exchange module 26, accumulation of heat module 23, air-supply module, heat exchange module and return air module, described heat collecting module 27 absorbs solar energy, then accumulation of heat module 23 is passed to by heat exchange module 26
Air-supply module carries new wind, and the air in return air module conveying terminal temperature difference room is to outdoor, and new wind and air carry out heat exchange at heat exchange module, and new wind enters accumulation of heat module after absorbing the heat of air, and then enters the room of terminal temperature difference.
In prior art, solar energy system and supply air system are system isolated mutually substantially, both there is respective independently heat-exchange system, and both are combined by common accumulation of heat module by the application, make both jointly can to add hot-air, save space greatly, and by both combination, heat can be concentrated in together, substantially avoid and take radiator to heat.
As preferably, filtering module 5 noted earlier is set between air-supply module and heat exchange module.
As preferably, air-supply module comprises new wind air channel 1 and supply air duct 3.
As preferably, return air module comprises return airway 2 and wind output channel 4.
As preferably, heat exchange module comprises heat exchanger 6.
Energy-storage module arranges bypass channel, and bypass channel arranges by-passing valve, and the main channel of the air-supply process of energy-storage module arranges main valve, by the opening and closing of main valve and by-passing valve, switches the flow direction of air-supply, fluid is passed through or walks around hold over system.Concrete control mode is see the bypass channel control mode of solar energy accumulation above.
As detailed description, Fig. 4 illustrates a kind of energy-storage system arranging energy storage module, comprises housing and is installed on new wind air channel 1 on housing, return airway 2, supply air duct 3, wind output channel 4, arrange heat exchanger 6, energy-storage module 7 in described housing; Described return airway 2, heat exchanger 6 connect; Described new wind air channel 1 is connected with outdoor with wind output channel 4; Described return airway 2 is connected with indoor with supply air duct 3; Described new wind air channel 1, heat exchanger 6, energy-storage module 7, supply air duct 3 connect successively.Wherein energy storage module connects solar energy heat collecting module, as shown in Figure 7.
Above-mentioned supply air system is exactly the setting of energy storage module 7 relative to an improvement of prior art.In the prior art, generally directly arrange a heat exchanger, described heat exchanger connects new wind air channel and wind output channel, thus realizes the heat exchange of new wind and air draft.Sometimes, described heat exchanger is regenerative heat exchanger.Relative to an improvement of prior art, the present invention is that energy storage module 7 is arranged between heat exchanger 6 and supply air duct 3.By such setting, stream between new wind air channel and air-supply passage is connected with energy storage module 7, and the stream between return airway 2 and wind output channel 4 is not connected with accumulation of heat module, and accumulation of heat module installation is in the downstream (namely blow and first flow through heat exchanger, then flow through accumulation of heat module) of heat exchanger.By such setting, after making air-supply be that heat exchange is carried out in air draft, and then enter energy storage module and carry out accumulation of heat.And in prior art, air draft is all connected with regenerative heat exchanger with air-supply, makes to fall at temperature, such as, time indoor and outdoors temperature all declines, the heat that now regenerative heat exchanger stores can heat air draft and air-supply simultaneously, thus makes to take away a part of heat because of air draft.Supply air system of the present invention, relative to prior art, avoids air draft and is connected with energy storage module, thus avoids heat to pass to air draft, ensures that heat all passes to air-supply, thus has greatly saved the energy.
By the setting of above-mentioned accumulation of heat module position, can also ensure that the heat of solar energy can not be taken away by return air module, ensure that the utilization of heat, avoid the loss of heat.
When daytime, indoor/outdoor temperature-difference was less, new wind and air draft, simultaneously through over-heat-exchanger 6, are achieved the temperature-compensating of air draft to new wind, and are got up by the phase-changing and temperature-regulating material storage in energy-storage module 7 by unnecessary heat; When night, indoor/outdoor temperature-difference was larger, new wind and air draft realize air draft through over-heat-exchanger 6 and compensate the portion temperature of new wind, meanwhile, the heat be stored in daytime in energy-storage module 7 discharges through phase-changing and temperature-regulating material, further reduction enters indoor new wind and the indoor temperature difference, thus the balance breaking indoor temperature is avoided as far as possible when changing wind, reduce the additional compensation of indoor temperature.
As preferably, the accumulation of heat module in solar heat-preservation system is exactly phase-changing energy-storing module 7 is same parts.Phase-changing energy-storing module is connected by heat exchange module with solar energy heat collecting module 27, transfers heat to energy storage module 7.For solar heat-preservation system other features with record above identical, just describe no longer one by one.
As preferably, in energy storage module, phase change heat storage material is set.
As preferably, also comprise filter, described filter is arranged between new wind air channel 1 and heat exchanger 6.
As preferably, filtering module takes filtering module 5 noted earlier.
As preferably, described energy storage module adopts the structure of regenerative heat exchanger noted earlier, for example, see Fig. 3.
Energy-storage module arranges bypass channel, and bypass channel arranges by-passing valve, and the main channel of the air-supply process of energy-storage module arranges main valve, by the opening and closing of main valve and by-passing valve, switches the flow direction of air-supply, fluid is passed through or walks around hold over system.Concrete control mode is see the bypass channel control mode of solar energy accumulation above.
As another embodiment, supply air duct 3 inwall or the coated energy-accumulation material of outer wall.By arranging energy-accumulation material at inwall or outer wall, the effect of replacing auxiliary energy-storage module can be played.Certainly can serve the function of auxiliary energy-storage module accumulation of heat, thus reach power saving function.All that energy storage heat exchanger is set separately in prior art, and the present invention is by coated energy-accumulation material on the inwall or outer wall of supply air duct 2, the volume of energy storage module can be reduced further, and do not increase any equipment in appearance, reach the clean and tidy of the entirety of equipment, save the device space.
As preferably, heat-storing material is arranged on inwall.As preferably, heat-storing material is from the projective structure inwall.By arranging projective structure, enhanced heat transfer can be made.
As preferably, by arranging projective structure, the flowing of air in supply air duct is made to be helical flow.By helical flow, avoid partial short-circuit in flowing, ensure that air fully and energy-accumulation material contact heat-exchanging.
As preferably, the height of projective structure is more and more lower along the flow direction of air.Main purpose constantly reduces the circulation area of air on the one hand, thus constantly reduce the flow velocity of air, thus air is exported slowly, simultaneously more and more lower because of the temperature of air when accumulation of heat, heat storage capacity is also more and more lower, therefore reduce the volume of energy-accumulation material, avoid the waste of material.
As preferably, the amplitude that projective structure height reduces along air-flow direction is more and more less.Found through experiments, arranging in such cases can make heat storage efficiency improve 10-20%.
As preferably, energy-accumulation material is phase change heat storage material.
As preferably, use the coated energy-accumulation material of metal material.
As preferably, along the flow direction of air, the heat storage capacity of described energy-accumulation material raises gradually.
As preferably, along the direction of fluid flowing, the amplitude that the heat storage capacity of energy-accumulation material raises reduces gradually.
The reason of concrete setting is identical with arranging of heat-storing material above.
As preferably, along the flow direction of air-supply, the phase transition temperature of phase change heat storage material raises gradually.Be further used as preferably, phase change heat storage material is set to polylith, and along air-supply flow direction, the phase transition temperature of every block phase-change material raises gradually.
As preferably, described energy-accumulation material is identical with heat storage medium above.
As preferably, heat storage medium is set to polylith, and along on the flow direction of air, in different masses, the number of paraffin increases gradually.
As preferably, along on the flow direction of air, the amplitude that wherein number of paraffin increases reduces gradually.
As preferably, described supply air system also comprises room air checkout equipment, and described control module adjusts air output automatically according to the data of air detection Equipment Inspection.If the air quality detected is lower than certain threshold value, then automatically opens supply air system and blow, if the air quality detected is higher than certain threshold value, then automatically gives and close supply air system.
Control module 9 adjusts the frequency of breeze fan automatically according to IAQ, thus adjustment air output, such as air quality is deteriorated, then automatically increase blower fan frequency, when air quality improves time, then automatically turn blower fan frequency down.
As preferably, described control module 9 can be connected by wireless communication technology with user, and user utilizes mobile phone app can know IAQ situation, carries out switching on and shutting down to VMC, regulates air quantity, selects the operated from a distances such as filtered model.
Described VMC arranges two passes 21,22 between return airway 2 and supply air duct 3, wherein passage 21 and supply air duct 3 be communicated with position (first is communicated with position) than passage 22 to be communicated with supply air duct 3 position (second is communicated with position) closer to VMC housing, the position (third connecting position) that wherein passage 21 is communicated with return airway 2 is communicated with position (the 4th is communicated with position) further from VMC housing than passage 22 with return airway 2.Wherein at return airway 2, supply air duct 3, passage 20, in 21, the first valve is set respectively, second valve, 3rd valve and the 4th valve, for opening and closing return airway 2, supply air duct 3, passage 20, 21, described new wind air channel valve arranges the first connection position and is communicated with between position with second, return airway valve is arranged on third connecting position and is communicated with between position with the 4th, in the opening and closing by valve, the batch (-type) of supply air duct 3 and return airway 2 can be made synchronously to exchange, the new wind air port of indoor location and return air air port synchronously can be exchanged simultaneously, by exchanging, make new wind can blow to indoor different position, thus room air is formed without dead angle systemic circulation, thoroughly improve IAQ.Such as open the 3rd valve and the 4th valve simultaneously, close the first valve and the second valve, then can realize new wind air port and return air air port synchronously exchanges.
As replacing, the first valve and the 4th valve can use triple valve 20 to replace, and the second valve and the 3rd valve can use triple valve 19 to replace.Triple valve 20 is arranged on the 4th and is communicated with position, and triple valve 19 is arranged on the first connection position and goes out.
As preferably, described control module 9 can control the opening and closing of air-valve, synchronously exchanges with the batch (-type) realizing supply air duct 3 and return airway 2.
As preferably, in Fig. 3 embodiment, the heat-storing material of supply air duct 3 inwall and/or outer wall is arranged on housing and is communicated with between position with first.
As preferably, new wind select process air quantity to be 200 ~ 400m 3/ h, preferred air quantity is 300m 3/ h.
Further preferably, arrange heat storage medium in described heat exchanger, described heat storage medium is exactly heat storage medium noted earlier.When daytime, indoor/outdoor temperature-difference was less, new wind and air draft are simultaneously through the heat exchanger 6 of overload phase-changing and temperature-regulating material, achieve the temperature-compensating of air draft to new wind, and unnecessary heat is got up by the phase-changing and temperature-regulating material storage in heat exchanger 6, energy-storage module 7 and supply air duct 3; When night, indoor/outdoor temperature-difference was larger, new wind and air draft realize air draft through over-heat-exchanger 6 and compensate the portion temperature of new wind, meanwhile, the heat be stored in daytime in heat exchanger 6, energy-storage module 7 and supply air duct 3 discharges through phase-changing and temperature-regulating material, further reduction enters indoor new wind and the indoor temperature difference, thus the balance breaking indoor temperature is avoided as far as possible when changing wind, reduce the additional compensation of indoor temperature.
Although the present invention discloses as above with preferred embodiment, the present invention is not defined in this.Any those skilled in the art, without departing from the spirit and scope of the present invention, all can make various changes or modifications, and therefore protection scope of the present invention should be as the criterion with claim limited range.

Claims (9)

1. a solar heat-preservation system, comprise heat collecting module, heat exchange module, accumulation of heat module, fluid modules, described heat collecting module absorbs solar energy, then accumulation of heat module is passed to by heat exchange module, fluid modules comprises fluid passage, described fluid passage and accumulation of heat module carry out heat exchange, transfer heat to the fluid in fluid passage.
2. solar heat-preservation system as claimed in claim 1, it is characterized in that, described fluid passage is air intake passage and/or intake tunnel.
3. solar heat-preservation system according to claim 1, it is characterized in that, also comprise filter, described filter is arranged between fluid modules and accumulation of heat module or is arranged in fluid modules, roughing efficiency air filter is disposed with in described filter, precipitator, active carbon filter and high efficiency particulate air filter, distance between roughing efficiency air filter and precipitator is D1, distance between precipitator and active carbon filter is D2, distance between active carbon filter and high efficiency particulate air filter is D3, D1, D2, following relation is met: D1>D2>D3 between D3.
4. solar heat-preservation system as claimed in claim 3, it is characterized in that the distance between roughing efficiency air filter and precipitator is D1, distance between precipitator and active carbon filter is D2, distance between active carbon filter and high efficiency particulate air filter is D3, D3:D2:D1=1:(1.15-1.3): (1.20-1.4).
5. the solar heat-preservation system as described in one of claim 1-4, it is characterized in that, energy storage module comprises phase-change heat accumulation medium, described phase-change heat accumulation medium mass component comprises as follows: by heat storage medium paraffin 50-70 part of 18-23 carbon atom, high density polyethylene filler 10-20 part, melamine phosphate fire retardant 10-30 part, expanded graphite heat-conducting medium 5-15 part.
6. solar heat-preservation system as claimed in claim 5, it is characterized in that, heat storage medium is set to polylith, and along on the flow direction of air intake, in different masses, the number of paraffin increases gradually, and the amplitude that wherein number of paraffin increases reduces gradually.
7. the solar heat-preservation system according to right 1, it is characterized in that: the coated insulation heat-insulation layer of outer wall of hold over system, this heat-insulation layer be employing 3 % by weight pentane blowing agent, to be comprised 60-80 % by weight polypropylene by extrusion molding, 5-15 % by weight deca-BDE fire retardant, 2-10 % by weight polyvinyl chloride foaming stabilizer composition make.
8. solar heat-preservation system according to claim 1, it is characterized in that: fluid passage arranges bypass channel, bypass channel arranges by-passing valve, main channel, fluid passage arranges main valve, by the opening and closing of main valve and by-passing valve, switch fluids direction, makes fluid pass through or walks around hold over system.
9. solar heat-preservation system according to claim 8, is characterized in that, comprise controller, and described fluid passage is air intake passage, and controller comes automatic switch fluids direction according to the indoor air temperature measured; Or described fluid passage is intake tunnel, intake tunnel connects water tank, and controller comes automatic switch fluids direction according to the temperature of water in the water tank measured.
CN201510380776.5A 2015-07-02 2015-07-02 A kind of solar energy phase transition heat accumulation system Active CN104896773B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510380776.5A CN104896773B (en) 2015-07-02 2015-07-02 A kind of solar energy phase transition heat accumulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510380776.5A CN104896773B (en) 2015-07-02 2015-07-02 A kind of solar energy phase transition heat accumulation system

Publications (2)

Publication Number Publication Date
CN104896773A true CN104896773A (en) 2015-09-09
CN104896773B CN104896773B (en) 2016-09-07

Family

ID=54029596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510380776.5A Active CN104896773B (en) 2015-07-02 2015-07-02 A kind of solar energy phase transition heat accumulation system

Country Status (1)

Country Link
CN (1) CN104896773B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105240897A (en) * 2015-11-03 2016-01-13 朱杰 Heat-storage peak regulating device used for power supply system
CN105605661A (en) * 2016-02-29 2016-05-25 杨斯涵 Solar phase-change heat storage type warmer
CN106524535A (en) * 2015-09-14 2017-03-22 东莞前沿技术研究院 Near space solar heat storage device
CN110345592A (en) * 2019-08-14 2019-10-18 佛山市顺德区意艾蒲电器有限公司 A kind of fresh air system with kitchen benefit wind function and new blower
CN113646412A (en) * 2019-03-25 2021-11-12 富士胶片株式会社 Heat storage composition, heat storage member, electronic device, and method for producing heat storage member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1912477A (en) * 2006-07-19 2007-02-14 北京工业大学 Full heat recovery fresh air energy-saving system of using solar phase transformation thermal storage
JP2008249165A (en) * 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd Interior humidistat
CN102408877A (en) * 2011-07-12 2012-04-11 北京化工大学 Phase-transition composite material, preparation method and application thereof
CN202675546U (en) * 2012-04-26 2013-01-16 廖曙光 Heat recovery type phase change energy storing device
CN103542454A (en) * 2012-07-16 2014-01-29 李一平 Pipe sleeved type fresh air purification machine
CN204963247U (en) * 2015-07-02 2016-01-13 青岛科瑞新型环保材料有限公司 Solar energy phase -change thermal system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1912477A (en) * 2006-07-19 2007-02-14 北京工业大学 Full heat recovery fresh air energy-saving system of using solar phase transformation thermal storage
JP2008249165A (en) * 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd Interior humidistat
CN102408877A (en) * 2011-07-12 2012-04-11 北京化工大学 Phase-transition composite material, preparation method and application thereof
CN202675546U (en) * 2012-04-26 2013-01-16 廖曙光 Heat recovery type phase change energy storing device
CN103542454A (en) * 2012-07-16 2014-01-29 李一平 Pipe sleeved type fresh air purification machine
CN204963247U (en) * 2015-07-02 2016-01-13 青岛科瑞新型环保材料有限公司 Solar energy phase -change thermal system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106524535A (en) * 2015-09-14 2017-03-22 东莞前沿技术研究院 Near space solar heat storage device
CN105240897A (en) * 2015-11-03 2016-01-13 朱杰 Heat-storage peak regulating device used for power supply system
CN105240897B (en) * 2015-11-03 2019-11-22 南京酷朗电子有限公司 A kind of accumulation of heat peak adjusting device for heating system
CN105605661A (en) * 2016-02-29 2016-05-25 杨斯涵 Solar phase-change heat storage type warmer
CN113646412A (en) * 2019-03-25 2021-11-12 富士胶片株式会社 Heat storage composition, heat storage member, electronic device, and method for producing heat storage member
CN110345592A (en) * 2019-08-14 2019-10-18 佛山市顺德区意艾蒲电器有限公司 A kind of fresh air system with kitchen benefit wind function and new blower

Also Published As

Publication number Publication date
CN104896773B (en) 2016-09-07

Similar Documents

Publication Publication Date Title
CN104807355B (en) A kind of supply air system that accumulator is set
CN104913530B (en) A kind of solar energy system and the comprehensive hold over system of supply air system
CN104895349B (en) Ultralow-energy-consumption building system
CN104807354B (en) A kind of regenerative heat exchanger and the VMC of heat-storing material is set
CN204962899U (en) Residual heat utilization system of range hood
CN204963075U (en) Heat accumulation system is used multipurposely to kitchen waste heat and air inlet system waste heat of striking sparks
CN104896773B (en) A kind of solar energy phase transition heat accumulation system
CN204850535U (en) Ultralow energy consumption building system
CN104930895B (en) A kind of regenerative heat exchanger and there is the VMC (Ventilation Mechanical Control System) automatically controlling electrostatic precipitation
CN204963247U (en) Solar energy phase -change thermal system
CN204693722U (en) A kind of supply air system
CN204853894U (en) Stored energy material&#39;s air supply system is set up at air supply channel
CN104879855B (en) Heat storage heat exchanger and central ventilation system with switching air channels
CN104930565B (en) Kitchen waste heat comprehensive utilization system
CN201265924Y (en) Heat-recovering air-conditioning unit
CN105042657B (en) Range hood waste heat utilization system
CN204963252U (en) Heat accumulation system is used multipurposely to solar energy and air inlet system waste heat
CN206247548U (en) A kind of communal bathroom Special fresh air handling group
CN203586435U (en) Energy recovery air handling unit
CN104896643B (en) Ignition stove waste heat system and air supply system combined heat storage system
CN204693688U (en) A kind of VMC
CN204757132U (en) Set up filter equipment&#39;s new trend system
CN104833254B (en) A kind of regenerative heat exchanger and there is the VMC of filter
CN204830075U (en) System is used multipurposely to kitchen waste heat
CN204830048U (en) Kitchen heat accumulation system of striking sparks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: 266112 Shandong City, Chengyang District, Qingdao, the streets of the streets of the Wangjiazhuang neighborhood of the community on the north side of the 500 meters

Patentee after: Qingdao Kerui new environmental protection materials Group Co. Ltd.

Address before: 266112 Shandong City, Chengyang District, Qingdao, the streets of the streets of the Wangjiazhuang neighborhood of the community on the north side of the 500 meters

Patentee before: Qingdao Creek New Environmental Materials Co., Ltd.

PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Solar phase change heat storage system

Effective date of registration: 20191217

Granted publication date: 20160907

Pledgee: Qingdao Datong Huixin Private Capital Management Co., Ltd

Pledgor: Qingdao Kerui new environmental protection materials Group Co. Ltd.

Registration number: Y2019370010045

PE01 Entry into force of the registration of the contract for pledge of patent right