CN104848933B - 磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构 - Google Patents

磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构 Download PDF

Info

Publication number
CN104848933B
CN104848933B CN201510235751.6A CN201510235751A CN104848933B CN 104848933 B CN104848933 B CN 104848933B CN 201510235751 A CN201510235751 A CN 201510235751A CN 104848933 B CN104848933 B CN 104848933B
Authority
CN
China
Prior art keywords
yoke
magnetic
permanent magnetism
magnetic field
magnetism pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510235751.6A
Other languages
English (en)
Other versions
CN104848933A (zh
Inventor
谭久彬
何张强
崔俊宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201510235751.6A priority Critical patent/CN104848933B/zh
Publication of CN104848933A publication Critical patent/CN104848933A/zh
Application granted granted Critical
Publication of CN104848933B publication Critical patent/CN104848933B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构属于振动计量技术领域;提出一种圆柱形封闭式磁场结构设计,两永磁管对称安装且同磁极相对布置,通过磁轭构成两个对称闭合磁路,在气隙中产生高均匀度的磁感应强度分布,与气隙相邻的磁轭表面设有深沟槽形式的阵列式微结构,可有效抑制涡流损耗,中心磁轭上设有补偿线圈,所通电流与工作线圈中的电流方向相反、相位同步跟踪、幅值成一定比例,形成的补偿磁场可对电枢反应的影响进行同步跟踪补偿;本发明可兼顾大行程、高磁场均匀性、大推力和线性电磁驱动力特性,为低频/超低频振动校准提供一种高精度、大行程的电磁振动台磁路结构技术方案。

Description

磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构
技术领域
本发明属于振动校准装置领域,主要涉及一种磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构。
背景技术
近年来,航空航天、建筑桥梁、防震减灾等领域均提出了低频/超低频振动校准的需求。为提高标准振动信号的信噪比,保证低频/超低频振动的校准精度,要求电磁振动台在保证推力和精度的前提下,具有尽可能大的行程。在大行程电磁振动台磁路结构的设计过程中,存在着振幅、磁场均匀性、电磁驱动力大小、线性电磁驱动力特性、加工与装配精度之间的矛盾,其中的关键和难点是如何通过合理的磁路结构设计,并通过保证加工与装配精度,在长气隙内实现高均匀度的强磁感应强度分布,并在线圈通电后获得理想的线性电磁驱动力特性,即在全行程内输出的电磁驱动力大小与工作线圈中的电流成正比,而与工作线圈所处的位置无关。
浙江大学的何闻等提出了一种大行程电磁振动台磁路结构技术方案(1.浙江大学,“大行程电磁振动台的双磁路结构”,中国专利号:ZL200710069095.2;2.浙江大学,“一种电磁振动台”,中国专利号:ZL200820087256.0;3.浙江大学,“具有基于直线光栅尺反馈控制装置的振动台”,中国专利号:ZL201110115072.7;4.WenHe,etal.“Closed-Double-MagneticCircuitforaLong-strokeHorizontalElectromagneticVibrationExciter”,IEEETransactionsonMagnetics,2011,49(8):4865-4872)。该技术方案中,磁体(圆柱形)、中心磁极(磁轭)和筒状外磁极同轴线装配,两磁体的同磁极相对布置、安装在中心磁极两端,磁体中心设有通孔,采用非导磁螺栓进行固定,中心磁极同轴装配在筒状外磁极内部,筒状线圈套装在中心磁极上而位于气隙中。该技术方案采用双磁体互补,漏磁较小,磁体利用率高,能够实现较大的推力、较大的行程和较低的波形失真度指标,是国内公开报道的具有自主知识产权和较高实用化程度的电磁振动台磁路结构技术方案之一。
德国联邦物理技术研究院(PTB)的Hans-J.vonMartens等也提出了一种大行程电磁振动台磁路结构技术方案(1.Hans-J.vonMartens,etal,″TraceabilityofVibrationandShockMeasurementsbyLaserInterferometry″,Measurement,2000,28:3-20)。该技术方案采用圆柱形软磁芯、圆筒形永磁体和圆筒形软磁管,两永磁体的同磁极相对布置、安装在圆筒形软磁管的两端,软磁芯同轴装配在软磁管的内部,通过两端的软磁部件形成闭合磁路,线圈骨架和工作线圈均为圆筒形,线圈骨架可滑动地套装在中心磁轭上。采用该技术方案的大行程电磁振动台的振幅可达1m,配合高性能永磁体和磁轭材料,可实现较高水平的横向振动比、波形失真度等主要技术指标。
上述两种技术方案存在的不足之处在于:1)圆筒形外磁轭需进行长内尺寸加工,加工困难,精度难以保证;2)采用圆柱形永磁体时,永磁体上需加工通孔并通过非导磁螺栓固定在磁轭上,装配复杂且会对磁路产生影响;采用圆筒形永磁体时,大尺寸圆筒形永磁体的烧结、加工、充磁和装配均较为困难;3)圆筒形外磁轭需套装在中心磁轭上,如永磁体采用先充磁后装配的方式,装配十分困难,装配精度难以保证;AlNiCo材料的永磁体可采用先装配后充磁的方式,但由于AlNiCo材料的永磁体矫顽力较低,充磁效果受到限制,性能欠佳,严重制约磁路结构的力学性能与指标。
美国APS公司的KennethJosephMetzgar等提出了一种大行程电磁振动台磁路结构技术方案(KennethJosephMetzgaretal,“ElectrodynamicForceGenerator”,美国专利号:US3816777)。该技术方案的磁路结构是由4组相同的子装配体构成,每个子装配体由两个楔形磁极片、一个衔接块(软磁材料)、一个磁体组成,衔接块分隔并连接两个楔形磁极片的厚端,形成一个具有长气隙的钳形结构,磁体安装在气隙中并固定在一个楔形磁极片上,磁体可采用先装配后充磁的方式。4组子装配体两两层叠后,采用螺栓将两个层叠的子装配体固定形成层叠的钳形结构,再将两个层叠的钳形结构的钳口端对接,并采用卧在楔形磁极片中的螺栓将对接结构连接紧固,形成完整的磁路结构。对接后的磁路结构具有两条长气隙,动圈(工作线圈)位于气隙中。该技术方案易在气隙中实现高磁感应强度,且进行了较成熟的产品化和推广。
该技术方案存在的不足之处在于:1)整个磁路结构由多个结构组合、拼接构成,结构复杂;小块永磁体需采用胶粘或其它方式安装在楔形磁极片上,装配复杂,难以保证装配精度;2)气隙中某一位置的静态磁感应强度与该处永磁体的工作点直接相关,整个气隙内磁场的均匀性难以保证,对小块永磁体的材料和工艺的一致性要求较高;3)永磁体直接面对气隙,工作线圈通电后产生的附加磁场会对其强制充磁或去磁,当工作线圈中通以较大电流时,容易使永磁体产生不可逆退磁;4)工作线圈通电时,线圈一侧的磁通增大、另一侧磁通减少,由于永磁体直接面对气隙,磁通增大一侧的磁路容易饱和,此时线圈一侧增加的磁通比另一侧减少的磁通要少,导致线圈所在位置的平均磁感应强度降低,进而使产生的标准振动信号产生失真。
如前所述,在大行程电磁振动台磁路结构的设计过程中,存在着振幅、磁场均匀性、电磁驱动力大小、线性电磁驱动力特性、加工与装配精度之间的矛盾,设计的难点和关键是通过合理的磁路结构设计,在长气隙内实现高均匀度的强磁感应强度分布,并使工作线圈通电后在全行程内输出的电磁驱动力与电流大小成正比,而与工作线圈所处位置无关,即获得理想的线性电磁驱动力特性。而现有技术均存在各种问题与不足之处,气隙内静态磁感应强度分布的均匀性和线圈通电后输出电磁驱动力的线性度指标很难有进一步提升。
其中的关键问题有三点:(1)长气隙内主磁路磁感应强度分布的均匀性难以保证。线圈通电前,永磁体励磁形成主磁路的磁感应强度分布,随着电磁振动台行程的增大,长气隙内磁场的非均匀性问题变得十分突出,严重制约线圈通电后输出电磁驱动力的线性度;有研究人员尝试通过调整电流波形进行补偿,但效果难以保证,尤其是对高阶磁场非均匀性误差补偿效果较差,目前国内外尚未提出真正有效且具有较高实用性的补偿方法。(2)工作线圈通电后产生电枢反应的影响。工作线圈通电后产生附加磁场,与主磁场叠加耦合,对主磁场产生增磁或去磁作用,使气隙内不同位置、尤其工作线圈所在位置的磁感应强度分布变得不均匀,该现象称为电枢反应。受电枢反应影响,在行程内不同位置处当线圈所加载的电流密度相同时,输出的电磁驱动力不一致;而在气隙的同一位置处电磁驱动力的大小与电流密度不成正比,存在一定的非线性。电枢反应是电磁振动台产生波形失真度的关键因素之一,它的影响随驱动电流的增大而增大,是电磁振动台磁路结构设计中的难题。(3)长磁轭与大尺寸永磁体加工与装配困难、精度难以保证。大行程电磁振动台的磁路结构中,长中心磁轭需采用合理的方式以两端支撑方式固定,为保证磁路结构的连续性和完整性,磁通密集的关键部位应尽量避免加工通孔/螺纹孔等安装结构;大尺寸永磁体的烧结、加工与装配均十分困难,成品率低,永磁体为脆性材料且价格昂贵,装配方法及结构不合理容易损坏,一般不宜在永磁体上加工通孔等形式的安装结构;同时要获得较大的电磁驱动力,一般采用NdFeB等材料的强磁永磁体,强磁永磁体零件装配过程中需要克服巨大的磁吸力,是该技术领域的一个难题。
此外,在大行程电磁振动台的工作过程中,工作线圈中通入的是交变驱动电流,电流幅值最大可达几十安培,线圈在长气隙中沿轴线方向以正弦规律往复运动。根据电磁场理论,交变电流及线圈运动产生的交变磁场会在磁轭表面,尤其是与气隙相邻的磁轭表面会产生电涡流,引起涡流损耗。涡流损耗一方面会产生功率最高可达几百瓦的热损耗,发热量惊人,进而带来一系列的热扰动与热变形问题;另一方面交变磁场及电涡流引起的瞬态场问题,会使实际的性能指标与按传统设计理论和分析方法得到的结果产生较大偏差,严重影响设计精度与效果。涡流损耗是电磁振动台磁路结构设计中的一个难题,目前国内外尚未找到有效的解决办法。
综上,受上述问题制约,采用现有技术方案产生的标准低频振动在波形失真度等指标上很难再有突破,难以满足低频/超低频振动的高精度校准,尤其是下一代具有甚低频和超精密特征的振动校准的需求。因此,如何通过方法、结构、材料和优化设计等环节的创新,提出具有超大行程、超低工作频率和超高精度的电磁振动台磁路结构技术方案,对于振动计量技术的发展意义重大。上述问题中的一项或几项获得解决,均会使大行程电磁振动台的性能获得显著提升,使低频/超低频振动校准技术获得实质性突破。
发明内容
本发明的目的是针对现有技术方案存在的上述问题,提供一种磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构技术方案,本发明具有结构简单,精度高,可兼顾大行程、高磁场均匀性、大推力及线性电磁驱动力特性,可有效解决现有技术方案存在的问题与不足,尤其具有突出的补偿电枢反应对标准振动波形失真度影响的特性,从而为低频/超低频振动校准提供一种高精度、大行程的电磁振动台磁路结构。
本发明的技术解决方案是:
一种磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构,由永磁管、中心磁轭、长筒形磁轭、短筒形磁轭、端磁轭、线圈骨架和工作线圈构成,整体成轴对称结构,中心磁轭、端磁轭为圆柱形,永磁管、长筒形磁轭、短筒形磁轭、线圈骨架均为圆筒形,永磁管、中心磁轭、长筒形磁轭、短筒形磁轭、端磁轭、线圈骨架的轴线在一条直线上,中心磁轭的两端分别与两个端磁轭刚性连接,两个永磁管对称安装在两个端磁轭和两个短筒形磁轭之间、且同磁极相对布置,每个永磁管的两个端面分别与端磁轭、短筒形磁轭相应的端面紧密接触,两个短筒形磁轭的内径与长筒形磁轭的外径相等,两个短筒形磁轭的一端分别与两个永磁管连接、另一端对称套装在长筒形磁轭的两端并与长筒形磁轭刚性连接,长筒形磁轭同轴套装在中心磁轭上、且与中心磁轭之间通过气隙分隔开,线圈骨架可滑动地套装在中心磁轭上而位于气隙中,线圈骨架上绕有工作线圈,工作线圈中通以精密可控的驱动电流,长筒形磁轭的侧壁沿长度方向设有剖缝,线圈骨架的两端设有翅板,翅板从剖缝中伸出,长筒形磁轭的内圆柱面上设有深沟槽形式的阵列式微结构,深沟槽沿气隙的长度方向周期性布置,中心磁轭上绕有补偿线圈,补偿线圈中所通的电流与工作线圈中的电流方向相反、相位同步跟踪、幅值成一确定比例。
所述永磁管的安装方式是采用两个圆筒形、不导磁材料的永磁管安装套,将圆筒形永磁管同轴套装并粘接装配在永磁管安装套上,通过固定永磁管安装套将永磁管固定;所述中心磁轭的安装方式是采用两个圆筒形、不导磁材料的磁轭安装套,将两个磁轭安装套套装在中心磁轭两端且与中心磁轭刚性连接,通过固定磁轭安装套将中心磁轭以两端支撑的方式固定。
所述剖缝的数目为2条,且在长筒形磁轭的侧壁上对径分布。
所述永磁管是采用小块永磁体、以粘接的方式拼接构成。
本发明的技术创新性及产生的良好效果在于:
(1)本发明磁路结构简单,零部件加工和装配难度低;由于永磁管可采用先充磁、后装配的方式,因此可采用NdFeB等材料的高性能永磁体,从而获得高气隙磁感应强度与大电磁驱动力;解决了现有技术方案中零件难于加工,永磁体装配困难等问题,可实现较高的长气 隙内主磁路磁感应强度分布的均匀性指标。这是本发明区别于现有技术的创新点之一。
(2)本发明在磁路的具体布置上,永磁管不直接面对气隙而不承受工作线圈通电后产生附加磁场的强制充/去磁作用;工作线圈通电时,线圈一侧的磁通增大、另一侧磁通减少,磁通增大和减小的作用相互抵消,使线圈所在位置的平均磁感应强度基本保持不变,从而可实现较理想的线性电磁驱动力特性;解决了现有技术方案中永磁体直接面对气隙,工作线圈通以大电流时容易产生不可逆退磁,输出电磁驱动力的线性度差等问题;实现较高的输出电磁 驱动力的线性度指标。这是本发明区别于现有技术的创新点之二。
(3)本发明采用磁轭安装套对长中心磁轭以两端支撑的方式可靠安装固定;并采用永磁管安装套对永磁管进行安装固定,在将永磁管同轴粘接装配在永磁管安装套上后,可以整体地装入指定安装位置,降低了永磁管的装配难度;解决了长尺寸中心磁轭和脆性材料永磁体 零件可靠安装固定、以及强磁永磁体零件装配的难题。这是本发明区别于现有技术的创新点之三。
(4)本发明在与气隙相邻的长筒形磁轭的内圆柱面上,沿气隙长度方向周期性布置深沟槽形式的阵列式微结构,理论与仿真分析及实验结果均表明,该方法可抑制电涡流的产生,显著降低涡流损耗的影响,既有效解决了涡流损耗带来的热扰动、热变形问题,又可使磁路结构的实际性能指标与理论设计结果具有较高的一致性,实现较高的设计精度;解决了涡流 损耗这一电磁振动台磁路结构设计的难题。这是本发明区别于现有技术的创新点之四。
(5)本发明在中心磁轭上设置补偿线圈,所通电流与工作线圈中加载的电流方向相反、相位同步跟踪、幅值成一定比例,理论研究及实验结果均表明,补偿线圈形成的补偿磁场可对工作线圈通电后产生附加磁场影响主磁场分布、即电枢反应的影响进行同步跟踪补偿; 实现近似理想的线性电磁驱动力特性,有效解决了电枢反应对电磁振动台输出标准振动波形 失真度的影响问题。这是本发明区别现有技术的创新点之五。
附图说明
图1为磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构的整体示意图;
图2为磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构的剖面示意图;
图3为永磁管磁极布置方式和主磁路的示意图;
图4为长筒形磁轭的内圆柱面上的深沟槽一个实施例的示意图;
图5为长筒形磁轭的内圆柱面上的深沟槽另一个实施例的示意图;
图6为长筒形磁轭内圆柱面上深沟槽形式的阵列式微结构示意图;
图7为采用永磁管安装套、磁轭安装套对永磁管和中心磁轭安装固定的示意图;
图8为永磁管安装套的结构示意图;
图9为磁轭安装套的结构示意图;
图10为线圈骨架一个实施例的结构示意图;
图11为线圈骨架另一个实施例的结构示意图。
图中件号说明:1永磁管、2中心磁轭、3长筒形磁轭、4短筒形磁轭、5端磁轭、6线圈骨架、7气隙、8工作线圈、9永磁管安装套、10磁轭安装套、11第一磁路、12第二磁路、13深沟槽、14翅板、15剖缝、27补偿线圈。
具体实施方式
下面结合附图对本发明的具体实施方式进行详细说明,并给出实施例。
一种磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构,由永磁管1、中心磁轭2、长筒形磁轭3、短筒形磁轭4、端磁轭5、线圈骨架6和工作线圈8构成,整体成轴对称结构,中心磁轭2、端磁轭5为圆柱形,永磁管1、长筒形磁轭3、短筒形磁轭4、线圈骨架6均为圆筒形,永磁管1、中心磁轭2、长筒形磁轭3、短筒形磁轭4、端磁轭5、线圈骨架6的轴线在一条直线上,中心磁轭2的两端分别与两个端磁轭5刚性连接,两个永磁管1对称安装在两个端磁轭5和两个短筒形磁轭4之间、且同磁极相对布置,每个永磁管1的两个端面分别与端磁轭5、短筒形磁轭4相应的端面紧密接触,两个短筒形磁轭4的内径与长筒形磁轭3的外径相等,两个短筒形磁轭4的一端分别与两个永磁管1连接、另一端对称套装在长筒形磁轭3的两端并与长筒形磁轭3刚性连接,长筒形磁轭3同轴套装在中心磁轭2上、且与中心磁轭2之间通过气隙7分隔开,线圈骨架6可滑动地套装在中心磁轭2上而位于气隙7中,线圈骨架6上绕有工作线圈8,工作线圈8中通以精密可控的驱动电流,长筒形磁轭3的侧壁沿长度方向设有剖缝15,线圈骨架6的两端设有翅板14,翅板14从剖缝15中伸出,长筒形磁轭3的内圆柱面上设有深沟槽13形式的阵列式微结构,深沟槽13沿气隙7的长度方向周期性布置,中心磁轭2上绕有补偿线圈27,补偿线圈27中所通的电流与工作线圈8中的电流方向相反、相位同步跟踪、幅值成一确定比例。
所述永磁管1的安装方式是采用两个圆筒形、不导磁材料的永磁管安装套9,将圆筒形永磁管1同轴套装并粘接装配在永磁管安装套9上,通过固定永磁管安装套9将永磁管1固定;所述中心磁轭2的安装方式是采用两个圆筒形、不导磁材料的磁轭安装套10,将两个磁轭安装套10套装在中心磁轭2两端且与中心磁轭2刚性连接,通过固定磁轭安装套10将中心磁轭2以两端支撑的方式固定。
所述剖缝15的数目为2条,且在长筒形磁轭3的侧壁上对径分布。
所述永磁管1是采用小块永磁体、以粘接的方式拼接构成。
下面结合图1~图3给出本发明的一个实施例。本实施例中,磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构用于产生水平方向的标准低频振动。永磁管1是NdFeB材料的强磁永磁体,所采用的NdFeB材料剩磁强度为1.17T,矫顽力为890kA/m,两个永磁管1的N极相对布置,对称安装在两个端磁轭5和两个短筒形磁轭4之间。中心磁轭2、长筒形磁轭3、两个短筒形磁轭4、两个端磁轭5均采用高磁导率电工纯铁材料DT4C制成,最大相对磁导率可达到12000,饱和磁通量为2.5T。中心磁轭2、两个端磁轭5为圆柱形,两个永磁管1、长筒形磁轭3、两个短筒形磁轭4及线圈骨架6均为圆筒形,中心磁轭2、两个端磁轭5、两个永磁管1、两个短筒形磁轭4、长筒形磁轭3、线圈骨架6同轴装配。中心磁轭2和长筒形磁轭3之间被气隙7分隔开,气隙7厚度为15mm。长筒形磁轭3与两个短筒形磁轭4分别采用螺钉刚性连接,实施过程中也可采用其它连接方式,或者采用一块完整材料将长筒形磁轭3和两个短筒形磁轭4整体加工成一个零件。中心磁轭2的两端与两个端磁轭5分别采用螺钉刚性连接。两个永磁管1通过闭合磁轭结构形成两个对称闭合磁路,在气隙7中产生高均匀度的强磁感应强度分布。本实施例中,长筒形磁轭3侧壁上沿长度方向设有剖缝15,数目为2条,2条剖缝15对径分布。
本实施例中,永磁管励磁所形成主磁路的磁力线所经过的路径如图3所示。以第一磁路11为例,磁力线从永磁管1的N极出发,依次经过短筒形磁轭4、长筒形磁轭3、中心磁轭2、端磁轭5,然后回到永磁管1的S极形成闭合磁路。图中第一磁路11和第二磁路12呈左右对称形式。
线圈骨架6采用99氧化铝陶瓷制成,整体为圆筒形,可滑动地套装在中心磁轭2上。工作线圈8是采用绝缘铜漆包线在线圈骨架6外表面缠绕形成,其整体也成圆筒形,厚度为5mm,所通最大电流密度为5A/mm2。电磁振动台磁路结构装配完成后,线圈骨架6和工作线圈8位于气隙7中。电磁振动台工作时,控制信号经功率放大器放大后,输出有效值最高达几十A的功率电流加载到工作线圈8中,根据电磁场理论,磁场中通电的工作线圈8受到水平方向洛伦兹力作用,从而输出精密可控的电磁驱动力。通过控制所通电流的大小和方向可以精密控制电磁驱动力的大小和方向。控制信号如果采用标准正弦电信号,工作线圈8与线圈骨架6将在电磁驱动力作用下沿轴向产生标准低频正弦振动。
电磁振动台工作时,工作线圈8加载电流后会产生附加磁场,该附加磁场会影响永磁管1励磁产生的主磁路的磁场分布,该现象称为电枢反应,电枢反应是导致电磁振动台输出标准振动产生波形失真度的主要因素。本发明在中心磁轭2上设有补偿线圈27,补偿线圈27是采用绝缘铜漆包线在中心磁轭2外表面缠绕形成,整体成圆筒形,厚度为1.5mm,所通最大电流密度为4A/mm2,补偿线圈27中所通的电流与工作线圈8中的电流方向相反、相位同步跟踪、幅值成一确定比例,补偿线圈27所产生的补偿磁场会对工作线圈8产生的附加磁场进行同步跟踪补偿,可有效改善电枢反应对电磁振动台输出标准振动的波形失真度的影响。
下面结合图4和图6给出长筒形磁轭内圆柱面上深沟槽的一个实施例。图4是图3的局部放大图。深沟槽13分布在与气隙相邻的长筒形磁轭3的内圆柱面上,图中深沟槽13沿长筒形磁轭3的圆周方向加工,并沿气隙7的长度方向周期性排列。本实施例中,深沟槽13为矩形沟槽,其宽度为1mm,深入长筒形磁轭3表面的深度为10mm,相邻的两个深沟槽13之间的距离为10mm。理论与仿真分析及实验结果表明,本发明中深沟槽形式的阵列式微结构可有效抑制电涡流的产生,显著降低涡流损耗。
下面结合图5给出长筒形磁轭内圆柱面上深沟槽的另一个实施例。图5也是图3的局部放大图。本实施例中,深沟槽13为齿形沟槽,其齿根宽度为1mm,齿尖深入长筒形磁轭3表面的深度为10mm,相邻的两个深沟槽13之间的距离为10mm。
下面结合图7、图8给出永磁管安装套的一个实施例。本实施例中,永磁管安装套9采用陶瓷材料制成,整体为圆筒形,其沿轴向的厚度与永磁管1相等,永磁管1同轴套装在永磁管安装套9上并以粘接方式装配固定,然后将永磁管安装套9通过螺纹连接固定在端磁轭5或短筒形磁轭4上,实现对永磁管1的安装固定。装配过程中先完成其它零件的装配,然后在装配工装的配合下,将永磁管1、永磁管安装套9构成的组件同磁极相对、整体配装,最后对永磁管安装套9进行安装固定。采用本发明的安装方式降低了永磁体的装配难度。
下面结合图9给出磁轭安装套的一个实施例。要使线圈骨架6和工作线圈8套装在中心磁轭2上且具有较长的行程,长尺寸中心磁轭2必须以两端支撑的方式进行安装固定。本实施例中,磁轭安装套10采用陶瓷材料制成,整体为圆筒形,两个磁轭安装套10套装在中心磁轭2的两端并通过螺钉与中心磁轭2刚性连接,两个磁轭安装套10上有螺纹孔,通过螺钉刚性固定在长筒形磁轭3上。
图10给出了线圈骨架的一个实施例。本实施例中,线圈骨架6采用99氧化铝陶瓷材料,整体为圆筒形,壁厚为5mm,线圈骨架6可滑动地套装在中心磁轭2上。工作线圈8均匀密绕在线圈骨架6上,线圈骨架6的两端加工有小凸台,用于防止工作线圈8脱落。本实施例中,线圈骨架6两端对径分布4个翅板14,翅板14从长筒形磁轭3侧壁上的两条剖缝15中伸出,线圈骨架6通过翅板14与电磁振动台的运动部件(如气浮导轨的气浮套)连接。
图11给出了线圈骨架的另一个实施例。本实施例中,线圈骨架6的薄壁上设有减重孔,用于减轻线圈骨架6的重量,减重孔为密布小圆孔,沿薄壁四周均匀分布。实际实施过程中也可采用长方孔、小方孔等其它形式的减重孔。

Claims (4)

1.一种磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构,由永磁管(1)、中心磁轭(2)、长筒形磁轭(3)、短筒形磁轭(4)、端磁轭(5)、线圈骨架(6)和工作线圈(8)构成,整体成轴对称结构,其特征在于:中心磁轭(2)、端磁轭(5)为圆柱形,永磁管(1)、长筒形磁轭(3)、短筒形磁轭(4)、线圈骨架(6)均为圆筒形,永磁管(1)、中心磁轭(2)、长筒形磁轭(3)、短筒形磁轭(4)、端磁轭(5)、线圈骨架(6)的轴线在一条直线上,中心磁轭(2)的两端分别与两个端磁轭(5)刚性连接,两个永磁管(1)对称安装在两个端磁轭(5)和两个短筒形磁轭(4)之间、且同磁极相对布置,每个永磁管(1)的两个端面分别与端磁轭(5)、短筒形磁轭(4)相应的端面紧密接触,两个短筒形磁轭(4)的内径与长筒形磁轭(3)的外径相等,两个短筒形磁轭(4)的一端分别与两个永磁管(1)连接、另一端对称套装在长筒形磁轭(3)的两端并与长筒形磁轭(3)刚性连接,长筒形磁轭(3)同轴套装在中心磁轭(2)上、且与中心磁轭(2)之间通过气隙(7)分隔开,线圈骨架(6)可滑动地套装在中心磁轭(2)上而位于气隙(7)中,线圈骨架(6)上绕有工作线圈(8),工作线圈(8)中通以精密可控的驱动电流,长筒形磁轭(3)的侧壁沿长度方向设有剖缝(15),线圈骨架(6)的两端设有翅板(14),剖缝(15)的数量及其布置方式与翅板(14)对应,翅板(14)从剖缝(15)中伸出,长筒形磁轭(3)的内圆柱面上设有深沟槽(13)形式的阵列式微结构,深沟槽(13)沿气隙(7)的长度方向周期性布置,深沟槽(13)沿长筒形磁轭(3)的圆周方向加工,中心磁轭(2)上绕有补偿线圈(27),补偿线圈(27)中所通的电流与工作线圈(8)中的电流方向相反、相位同步跟踪、幅值成一确定比例。
2.根据权利要求1所述的磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构,其特征在于:所述永磁管(1)的安装方式是采用两个圆筒形、不导磁材料的永磁管安装套(9),将圆筒形永磁管(1)同轴套装并粘接装配在永磁管安装套(9)上,通过固定永磁管安装套(9)将永磁管(1)固定;所述中心磁轭(2)的安装方式是采用两个圆筒形、不导磁材料的磁轭安装套(10),将两个磁轭安装套(10)套装在中心磁轭(2)两端且与中心磁轭(2)刚性连接,通过固定磁轭安装套(10)将中心磁轭(2)以两端支撑的方式固定。
3.根据权利要求1或2所述的磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构,其特征在于:所述剖缝(15)的数目为2条,且在长筒形磁轭(3)的侧壁上对径分布。
4.根据权利要求1或2所述的磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构,其特征在于:所述永磁管(1)是采用小块永磁体、以粘接的方式拼接构成。
CN201510235751.6A 2015-05-08 2015-05-08 磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构 Active CN104848933B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510235751.6A CN104848933B (zh) 2015-05-08 2015-05-08 磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510235751.6A CN104848933B (zh) 2015-05-08 2015-05-08 磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构

Publications (2)

Publication Number Publication Date
CN104848933A CN104848933A (zh) 2015-08-19
CN104848933B true CN104848933B (zh) 2016-06-08

Family

ID=53848751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510235751.6A Active CN104848933B (zh) 2015-05-08 2015-05-08 磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构

Country Status (1)

Country Link
CN (1) CN104848933B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816777A (en) * 1972-12-27 1974-06-11 K Metzgar Electrodynamic force generator
CN1900660A (zh) * 2006-07-19 2007-01-24 中国航空工业第一集团公司北京长城计量测试技术研究所 电动式角振动台
CN1900661A (zh) * 2006-07-19 2007-01-24 中国航空工业第一集团公司北京长城计量测试技术研究所 非电机式电动式角振动台
CN101069884A (zh) * 2007-06-12 2007-11-14 浙江大学 大行程电磁振动台的双磁路结构
CN201055840Y (zh) * 2007-06-12 2008-05-07 浙江大学 一种大行程电磁振动台的双磁路结构
CN101342528A (zh) * 2008-05-16 2009-01-14 浙江大学 一种电磁振动台
CN103487224A (zh) * 2013-09-27 2014-01-01 浙江大学 一种永磁式角振动台的双磁源磁路结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253409A1 (de) * 2001-04-26 2002-10-30 Endress + Hauser Flowtec AG Magnetkreisanordnung für einen Messwertaufnehmer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816777A (en) * 1972-12-27 1974-06-11 K Metzgar Electrodynamic force generator
CN1900660A (zh) * 2006-07-19 2007-01-24 中国航空工业第一集团公司北京长城计量测试技术研究所 电动式角振动台
CN1900661A (zh) * 2006-07-19 2007-01-24 中国航空工业第一集团公司北京长城计量测试技术研究所 非电机式电动式角振动台
CN101069884A (zh) * 2007-06-12 2007-11-14 浙江大学 大行程电磁振动台的双磁路结构
CN201055840Y (zh) * 2007-06-12 2008-05-07 浙江大学 一种大行程电磁振动台的双磁路结构
CN101342528A (zh) * 2008-05-16 2009-01-14 浙江大学 一种电磁振动台
CN103487224A (zh) * 2013-09-27 2014-01-01 浙江大学 一种永磁式角振动台的双磁源磁路结构

Also Published As

Publication number Publication date
CN104848933A (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
CN102720786B (zh) 多自由度电磁阻尼器
CN104865029B (zh) 长永磁管向心励磁的圆柱形封闭磁场式电磁振动台磁路结构
CN104858121B (zh) 磁场跟踪补偿的双排永磁体向心励磁矩形开放磁场式电磁振动台磁路结构
CN104848937B (zh) 磁场跟踪补偿的双永磁管两端对称励磁圆柱形低频振动校准台
CN104865030B (zh) 磁场跟踪补偿的双磁路对称励磁圆柱形封闭磁场式电磁振动台磁路结构
CN104848929B (zh) 磁场跟踪补偿的双磁路两端对称励磁矩形开放磁场式电磁振动台磁路结构
CN104907242B (zh) 磁场跟踪补偿的长永磁管向心励磁圆柱形封闭磁场式电磁振动台磁路结构
CN104849005B (zh) 双磁路两端对称励磁的矩形开放磁场式电磁振动台磁路结构
CN104833468B (zh) 四磁路对称励磁的矩形开放磁场式电磁振动台磁路结构
CN104848930B (zh) 涡流补偿的双排永磁体向心励磁矩形开放磁场式电磁振动台磁路结构
CN104848935B (zh) 涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式低频振动校准台
CN104848938B (zh) 磁场跟踪补偿的双磁路两端对称励磁圆柱形低频振动校准台
CN104849008B (zh) 长永磁管向心励磁的圆柱形封闭磁场式低频振动校准台
CN104848932B (zh) 双磁路两端对称励磁的矩形开放磁场式低频振动校准台
CN104848939B (zh) 磁场跟踪补偿的四磁路对称励磁矩形低频振动校准台
CN104848933B (zh) 磁场跟踪补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构
CN104849006B (zh) 涡流补偿的双永磁管两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构
CN104848931B (zh) 涡流补偿的双磁路两端对称励磁圆柱形封闭磁场式电磁振动台磁路结构
CN104849007B (zh) 磁场跟踪补偿的四磁路对称励磁矩形开放磁场式电磁振动台磁路结构
CN104880290B (zh) 磁场跟踪补偿的双磁路两端对称励磁矩形低频振动校准台
CN104865031B (zh) 涡流补偿的双永磁管两端对称励磁圆柱形封闭磁场式低频振动校准台
CN104865032B (zh) 磁场跟踪补偿的长永磁管向心励磁圆柱形低频振动校准台
CN104990624B (zh) 四磁路对称励磁的矩形开放磁场式低频振动校准台
CN104848934B (zh) 涡流补偿的双排永磁体向心励磁矩形开放磁场式低频振动校准台
CN104848936B (zh) 磁场跟踪补偿的双排永磁体向心励磁矩形低频振动校准台

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant