CN104848935B - 涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台 - Google Patents

涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台 Download PDF

Info

Publication number
CN104848935B
CN104848935B CN201510236108.5A CN201510236108A CN104848935B CN 104848935 B CN104848935 B CN 104848935B CN 201510236108 A CN201510236108 A CN 201510236108A CN 104848935 B CN104848935 B CN 104848935B
Authority
CN
China
Prior art keywords
yoke
permanent magnet
magnetic
long tubular
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510236108.5A
Other languages
English (en)
Other versions
CN104848935A (zh
Inventor
崔俊宁
谭久彬
金国良
杨文国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201510236108.5A priority Critical patent/CN104848935B/zh
Publication of CN104848935A publication Critical patent/CN104848935A/zh
Application granted granted Critical
Publication of CN104848935B publication Critical patent/CN104848935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台属于振动计量技术领域;提出一种圆柱形封闭式磁场结构设计,两圆柱形永磁体对称安装在中心磁轭两端且同磁极相对布置,通过磁轭构成两个对称的闭合磁路,在气隙中产生高均匀度的磁感应强度分布,工作线圈通电后在磁场中受洛伦兹力作用,产生精密可控的电磁驱动力,与气隙相邻的磁轭表面设有深沟槽形式的阵列式微结构,可有效抑制涡流损耗,与静压气浮导向技术有机融合设计,同时获得突出的电磁驱动力学性能和高运动导向精度;本发明可兼顾大行程、大推力、线性电磁驱动力特性和高运动导向精度,为低频/超低频振动校准提供一种高精度、大行程的高性能低频振动校准台技术方案。

Description

涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台
技术领域
本发明属于振动校准装置领域,主要涉及一种涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台。
背景技术
在振动计量技术领域,产生标准振动信号的振动校准台是实现高精度振动校准的核心设备,也是构成国家振动计量技术体系的重要装备。高精度振动校准台一般均采用电磁振动台形式。近年来,航空航天、建筑桥梁、防震减灾等领域均提出了低频/超低频振动校准的需求。为提高标准振动信号的信噪比,保证低频/超低频振动的校准精度,要求振动校准台在保证推力和精度的前提下,具有尽可能大的行程。在大行程振动校准台的设计过程中,存在着振幅、磁场均匀性、电磁驱动力大小、线性电磁驱动力特性、运动导向精度、加工与装配精度之间的矛盾,其中的关键和难点是如何通过合理的电磁设计与结构设计,并通过保证加工与装配精度,在长气隙内实现高均匀度的强磁感应强度分布,并使线圈通电后在全行程内输出的电磁驱动力大小与工作线圈中的电流成正比,而与工作线圈所处的位置无关,即获得理想的线性电磁驱动力特性。
浙江大学的何闻等提出了一种大行程振动校准台技术方案(1.浙江大学,“大行程电磁振动台的双磁路结构”,中国专利号:ZL200710069095.2;2.浙江大学,“一种电磁振动台”,中国专利号:ZL200820087256.0;3.浙江大学,“具有基于直线光栅尺反馈控制装置的振动台”,中国专利号:ZL201110115072.7;4.WenHe,etal.“Closed-Double-MagneticCircuitforaLong-strokeHorizontalElectromagneticVibrationExciter”,IEEETransactionsonMagnetics,2011,49(8):4865-4872)。该技术方案中,圆柱形磁体、中心磁极(磁轭)和筒状外磁极同轴线装配,两磁体的同磁极相对、安装在中心磁极两端,磁体中心设有通孔,采用非导磁螺栓进行固定,中心磁极同轴装配在筒状外磁极内部,筒状线圈套装在中心磁极上而位于气隙中,线圈与气浮套固定连接而通过气浮导轨进行导向,线圈通电后在磁场中受力并产生运动,产生标准振动信号。该技术方案采用双磁体互补,漏磁较小,磁体利用率高,能够实现较大的推力、较大的行程和较低的波形失真度指标,是国内公开报道的具有自主知识产权和较高实用化程度的振动校准台技术方案之一。
德国联邦物理技术研究院(PTB)的Hans-J.vonMartens等也提出了一种大行程振动校准台技术方案(1.Hans-J.vonMartens,etal,″TraceabilityofVibrationandShockMeasurementsbyLaserInterferometry″,Measurement,2000,28:3-20)。该技术方案采用圆柱形软磁芯、圆筒形永磁体和圆筒形软磁管,两永磁体的同磁极相对、安装在圆筒形软磁管的两端,软磁芯同轴装配在软磁管的内部,通过两端的软磁部件形成闭合磁路,线圈骨架和工作线圈均为圆筒形,线圈骨架套装在中心磁轭上,并与气浮运动部件固定连接,通过气浮导轨进行导向。采用该技术方案的大行程振动校准台的振幅较大,配合高性能永磁体和磁轭材料,可实现较高水平的横向振动比、波形失真度等技术指标。
上述两种技术方案存在的不足之处在于:1)圆筒形外磁轭需进行长内尺寸加工,加工困难,精度难以保证;2)采用圆柱形永磁体时,永磁体上需加工通孔并通过非导磁螺栓固定在磁轭上,装配复杂且会对磁路产生影响;采用圆筒形永磁体时,大尺寸圆筒形永磁体的烧结、加工、充磁和装配均较为困难;3)圆筒形外磁轭需套装在中心磁轭上,如永磁体采用先充磁后装配的方式,装配十分困难,装配精度难以保证;如采用AlNiCo材料的永磁体,可采用先装配后充磁的方式,但由于AlNiCo材料永磁体矫顽力较低,性能欠佳,严重制约力学性能与指标。
美国APS公司的KennethJosephMetzgar等也提出了一种大行程振动校准台技术方案(KennethJosephMetzgaretal,“ElectrodynamicForceGenerator”,美国专利号:US3816777)。该技术方案中得电磁驱动结构是由4组相同的子装配体构成,每个子装配体由两个楔形磁极片、一个衔接块(软磁材料)、一个磁体组成,衔接块分隔并连接两个楔形磁极片的厚端,形成一个具有长气隙的钳形结构,磁体安装在气隙中并固定在一个楔形磁极片表面,磁体可采用先装配后充磁的方式。4组子装配体两两层叠后,采用螺栓将两个层叠的子装配体固定形成两个相同结构的部件,再将这两个部件的钳口端对接,并采用卧在楔形磁极片中的螺栓将对接结构连接紧固,形成完整的电磁驱动结构。对接后的电磁驱动结构具有两条长气隙,动圈(工作线圈)位于气隙中,并通过轴承和沿轴线方向的轴承杆进行导向。该技术方案易在气隙中实现高磁感应强度,且进行了较成熟的产品化和推广。
该技术方案存在的不足之处在于:1)电磁驱动结构由多个结构组合、拼接构成,结构复杂;小块永磁体需采用胶粘或其它方式安装在楔形磁极片上,装配复杂,难以保证装配精度;2)气隙中某一位置的静态磁感应强度与该处永磁体的工作点直接相关,整个气隙内磁场的均匀性难以保证,对小块永磁体的材料和工艺的一致性要求较高;3)永磁体直接面对气隙,工作线圈通电后产生的附加磁场会对其产生强制充磁或去磁作用,当工作线圈中通以较大电流时,容易使永磁体产生不可逆退磁;4)工作线圈通电时,线圈一侧的磁通增大、另一侧磁通减少,由于永磁体直接面对气隙,磁通增大一侧的磁路容易饱和,此时线圈一侧增加的磁通比另一侧减少的磁通要少,导致线圈所在位置的平均磁感应强度降低,进而使产生的标准振动信号产生波形失真。
如前所述,在大行程振动校准台的设计过程中,存在着振幅、磁场均匀性、电磁驱动力大小、线性电磁驱动力特性、运动导向精度、加工与装配精度之间的矛盾,设计的难点和关键是通过合理的电磁设计与结构设计,在长气隙内实现高均匀度的强磁感应强度分布,并使工作线圈通电后在全行程内输出的电磁驱动力与电流大小成正比,而与工作线圈所处的位置无关,即获得理想的线性电磁驱动力特性。而现有技术均存在各种问题与不足,气隙内静态磁感应强度分布的均匀性、线圈通电后输出电磁驱动力的线性度指标很难有进一步提升。其中的关键问题有三点:
(1)长气隙内主磁路磁感应强度分布的均匀性难以保证。线圈通电前,永磁体励磁形成稳定的主磁路磁感应强度分布,随着振动校准台行程的增大,长气隙内磁场的均匀性很难保证,直接影响线圈通电后输出电磁驱动力的线性度;有研究人员尝试通过调整电流波形进行补偿,但效果难以保证,尤其是对高阶磁场非均匀性误差补偿效果欠佳,目前国内外尚未提出有效的且具有较高实用性的补偿方法。
(2)工作线圈通电后的电枢反应制约输出电磁驱动力的线性度及输出振动波形的失真度 指标。工作线圈通电后会产生附加磁场,该附加磁场与主磁场叠加耦合,对主磁场产生增磁或去磁作用,使气隙内不同位置、尤其工作线圈所在位置的磁感应强度分布变得不均匀,该现象称为电枢反应。受电枢反应影响,在行程内不同位置当线圈所加载电流密度相同时,输出的电磁驱动力不一致;而在同一位置电磁驱动力的大小与电流密度不成正比,存在一定的非线性。电枢反应是振动校准台输出振动波形产生失真度的关键因素之一,它的影响随驱动电流的增大而增大,是振动校准台设计中的一个难题。
(3)长磁轭与大尺寸永磁体加工与装配困难、精度难以保证。大行程振动校准台中,长中心磁轭需采用合理的方式以两端支撑方式固定,为保证磁通的连续性和完整性,磁通密集的关键部位应尽量避免加工通孔/螺纹孔等安装结构;大尺寸永磁体的烧结、加工与装配均十分困难,成品率很低,永磁体为脆性材料且价格昂贵,装配方法及结构不合理容易导致损坏,一般不宜在永磁体上加工通孔等形式的安装结构;同时要获得较大的电磁驱动力,一般采用NdFeB等材料的强磁永磁体,强磁永磁体零件装配过程中需要克服巨大的磁吸力,是本技术领域的一个难题。
此外,涡流损耗也是影响振动校准台精度与性能的一个难题。在振动校准台工作时,工作线圈中通入的是交变驱动电流,电流幅值最大可达几十安培,线圈在长气隙中沿轴线方向以正弦规律往复运动,根据电磁场理论,交变电流及线圈运动产生的交变磁场会在磁轭表面,尤其是与气隙相邻的磁轭表面会产生电涡流,引起涡流损耗。涡流损耗一方面会产生功率最高可达几百瓦的热损耗,发热量惊人,进而带来一系列的热扰动与热变形问题;另一方面交变磁场及电涡流引起的瞬态场问题,会使实际的性能指标相对按传统设计理论、分析方法得到的结果产生较大偏差,严重影响设计精度与效果。涡流损耗是振动校准台设计中的一个难题,目前国内外尚未找到有效的解决办法。
综上,受上述问题制约,采用现有技术方案产生的标准低频振动在波形失真度等指标上难有进一步突破,难以满足低频/超低频振动的高精度校准,尤其是下一代具有甚低频和超精密特征的振动校准的需求。因此,如何通过方法、结构、材料和优化设计等环节的创新,提出具有超大行程、超低工作频率和超高精度的振动校准台技术方案,对于振动计量技术的发展具有重要的意义。上述问题中的一项或几项获得解决,均会使大行程振动校准台的性能获得显著提升,使低频/超低频振动校准技术获得实质性突破。
发明内容
本发明的目的是针对现有技术方案存在的问题,提供一种涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台技术方案,本发明通过电磁设计与结构设计的创新及电磁驱动技术与静压气浮导向技术的有效融合,能够兼顾大行程、大推力、线性电磁驱动力特性和高运动导向精度,可有效解决现有技术方案存在的问题与不足,为低频/超低频振动校准提供一种高精度、大行程的超低频振动校准台。
本发明的技术解决方案是:
一种涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台,由基座、电磁驱动结构、静压气浮导轨和工作台构成,电磁驱动结构和静压气浮导轨以轴线平行的方式安装在基座上,工作台安装在静压气浮导轨中滑套的上表面,所述基座由底板和支撑件构成,两个支撑件对称安装在底板的两端,电磁驱动结构的两端与两个支撑件刚性连接,静压气浮导轨通过两个支撑件以两端支撑的方式固定;静压气浮导轨由导轨、滑套和滑套连接件构成,滑套可滑动地套装在导轨上且与导轨通过静压气浮作用相互润滑与支撑,滑套通过滑套连接件与电磁驱动结构中线圈骨架的翅板刚性连接;电磁驱动结构由圆柱形的永磁体、中心磁轭、端磁轭和圆筒形的长筒形磁轭、短筒形磁轭、线圈骨架构成,整体成轴对称结构,永磁体、中心磁轭、端磁轭、长筒形磁轭、短筒形磁轭、线圈骨架的轴线在一条直线上,两个永磁体对称安装在中心磁轭两端和两个端磁轭之间、且同磁极相对布置,每个永磁体的两个端面分别与中心磁轭、端磁轭相应的端面紧密接触,两个短筒形磁轭的内径与长筒形磁轭的外径相等,两个短筒形磁轭的一端分别与两个端磁轭刚性连接、另一端对称套装在长筒形磁轭的两端并与长筒形磁轭刚性连接,长筒形磁轭同轴套装在中心磁轭上、与中心磁轭之间通过气隙分隔开,线圈骨架可滑动地套装在中心磁轭上而位于气隙中,线圈骨架上绕有工作线圈,工作线圈中通以精密可控的驱动电流,长筒形磁轭的侧壁沿长度方向设有剖缝,线圈骨架的两端设有翅板,翅板从剖缝中伸出,中心磁轭的外圆柱面和长筒形磁轭的内圆柱面上设有深沟槽形式的阵列式微结构,深沟槽沿气隙的长度方向周期性布置。
所述永磁体的安装方式是采用两个圆筒形、不导磁材料的永磁体安装套,将永磁体以粘接方式同轴装配在永磁体安装套内部,通过固定永磁体安装套将永磁体固定;所述中心磁轭的安装方式是采用两个圆筒形、不导磁材料的磁轭安装套,将两个磁轭安装套套装在中心磁轭的两端且与中心磁轭刚性连接,通过固定磁轭安装套将中心磁轭以两端支撑的方式固定。
所述剖缝的数目为2条,且在长筒形磁轭的侧壁上对径分布。
所述永磁体是采用多个小块永磁体、以粘接的方式拼接构成。
所述线圈骨架的材料为陶瓷、花岗岩、玻璃钢或硬质塑料。
所述永磁体安装套和磁轭安装套的材料为陶瓷、花岗岩、玻璃钢或铝合金。
本发明的技术创新性及产生的良好效果在于:
(1)本发明的电磁驱动结构设计简单,零部件加工和装配难度低,容易保证高加工和装配精度;由于永磁体可采用先充磁、后装配的方式,因此可采用NdFeB等材料的高性能永磁体,从而获得高气隙磁感应强度与大电磁驱动力;解决了现有技术方案中零件难于加工,永磁体装配困难,零件加工和装配精度难以保证等问题,可在长气隙内获得较高的主磁路磁感 应强度分布的均匀性指标。这是本发明区别于现有技术的创新点之一。
(2)本发明在磁路的具体布置上,永磁体不直接面对气隙而不承受工作线圈通电后产生附加磁场的强制充/去磁作用;工作线圈通电时,线圈一侧的磁通增大、另一侧磁通减少,磁通增大和减小的作用相互抵消,使线圈所在位置的平均磁感应强度基本保持不变,从而可实现近似理想的线性电磁驱动力特性;解决了现有技术方案中永磁体直接面对气隙,工作线圈通以大电流时容易产生不可逆退磁,输出电磁驱动力的线性度差等问题;实现较高的输出电 磁驱动力的线性度指标。这是本发明区别于现有技术的创新点之二。
(3)本发明采用磁轭安装套对长中心磁轭以两端支撑的方式可靠安装固定,并采用永磁体安装套对永磁体进行安装固定,在将永磁体粘接装配在永磁体安装套内部后,可以整体地装入指定安装位置,显著降低了永磁体的装配难度;解决了长尺寸中心磁轭和脆性材料永磁 体零件可靠安装固定、以及强磁永磁体零件装配的难题。这是本发明区别于现有技术的创新点之三。
(4)本发明在与气隙相邻的中心磁轭的外圆柱面和长筒形磁轭的内圆柱面上,沿气隙长度方向周期性布置深沟槽形式的阵列式微结构,理论与仿真分析及实验结果均表明,该方法可抑制电涡流的产生,大大降低涡流损耗的影响,既有效解决了涡流损耗带来的热扰动、热变形问题,又可使电磁驱动结构的实际性能指标与理论设计结果具有较高的一致性,实现较高的设计精度;解决了涡流损耗这一电磁振动台电磁驱动结构设计的难题。这是本发明区别于现有技术的创新点之四。
(5)本发明将电磁驱动技术与静压气浮导向技术有效融合,利用静压气浮导轨无摩擦、无磨损、高运动导向精度等特性,可同时获得突出的电磁驱动力学特性和高运动导向精度,进一步保证了振动校准台输出标准振动波形的失真度指标。这是本发明区别现有技术的创新点之五。
(6)此外,本发明中永磁体可采用单块大尺寸永磁体,也可采用多个小块永磁体以先拼接后充磁的方式获得,可大大降低大尺寸永磁体的烧结、加工与充磁的难度;解决了大尺寸 永磁体烧结、加工和充磁困难的问题。这是本发明区别于现有技术的创新点之五。
附图说明
图1为涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台的结构示意图;
图2为电磁驱动结构的整体示意图;
图3为电磁驱动结构的剖面示意图;
图4为永磁体磁极布置方式和主磁路的示意图;
图5为中心磁轭外圆柱面和长筒形磁轭内圆柱面上的深沟槽一个实施例的示意图;
图6为中心磁轭外圆柱面和长筒形磁轭内圆柱面上的深沟槽另一个实施例的示意图;
图7为中心磁轭外圆柱面上深沟槽形式的阵列式微结构示意图;
图8为采用永磁体安装套、磁轭安装套对永磁体和中心磁轭安装固定的示意图;
图9为永磁体安装套的结构示意图;
图10为磁轭安装套的结构示意图;
图11为线圈骨架一个实施例的结构示意图;
图中件号说明:1永磁体、2中心磁轭、3长筒形磁轭、4短筒形磁轭、5端磁轭、6线圈骨架、7气隙、8工作线圈、9永磁体安装套、10磁轭安装套、11第一磁路、12第二磁路、13电磁驱动结构、14静压气浮导轨、15工作台、16基座、17底板、18深沟槽、19翅板、20剖缝、21支撑件、23导轨、24滑套、25滑套连接件。
具体实施方式
下面结合附图对本发明的具体实施方式进行详细说明,并给出实施例。
一种涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台,由基座16、电磁驱动结构13、静压气浮导轨14和工作台15构成,电磁驱动结构13和静压气浮导轨14以轴线平行的方式安装在基座16上,工作台15安装在静压气浮导轨14中滑套24的上表面,所述基座16由底板17和支撑件21构成,两个支撑件21对称安装在底板17的两端,电磁驱动结构13的两端与两个支撑件21刚性连接,静压气浮导轨14通过两个支撑件21以两端支撑的方式固定;静压气浮导轨14由导轨23、滑套24和滑套连接件25构成,滑套24可滑动地套装在导轨23上且与导轨23通过静压气浮作用相互润滑与支撑,滑套24通过滑套连接件25与电磁驱动结构13中线圈骨架6的翅板19刚性连接;电磁驱动结构13由圆柱形的永磁体1、中心磁轭2、端磁轭5和圆筒形的长筒形磁轭3、短筒形磁轭4、线圈骨架6构成,整体成轴对称结构,永磁体1、中心磁轭2、端磁轭5、长筒形磁轭3、短筒形磁轭4、线圈骨架6的轴线在一条直线上,两个永磁体1对称安装在中心磁轭2两端和两个端磁轭5之间、且同磁极相对布置,每个永磁体1的两个端面分别与中心磁轭2、端磁轭5相应的端面紧密接触,两个短筒形磁轭4的内径与长筒形磁轭3的外径相等,两个短筒形磁轭4的一端分别与两个端磁轭5刚性连接、另一端对称套装在长筒形磁轭3的两端并与长筒形磁轭3刚性连接,长筒形磁轭3同轴套装在中心磁轭2上、与中心磁轭2之间通过气隙7分隔开,线圈骨架6可滑动地套装在中心磁轭2上而位于气隙7中,线圈骨架6上绕有工作线圈8,工作线圈8中通以精密可控的驱动电流,长筒形磁轭3的侧壁沿长度方向设有剖缝20,线圈骨架6的两端设有翅板19,翅板19从剖缝20中伸出,中心磁轭2的外圆柱面和长筒形磁轭3的内圆柱面上设有深沟槽18形式的阵列式微结构,深沟槽18沿气隙7的长度方向周期性布置。
所述永磁体1的安装方式是采用两个圆筒形、不导磁材料的永磁体安装套9,将永磁体1以粘接方式同轴装配在永磁体安装套9内部,通过固定永磁体安装套9将永磁体1固定;所述中心磁轭2的安装方式是采用两个圆筒形、不导磁材料的磁轭安装套10,将两个磁轭安装套10套装在中心磁轭2的两端且与中心磁轭2刚性连接,通过固定磁轭安装套10将中心磁轭2以两端支撑的方式固定。
所述剖缝20的数目为2条,且在长筒形磁轭3的侧壁上对径分布。
所述永磁体1是采用多个小块永磁体、以粘接的方式拼接构成。
所述线圈骨架6的材料为陶瓷、花岗岩、玻璃钢或硬质塑料。
所述永磁体安装套9和磁轭安装套10的材料为陶瓷、花岗岩、玻璃钢或铝合金。
下面结合图1~图4给出本发明的一个实施例。本实施例中,涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台用于产生水平方向的标准低频振动,最大振幅为1.2m。其中,基座16的作用是提供整体安装基础和框架。
电磁驱动结构13中,永磁体1是NdFeB材料的强磁永磁体,材料的剩磁强度为1.17T,矫顽力为890kA/m,两个永磁体1的N极相对布置,对称安装在中心磁轭2两端和两个端磁轭5之间。中心磁轭2、长筒形磁轭3、两个短筒形磁轭4、两个端磁轭5均采用高磁导率电工纯铁材料DT4C制成,最大相对磁导率可达到12000,饱和磁通量为2.5T。中心磁轭2、两个永磁体1、两个端磁轭5均为圆柱形,长筒形磁轭3、两个短筒形磁轭4及线圈骨架6均为圆筒形,中心磁轭2、两个永磁体1、两个端磁轭5、长筒形磁轭3、两个短筒形磁轭4、线圈骨架6同轴装配。中心磁轭2和长筒形磁轭3之间被气隙7分隔开,气隙7厚度为15mm,其中形成高均匀度的磁感应强度分布。长筒形磁轭3与两个短筒形磁轭4分别采用螺钉刚性连接,实施过程中也可采用其它连接方式,或者采用一块完整材料将长筒形磁轭3和两个短筒形磁轭4整体加工成一个零件。两个短筒形磁轭4的一端与两个端磁轭5分别采用螺钉刚性连接。本实施例中,长筒形磁轭3侧壁上沿长度方向设有剖缝20,数目为2条,2条剖缝20对径分布。
静压气浮导轨14通过两个支撑件21以两端支撑的方式固定在基座16上,导轨23的轴线与电磁驱动结构13的轴线互相平行。导轨23为T型导轨,长度为2米,滑套24可滑动地套装在导轨23上,二者之间通过静压气浮作用互相润滑与承载。工作台15采用螺钉固定在滑套24的上表面,滑套24通过滑套连接件25与线圈骨架6上的翅板19采用螺钉刚性连接。
本实施例中,永磁体励磁所形成主磁路的磁力线所经过的路径如图4所示。以第一磁路11为例,磁力线从永磁体1的N极出发,依次经过中心磁轭2、长筒形磁轭3、短筒形磁轭4和端磁轭5,然后回到永磁体1的S极形成闭合磁路。第一磁路11和第二磁路12呈左右对称形式。
线圈骨架6采用99氧化铝陶瓷制成,整体为圆筒形,可滑动地套装在中心磁轭2上。工作线圈8是采用绝缘铜漆包线在线圈骨架6外表面缠绕形成,其整体也成圆筒形,厚度为5mm,所通最大电流密度为5A/mm2。电磁振动台电磁驱动结构装配完成后,线圈骨架6和工作线圈8位于气隙7中。电磁振动台工作时,控制信号经功率放大器放大后,输出有效值最高达几十A的功率电流加载到工作线圈8中,根据电磁场理论,磁场中通电的工作线圈8受到水平方向洛伦兹力作用,从而输出精密可控的电磁驱动力。通过控制所通电流的大小和方向可以精密控制电磁驱动力的大小和方向。控制信号如果采用标准正弦电信号,工作线圈8与线圈骨架6将在电磁驱动力作用下沿轴向产生标准正弦振动,用于低频振动校准。
下面结合图5和图7给出中心磁轭外圆柱面和长筒形磁轭内圆柱面上深沟槽的一个实施例。图5是图4的局部放大图。深沟槽18分布在与气隙相邻的中心磁轭2的外圆柱面和长筒形磁轭3的内圆柱面上,图中深沟槽18沿中心磁轭2和长筒形磁轭3的圆周方向加工,并沿气隙7的长度方向周期性排列。本实施例中,深沟槽18为矩形沟槽,其宽度为1mm,深入中心磁轭2和长筒形磁轭3表面的深度为10mm,相邻的两个深沟槽18之间的距离为10mm。理论与仿真分析及实验结果表明,本发明中深沟槽形式的阵列式微结构可有效抑制电涡流的产生,显著降低涡流损耗。
下面结合图6给出中心磁轭外圆柱面和长筒形磁轭内圆柱面上深沟槽的另一个实施例。图6也是图4的局部放大图。本实施例中,深沟槽18为齿形沟槽,其齿根宽度为1mm,齿尖深入中心磁轭2和长筒形磁轭3表面的深度为10mm,相邻的两个深沟槽18之间的距离为10mm。
下面结合图8、图9给出永磁体安装套的一个实施例。本实施例中,永磁体安装套9采用陶瓷材料制成,整体为圆筒形,其沿轴向的厚度与永磁体1相等,永磁体1以粘接方式同轴装配在永磁体安装套9内部,然后将永磁体安装套9通过螺纹连接固定在端磁轭5或短筒形磁轭4上,实现对永磁体1的安装固定。装配过程中先完成其它零件的装配,然后在装配工装的配合下,将永磁体1、永磁体安装套9构成的组件同磁极相对、整体配装,最后对永磁体安装套9进行安装固定。采用本发明的安装方式降低了永磁体的装配难度。
下面结合图10给出磁轭安装套的一个实施例。要使线圈骨架6和工作线圈8套装在中心磁轭2上且具有较长的行程,长尺寸中心磁轭2必须以两端支撑的方式进行安装固定。本实施例中,磁轭安装套10采用陶瓷材料制成,整体为圆筒形,两个磁轭安装套10套装在中心磁轭2两端并通过螺钉与中心磁轭2刚性连接,两个磁轭安装套10上有螺纹孔,通过螺钉刚性固定在长筒形磁轭3上。
图11给出了线圈骨架的一个实施例。本实施例中,线圈骨架6采用99氧化铝陶瓷材料,整体为圆筒形,壁厚为5mm,线圈骨架6可滑动地套装在中心磁轭2上。工作线圈8均匀密绕在线圈骨架6上,线圈骨架6的两端加工有小凸台,用于防止工作线圈8脱落。本实施例中,线圈骨架6两端对径分布4个翅板19,翅板19从长筒形磁轭3侧壁上的两条剖缝20中伸出,线圈骨架6通过翅板19与滑套连接件25、进而与滑套24刚性连接。实际实施过程中,线圈骨架6的壁上可以设置各种形式的减重孔,用于减轻线圈骨架6的重量,减小振动校准台的动载荷。

Claims (6)

1.一种涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台,由基座(16)、电磁驱动结构(13)、静压气浮导轨(14)和工作台(15)构成,电磁驱动结构(13)和静压气浮导轨(14)以轴线平行的方式安装在基座(16)上,工作台(15)安装在静压气浮导轨(14)中滑套(24)的上表面,其特征在于:所述基座(16)由底板(17)和支撑件(21)构成,两个支撑件(21)对称安装在底板(17)的两端,电磁驱动结构(13)的两端与两个支撑件(21)刚性连接,静压气浮导轨(14)通过两个支撑件(21)以两端支撑的方式固定;静压气浮导轨(14)由导轨(23)、滑套(24)和滑套连接件(25)构成,滑套(24)可滑动地套装在导轨(23)上且与导轨(23)通过静压气浮作用相互润滑与支撑,滑套(24)通过滑套连接件(25)与电磁驱动结构(13)中线圈骨架(6)的翅板(19)刚性连接;电磁驱动结构(13)由圆柱形的永磁体(1)、中心磁轭(2)、端磁轭(5)和圆筒形的长筒形磁轭(3)、短筒形磁轭(4)、线圈骨架(6)构成,整体成轴对称结构,永磁体(1)、中心磁轭(2)、端磁轭(5)、长筒形磁轭(3)、短筒形磁轭(4)、线圈骨架(6)的轴线在一条直线上,两个永磁体(1)对称安装在中心磁轭(2)两端和两个端磁轭(5)之间、且同磁极相对布置,每个永磁体(1)的两个端面分别与中心磁轭(2)、端磁轭(5)相应的端面紧密接触,两个短筒形磁轭(4)的内径与长筒形磁轭(3)的外径相等,两个短筒形磁轭(4)的一端分别与两个端磁轭(5)刚性连接、另一端对称套装在长筒形磁轭(3)的两端并与长筒形磁轭(3)刚性连接,长筒形磁轭(3)同轴套装在中心磁轭(2)上、与中心磁轭(2)之间通过气隙(7)分隔开,线圈骨架(6)可滑动地套装在中心磁轭(2)上而位于气隙(7)中,线圈骨架(6)上绕有工作线圈(8),工作线圈(8)中通以精密可控的驱动电流,长筒形磁轭(3)的侧壁沿长度方向设有剖缝(20),线圈骨架(6)的两端设有翅板(19),翅板(19)从剖缝(20)中伸出,中心磁轭(2)的外圆柱面和长筒形磁轭(3)的内圆柱面上设有深沟槽(18)形式的阵列式微结构,深沟槽(18)沿气隙(7)的长度方向周期性布置,深沟槽(18)沿中心磁轭(2)和长筒形磁轭(3)的圆周方向加工。
2.根据权利要求1所述的涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台,其特征在于:所述永磁体(1)的安装方式是采用两个圆筒形、不导磁材料的永磁体安装套(9),将永磁体(1)以粘接方式同轴装配在永磁体安装套(9)内部,通过固定永磁体安装套(9)将永磁体(1)固定;所述中心磁轭(2)的安装方式是采用两个圆筒形、不导磁材料的磁轭安装套(10),将两个磁轭安装套(10)套装在中心磁轭(2)的两端且与中心磁轭(2)刚性连接,通过固定磁轭安装套(10)将中心磁轭(2)以两端支撑的方式固定。
3.根据权利要求1或2所述的涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台,其特征在于:所述剖缝(20)的数目为2条,且在长筒形磁轭(3)的侧壁上对径分布。
4.根据权利要求1或2所述的涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台,其特征在于:所述永磁体(1)是采用多个小块永磁体、以粘接的方式拼接构成。
5.根据权利要求1或2所述的涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台,其特征在于:所述线圈骨架(6)的材料为陶瓷、花岗岩、玻璃钢或硬质塑料。
6.根据权利要求2所述的涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台,其特征在于:所述永磁体安装套(9)和磁轭安装套(10)的材料为陶瓷、花岗岩、玻璃钢或铝合金。
CN201510236108.5A 2015-05-08 2015-05-08 涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台 Active CN104848935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510236108.5A CN104848935B (zh) 2015-05-08 2015-05-08 涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510236108.5A CN104848935B (zh) 2015-05-08 2015-05-08 涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台

Publications (2)

Publication Number Publication Date
CN104848935A CN104848935A (zh) 2015-08-19
CN104848935B true CN104848935B (zh) 2016-04-27

Family

ID=53848753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510236108.5A Active CN104848935B (zh) 2015-05-08 2015-05-08 涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台

Country Status (1)

Country Link
CN (1) CN104848935B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112629564B (zh) * 2021-01-06 2023-02-28 哈尔滨工业大学 一种高加速度高精度线振动台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101069884A (zh) * 2007-06-12 2007-11-14 浙江大学 大行程电磁振动台的双磁路结构
CN201273853Y (zh) * 2008-08-21 2009-07-15 中国地震局工程力学研究所 低频水平向大行程电动振动台
CN101806617A (zh) * 2010-03-30 2010-08-18 浙江大学 一种用于长行程水平振动台的滑台防牵拉装置
CN103822703A (zh) * 2014-03-19 2014-05-28 浙江大学 一种超低频水平向振动台导轨不平顺动态补偿方法
CN103925940A (zh) * 2014-05-13 2014-07-16 苏州东菱振动试验仪器有限公司 一种低频校准振动台
CN203908574U (zh) * 2014-05-13 2014-10-29 苏州东菱振动试验仪器有限公司 一种低频校准振动台

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4137953B2 (ja) * 2006-06-01 2008-08-20 有限会社旭製作所 永久磁石型動電式振動発生機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101069884A (zh) * 2007-06-12 2007-11-14 浙江大学 大行程电磁振动台的双磁路结构
CN201273853Y (zh) * 2008-08-21 2009-07-15 中国地震局工程力学研究所 低频水平向大行程电动振动台
CN101806617A (zh) * 2010-03-30 2010-08-18 浙江大学 一种用于长行程水平振动台的滑台防牵拉装置
CN103822703A (zh) * 2014-03-19 2014-05-28 浙江大学 一种超低频水平向振动台导轨不平顺动态补偿方法
CN103925940A (zh) * 2014-05-13 2014-07-16 苏州东菱振动试验仪器有限公司 一种低频校准振动台
CN203908574U (zh) * 2014-05-13 2014-10-29 苏州东菱振动试验仪器有限公司 一种低频校准振动台

Also Published As

Publication number Publication date
CN104848935A (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
CN104848937B (zh) 磁场跟踪补偿的双永磁管两端对称励磁圆柱形低频振动校准台
CN104865029B (zh) 长永磁管向心励磁的圆柱形封闭磁场式电磁振动台磁路结构
CN104858121B (zh) 磁场跟踪补偿的双排永磁体向心励磁矩形开放磁场式电磁振动台磁路结构
CN104848935B (zh) 涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台
CN104848938B (zh) 磁场跟踪补偿的双磁路两端对称励磁圆柱形低频振动校准台
CN104849008B (zh) 长永磁管向心励磁的圆柱形封闭磁场式低频振动校准台
CN104848939B (zh) 磁场跟踪补偿的四磁路对称励磁矩形低频振动校准台
CN104848932B (zh) 双磁路两端对称励磁的矩形开放磁场式低频振动校准台
CN104865030B (zh) 磁场跟踪补偿的双磁路对称励磁圆柱形封闭磁场式电磁振动台磁路结构
CN104848930B (zh) 涡流补偿的双排永磁体向心励磁矩形开放磁场式电磁振动台磁路结构
CN104907242B (zh) 磁场跟踪补偿的长永磁管向心励磁圆柱形封闭磁场式电磁振动台磁路结构
CN104833468B (zh) 四磁路对称励磁的矩形开放磁场式电磁振动台磁路结构
CN104848929B (zh) 磁场跟踪补偿的双磁路两端对称励磁矩形开放磁场式电磁振动台磁路结构
CN104849005B (zh) 双磁路两端对称励磁的矩形开放磁场式电磁振动台磁路结构
CN104865031B (zh) 涡流补偿的双永磁管两端对称励磁圆柱形封闭磁场式低频振动校准台
CN104990624B (zh) 四磁路对称励磁的矩形开放磁场式低频振动校准台
CN104848934B (zh) 涡流补偿的双排永磁体向心励磁矩形开放磁场式低频振动校准台
CN104865032B (zh) 磁场跟踪补偿的长永磁管向心励磁圆柱形低频振动校准台
CN104849007B (zh) 磁场跟踪补偿的四磁路对称励磁矩形开放磁场式电磁振动台磁路结构
CN104848936B (zh) 磁场跟踪补偿的双排永磁体向心励磁矩形低频振动校准台
CN104848933B (zh) 磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构
CN104848931B (zh) 涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构
CN104880290B (zh) 磁场跟踪补偿的双磁路两端对称励磁矩形低频振动校准台
CN104849006B (zh) 涡流补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构
CN115424802A (zh) 导向与驱动一体的两端中心励磁圆柱形电磁执行器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant