CN104880183B - 基于光子晶体光纤陀螺的新型噪声分离方法 - Google Patents

基于光子晶体光纤陀螺的新型噪声分离方法 Download PDF

Info

Publication number
CN104880183B
CN104880183B CN201510309002.3A CN201510309002A CN104880183B CN 104880183 B CN104880183 B CN 104880183B CN 201510309002 A CN201510309002 A CN 201510309002A CN 104880183 B CN104880183 B CN 104880183B
Authority
CN
China
Prior art keywords
noise
optical fiber
photon crystal
crystal optical
fiber gyroscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510309002.3A
Other languages
English (en)
Other versions
CN104880183A (zh
Inventor
金靖
孔令海
滕飞
潘雄
徐小斌
宋镜明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201510309002.3A priority Critical patent/CN104880183B/zh
Publication of CN104880183A publication Critical patent/CN104880183A/zh
Application granted granted Critical
Publication of CN104880183B publication Critical patent/CN104880183B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/721Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

本发明公开了一种基于光子晶体光纤陀螺的新型噪声分离方法,属于光纤陀螺技术领域。本发明建立了光子晶体光纤陀螺的新型的噪声预测模型,涵盖普通光纤陀螺中的散粒噪声、强度噪声、探测器热噪声、暗电流噪声以及由于光子晶体光纤独特结构而引入的背向散射噪声与背向反射噪声;利用非相干背向散射/反射光强不依赖于调制相位,而信号光强依赖于调制相位的原理,通过加载调制方波,测得前后光束的实际光功率,进而将额外光功率分离出来。本发明完善了光子晶体光纤陀螺的噪声分析模型,实现了光子晶体光纤陀螺的性能优化,提高了光子晶体光纤陀螺的工程化应用的可能性。

Description

基于光子晶体光纤陀螺的新型噪声分离方法
技术领域
本发明属于光纤陀螺技术领域,具体涉及一种基于光子晶体光纤陀螺的新型噪声分离方法。
背景技术
目前光纤陀螺凭借着其测量精度高、灵敏度高、动态范围大、体积小、重量轻、寿命长、易集成等特点以及其在军事和民用领域的广阔应用前景,成为近年来国内外光纤传感器领域的一个研究热点。但是现阶段的光纤陀螺受非互易误差以及其他多方面的噪声影响,技术发展受到一定的限制。最近,在光纤陀螺领域出现了一种基于光子晶体光纤的光纤陀螺,利用光子晶体光纤作为陀螺中重要的敏感光纤部分,凭借着其独特的光纤结构,能够有效的减少光纤陀螺中的非互易误差。
相对于普通光纤,光子晶体光纤在Shupe效应、法拉第效应影响等各个方面所产生的误差上都有所减少,而且光子晶体光纤对于辐射的敏感度也大大降低,此外其还有着低传输损耗、高折射率等优势,因此光子晶体光纤更适用于使用在光纤陀螺中,对于提高光纤陀螺的性能有着十分重要的推进作用。
然而就目前技术发展而言,在光纤陀螺中使用光子晶体光纤也存在着一定的缺点。在普通光纤陀螺中,普通光纤的传输损耗可以低于0.5dB/km,而且其相位调制器的尾纤与光纤环用光纤是同一种类型,其溶解点处的光纤损耗可以忽略,所以在普通光纤中,噪声的种类仅包含散粒噪声、强度噪声、探测器热噪声、暗电流噪声等常规噪声。在光子晶体光纤陀螺中,光子晶体光纤不仅传输损耗大,会引入量级很大的背向散射光,而且相位调制器尾纤与光纤环用光纤种类不同,由于光在空气-二氧化硅截面的折射率差异以及两种光纤的模态不匹配会引入较多的背向反射光,此外,由于光子晶体光纤本身结构存在的随机分布缺陷,也会产生不容忽视的背向散射光,因此在光子晶体光纤陀螺中,除传统噪声之外,由背向反射与背向散射产生的噪声是不能够被忽略的。这两种由光子晶体光纤独特结构引起的特殊噪声大大消弱了光子晶体光纤陀螺的优势,从而限制了光子晶体光纤陀螺的工程化应用。
发明内容
本发明的目的是为了解决上述问题,完善光子晶体光纤陀螺的总体噪声预测模型的功能,提出了一种新型的光子晶体光纤陀螺噪声分离方法。
本发明的基于光子晶体光纤陀螺的新型噪声分离方法,实现步骤如下:
步骤1,确定光子晶体光纤陀螺的噪声预测模型,其中包括传统噪声中的散粒噪声、强度噪声、探测器热噪声和暗电流噪声,还包括由光子晶体光纤独特结构造成的背向反射噪声与背向散射噪声。
背向反射及背向散射引起的额外光功率引起的噪声方差为:
其中,e表示电子电荷量,P0表示由背向反射与散射光引起的额外光功率,BW表示探测器带宽,η表示探测器的光电转换系数,Δν表示光源带宽;
步骤2,通过控制调制相位,分离计算出背向反射噪声与背向散射噪声。
分别测得在加载调制方波前后光束的实际光功率,设表示调制相位,Pwithout_modulation表示未加载调制方波时测得的光功率,Pwith_modulation表示加载调制方波后测得的光功率,则得到下式:
其中,P代表有用光信号的光功率;
根据步骤1得到以及光子晶体光纤陀螺的总体噪声方差,从而进行噪声分离。
所述的步骤1中光子晶体光纤陀螺的噪声预测模型表示为:
其中,表示光子晶体光纤陀螺的总体噪声方差,表示散粒噪声方差,表示探测器热噪声方差,表示强度噪声方差,表示暗电流噪声方差,k表示玻尔兹曼常数,T表示绝对温度,R表示探测器负载电阻值,Id表示探测器的暗电流值。
相对于现有技术,本发明的优点和积极效果在于:
(1)将传统光纤的基本探测限制因素以及由于光子晶体光纤特殊结构而引起的背向反射/散射噪声全部考虑在内,采用新型噪声分离方法将背向反射/散射噪声分离计算出来,完善了噪声预测模型的功能;
(2)实现了光子晶体光纤陀螺的性能优化,提高了光子晶体光纤陀螺的工程化应用的可能性。
附图说明
图1是光纤陀螺的最小典型结构图;
图2是光子晶体光纤陀螺中背向反射光传播示意图;
图3是本发明的基于光子晶体光纤陀螺的新型噪声分离方法的总体示意图。
图中:1-光源;2-探测器;3-光纤耦合器;4-多功能集成光路器件;5-敏感光纤环。
具体实施方式
下面将结合附图和实施例对本发明作进一步的详细说明。
如图1所示,为光子晶体光纤陀螺的最小典型结构,图中示例的光源1为宽谱光源(ASE Source),多功能集成光路器件4(MIOC)中包含相位调制器。敏感光纤环及其尾纤采用光子晶体光纤(photonic crystal fiber,PCF),多功能集成光路器件4尾纤及其余各组成部件的光纤均采用普通光纤,例如采用偏振保持光纤(PMF)。
在传统光纤陀螺中,基本噪声源产生的噪声主要包括散粒噪声、探测器热噪声、强度噪声及暗电流噪声。这些噪声的表达式为:
散粒噪声方差为:
探测器热噪声方差为:
强度噪声方差为:
暗电流噪声方差为:
其中,e代表电子电荷量,P代表有用光信号的光功率,表示调制相位,BW表示探测器带宽,η表示探测器的光电转换系数,Δν表示光源带宽,k表示玻尔兹曼常数,T表示绝对温度,R表示探测器负载电阻值,Id表示探测器的暗电流值。
光纤陀螺的基本噪声模型可以表示为:
其中,表示基本噪声方差。
本发明提供的基于光子晶体光纤陀螺的新型噪声分离方法,包括两部分:(1)建立光子晶体光纤陀螺的噪声预测模型;(2)通过控制调制相位,分离计算出背向反射噪声与背向散射噪声。
首先,说明光子晶体光纤陀螺的噪声预测模型。
在光子晶体光纤陀螺中,除了传统光纤陀螺的基本噪声外,还存在着由于光子晶体光纤独特结构引起的背向反射噪声与背向散射噪声。
在光子晶体光纤陀螺中,使用熔接法将光子晶体光纤环用于陀螺敏感部位,由于相位调制器尾纤与光纤环用光纤类型不同,所以在熔接点处会产生较大熔接损耗。不同光纤之间模态的不匹配及折射率的不同,也会使熔接点处产生较大的背向反射光;此外,由于光子晶体光纤本身结构存在的随机分布缺陷,也会产生不容忽视的背向散射光。因此背向反射光与背向散射光所产生的噪声也就成为了光子晶体光纤陀螺噪声的主要组成部分之一。
正常信号光返回时会在干涉点发生干涉,引起相移,进而引起探测器检测光强的变化,为了避免上下两处背向反射光返回干涉点处发生干涉而引起额外相移,实际陀螺使用相干长度较短的光源,并调整与光子晶体光纤环连接的上下两段尾纤的长度L1和L2的差大于光源的相干长度L相干,如图2所示,L1-L2≥L相干,使得回程的两束背向反射光因光程差大于相干长度而无法发生干涉,而正反两束信号光的光程差不受此影响,可以发生正常的干涉,进而信号光干涉后被Y波导的调制信号进行调制,这样没有发生干涉的背向反射光就仅产生一直流光强量,与调制相位无关,但是到达探测器的光束中混杂有信号光与背向反射光,会引起光强上的叠加。由于背向散射光本身就是独立于调制相位的,因而也会在探测器中引起一个额外的直流光强量。所以,在光子晶体光纤陀螺中,探测器中检测到的信号中包括了独立于调制相位的背向反射光、背向散射光引起的额外光强与依赖于调制相位的有用光信号干涉引起的光强。
将由背向反射及背向散射光引起的额外光功率转换为陀螺中的噪声,再加上基本噪声项,即构成光子晶体光纤陀螺的总体噪声
光子晶体光纤陀螺的总体噪声可以表示为:
其中,P0表示由背向反射与散射光引起的额外光功率,简称为额外光功率,P表示有用光光功率。
为背向反射及背向散射引起的额外光功率引起的噪声方差项:
背向散射/反射光功率的测量通常可以使用光频域反射计(OFDR)来进行,但是光纤陀螺光源发出的信号光也会返回光源,同样能够被OFDR探测到并返回其光功率,OFDR处所测光功率存在混叠现象,因此OFDR不能直接测量出背向散射光及背向散射光的光功率。
下面说明本发明分离计算出背向反射噪声与背向散射噪声的实现技术。
本发明提出一种新型噪声分离方法,利用非相干背向散射/反射光强不依赖于调制相位,而信号光强依赖于调制相位的原理,将额外光功率通过控制调制相位而分离出。
本发明实施例中通过探测器测得在没有方波调制下光束的实际光功率以及加有方波调制的实际光功率,根据如下表达式:
可分别求得信号光功率与补偿光功率。
其中,Pwithout_modulation表示不加方波调制时的光功率,Pwith_modulation表示加方波调制时的光功率,表示调制相位。可得:
那么就可以得到光子晶体光纤陀螺的总体噪声的最终表达式:
其中额外光功率引起的噪声项为:
其中,加载调制方波是光纤陀螺信号处理中最常用的调制方法之一,是为了将光纤陀螺的检测点拉至最敏感处。一般利用铌酸锂波导电压-相位的特性,将方波通过Y波导加载到光信号中并对其进行相位调制。

Claims (3)

1.一种基于光子晶体光纤陀螺的新型噪声分离方法,其特征在于,包括如下步骤:
步骤1,建立光子晶体光纤陀螺的噪声预测模型,该模型中包括散粒噪声、强度噪声、探测器热噪声和暗电流噪声,还包括由光子晶体光纤造成的背向反射噪声与背向散射噪声;
背向反射及背向散射引起的额外光功率引起的噪声方差为:
其中,e表示电子电荷量,P0表示由背向反射与散射光引起的额外光功率,BW表示探测器带宽,η表示探测器的光电转换系数,Δν表示光源带宽;
步骤2,通过控制调制相位,分离计算出背向反射噪声与背向散射噪声;
分别测得在加载调制方波前后光束的实际光功率,设表示调制相位,Pwithout_modulation表示未加载调制方波时测得的光功率,Pwith_modulation表示加载调制方波后测得的光功率,则得到下式:
其中,P代表有用光信号的光功率;
根据步骤1得到以及光子晶体光纤陀螺的总体噪声方差,从而进行噪声分离。
2.根据权利要求1所述的基于光子晶体光纤陀螺的新型噪声分离方法,其特征在于,所述的光纤晶体光纤陀螺的噪声预测模型表述如下:
其中,表示光子晶体光纤陀螺的总体噪声方差,表示散粒噪声方差,表示探测器热噪声方差,表示强度噪声方差,表示暗电流噪声方差,k表示玻尔兹曼常数,T表示绝对温度,R表示探测器负载电阻值,Id表示探测器的暗电流值。
3.根据权利要求1所述的基于光子晶体光纤陀螺的新型噪声分离方法,其特征在于,所述的步骤2中,根据计算得到的P0和P,得到光子晶体光纤陀螺的总体噪声方差为:
其中由背向反射与散射光引起的额外光功率引起的噪声方差为:
CN201510309002.3A 2015-06-08 2015-06-08 基于光子晶体光纤陀螺的新型噪声分离方法 Expired - Fee Related CN104880183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510309002.3A CN104880183B (zh) 2015-06-08 2015-06-08 基于光子晶体光纤陀螺的新型噪声分离方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510309002.3A CN104880183B (zh) 2015-06-08 2015-06-08 基于光子晶体光纤陀螺的新型噪声分离方法

Publications (2)

Publication Number Publication Date
CN104880183A CN104880183A (zh) 2015-09-02
CN104880183B true CN104880183B (zh) 2017-10-10

Family

ID=53947770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510309002.3A Expired - Fee Related CN104880183B (zh) 2015-06-08 2015-06-08 基于光子晶体光纤陀螺的新型噪声分离方法

Country Status (1)

Country Link
CN (1) CN104880183B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113329278B (zh) * 2021-05-24 2022-07-05 武汉光迅科技股份有限公司 一种光源通道切换模块、功率调节装置及功率定标方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2437841A1 (en) * 2002-08-20 2004-02-20 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic sensors with reduced noise
CN101008570A (zh) * 2007-01-29 2007-08-01 浙江大学 光纤陀螺热噪声、散粒噪声及强度噪声分离的方法
CN101464151A (zh) * 2009-01-05 2009-06-24 浙江大学 双信号组合调制的微型谐振式光学陀螺的检测装置及方法
CN102506896A (zh) * 2011-10-19 2012-06-20 浙江大学 谐振腔技术测试谐振式光学陀螺中背散射噪声装置及方法
CN103438880A (zh) * 2013-08-30 2013-12-11 中国兵器工业导航与控制技术研究所 一种高信噪比的干涉式光纤陀螺仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2437841A1 (en) * 2002-08-20 2004-02-20 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic sensors with reduced noise
CN101008570A (zh) * 2007-01-29 2007-08-01 浙江大学 光纤陀螺热噪声、散粒噪声及强度噪声分离的方法
CN101464151A (zh) * 2009-01-05 2009-06-24 浙江大学 双信号组合调制的微型谐振式光学陀螺的检测装置及方法
CN102506896A (zh) * 2011-10-19 2012-06-20 浙江大学 谐振腔技术测试谐振式光学陀螺中背散射噪声装置及方法
CN103438880A (zh) * 2013-08-30 2013-12-11 中国兵器工业导航与控制技术研究所 一种高信噪比的干涉式光纤陀螺仪

Also Published As

Publication number Publication date
CN104880183A (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
CN105043718B (zh) 一种光学偏振器件分布式偏振串扰测量的噪声抑制装置与抑制方法
CN104279959B (zh) 一种采用矢量网络分析仪精确测量光纤长度的新方法
CN106556574B (zh) 在线双光束干涉型光纤折射率传感器及折射率检测装置
CN104296783B (zh) 增强型相干光时域反射的传感检测方法及装置
CN101634571A (zh) 光纤脉栅分布传感装置
CN103076575A (zh) 基于磁流体灌注保偏型光子晶体光纤的磁场传感器
CN111912400B (zh) 一种保偏光纤环分布式偏振串扰双向同时测量装置及方法
CN106556575B (zh) 在线双光束干涉型光纤折射率传感器及折射率检测系统
CN103438880A (zh) 一种高信噪比的干涉式光纤陀螺仪
CN111308125B (zh) 一种基于光纤Sagnac干涉仪的加加速度探测方法及加加速度计
WO2011093589A1 (en) Optical fiber sensor
CN101581586B (zh) 一种抑制传感器死区的分布式光纤sagnac定位传感器
CN209945377U (zh) 基于边孔光纤双马赫曾德干涉游标效应的光纤传感器
CN104880183B (zh) 基于光子晶体光纤陀螺的新型噪声分离方法
JP2019105530A (ja) モード遅延時間差分布試験方法および試験装置
CN105953817A (zh) 一种光纤陀螺核心敏感光路的组装方法
CN117308909A (zh) 一种高精度光纤陀螺仪的光路设计方案及其制造方法
CN110635841B (zh) 一种提高混沌光时域反射仪回波信号的方法及装置
CN103528666A (zh) 基于Sagnac干涉的长距离光纤振动检测装置和方法
CN101709972B (zh) 一种基于半导体光放大器的高灵敏度光纤陀螺仪
CN104374549A (zh) 一种长保偏光纤偏振特性的分段式筛选系统与方法
CN206960011U (zh) 基于布里渊散射的分布式光纤温度应变传感系统
CN110186500A (zh) 一种采用绝对法的非平衡光纤干涉仪臂长差测量装置及测量方法
CN205002778U (zh) 环形谐振腔及其谐振式光纤陀螺
CN103047980A (zh) 再入式光纤陀螺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171010