CN104848891B - A kind of dynamic monitoring system and monitoring method of the attachment structure of concrete dam and earth and rockfill dam - Google Patents

A kind of dynamic monitoring system and monitoring method of the attachment structure of concrete dam and earth and rockfill dam Download PDF

Info

Publication number
CN104848891B
CN104848891B CN201510116546.8A CN201510116546A CN104848891B CN 104848891 B CN104848891 B CN 104848891B CN 201510116546 A CN201510116546 A CN 201510116546A CN 104848891 B CN104848891 B CN 104848891B
Authority
CN
China
Prior art keywords
attachment structure
dam
earth
monitoring
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510116546.8A
Other languages
Chinese (zh)
Other versions
CN104848891A (en
Inventor
张宗亮
高才坤
赵志勇
张礼兵
冯燕明
陈荣高
丁学智
张帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PowerChina Kunming Engineering Corp Ltd
Original Assignee
PowerChina Kunming Engineering Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PowerChina Kunming Engineering Corp Ltd filed Critical PowerChina Kunming Engineering Corp Ltd
Priority to CN201510116546.8A priority Critical patent/CN104848891B/en
Publication of CN104848891A publication Critical patent/CN104848891A/en
Application granted granted Critical
Publication of CN104848891B publication Critical patent/CN104848891B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

The present invention relates to a kind of concrete dam and the dynamic monitoring system and monitoring method of the attachment structure of earth and rockfill dam, belong to hydroelectric project technical field.The present invention is according to the characteristics of the attachment structure of concrete dam and earth and rockfill dam, devise a set of dynamic monitoring system, system is monitored using advanced fiber grating instrument and fiber Bragg grating (FBG) demodulator to attachment structure keypoint part, and monitoring project includes deformation, osmotic pressure and the stress of attachment structure;Analysis of the present invention from the layout, monitoring instrument type selecting and monitoring means of monitoring project, monitoring point and network to Monitoring Result carries out comprehensive, Whole Process Design, solve the problem of the attachment structure monitoring of power station concrete dam and earth and rockfill dam, experience is provided for similar engineering.The present invention is applied to the dynamic monitoring of the attachment structure between the rigid buildings such as native stone building and concrete, and operation strategies are wider, used in large-scale hydroelectric project, remarkable in economical benefits.

Description

A kind of dynamic monitoring system of attachment structure of concrete dam and earth and rockfill dam and monitoring Method
Technical field
The invention belongs to hydroelectric project technical field, and in particular to a kind of connection of hydroelectric project concrete dam and earth and rockfill dam The system and method for structure dynamics monitoring, suitable for the attachment structure between the rigid buildings such as native stone building and concrete Dynamic monitoring.
Background technology
Connection between the rigid building such as earth and rockfill dam and concrete dam is the crucial skill of current hydroelectric project technical field One of art problem.It is external more early to earth and rockfill dam and concrete dam attachment structure technical research, apply to engineering earliest in last century It is the thirties, external as Japan, the existing attachment structure engineering application case of Australia, the most of attachment structure of Japan are most 50m is highly substantially no more than in below 40m, the built engineering of Australia.Earth and rockfill dam is with concrete dam attachment structure in China Starting it is later compared to external, but domestic application is relatively more, kwan-yin rock, Danjiangkou, Liujia Gorge, Feilai Gorge, great Guang Ba, river The hydroelectric projects such as southern Banqiao Reservoir Reconstruction Project, Bi Kou, Lubuge, green stream river are Typical Representatives therein.Seen in above-mentioned engineering Sound rock power station attachment structure highly reaches 75m, is domestic highest attachment structure, ranks among the large-scale piecer Cheng Qian row in the world. Although earth and rockfill dam has tended to be ripe with concrete dam attachment structure its construction level, earth and rockfill dam and concrete dam attachment structure system Property method and technique research it is very few, do not monitor the characters such as attachment structure stress deformation completely also at present, therefore existing Monitoring technology can not meet the needs of attachment structure technology development and a kind of be applied to concrete dam and earth and rockfill dam, it is necessary to study Attachment structure monitoring system and method.
The content of the invention
It is an object of the invention to provide the dynamic monitoring system and detection of a kind of concrete dam and the attachment structure of earth and rockfill dam Method, to solve the problem of the attachment structure of power station concrete dam and earth and rockfill dam monitoring, experience is provided for similar engineering.
The technical solution adopted by the present invention is as follows:
A kind of dynamic monitoring system of the attachment structure of concrete dam and earth and rockfill dam, including monitoring unit, data processing mould Block, data memory module, controller and terminal show computer;Described controller respectively with monitoring unit, data processing module, Data memory module shows that computer is connected with terminal, for controlling monitoring unit, data processing module, data memory module and end End shows the work of computer;Described monitoring unit, data processing module, data memory module and terminal shows computer phase successively Even;
Described monitoring unit includes the fiber Bragg grating (FBG) demodulator and sensing unit being connected;Described sensing unit includes Multiple passages in parallel;Each passage is provided with multiple fiber-optic grating sensors connected by optical fiber;Described fiber grating passes Sensor includes fiber bragg grating osmometer, fiber grating interface joint meter, optical fiber grating soil pressure meter and Optical Fiber Grating Displacement Meter;
Described fiber bragg grating osmometer is arranged in the side slope, up stream slope and downstream slope of attachment structure, for monitoring coagulation The osmotic pressure of the attachment structure of earth dam and earth and rockfill dam;
Described fiber grating interface joint meter is arranged in the side slope, up stream slope and downstream slope of attachment structure, for monitoring The attachment structure contact surface of concrete dam and earth and rockfill dam comes to nothing, inclined slope aspect and horizontal direction detrusion;
Described optical fiber grating soil pressure meter is arranged in the side slope, up stream slope and downstream slope of attachment structure, mixed for monitoring Positive geostatic shield on the attachment structure of solidifying earth dam and earth and rockfill dam is domatic;
Described Optical Fiber Grating Displacement Meter is arranged in the side slope, up stream slope and downstream slope of attachment structure, for monitoring coagulation The horizontal displacement of the attachment structure of earth dam and earth and rockfill dam.
In above-mentioned technical proposal, described sensing unit passes sequentially through end box and tail optical fiber and fiber Bragg grating (FBG) demodulator It is connected.
It is further preferred that each passage is provided with multiple fiber-optic grating sensors connected by single mode single-core fiber.
It is further preferred that each passage is provided with the 6-8 fiber-optic grating sensors connected by single mode single-core fiber.
It is further preferred that the bandwidth of the passage can be allocated by each passage in proportion by coupler, distribute The branch road in parallel into several.
It is further preferred that described coupler is one-to-two coupler.
The present invention also provides a kind of dynamic monitoring method of the attachment structure of concrete dam and earth and rockfill dam, is mixed using above-mentioned The dynamic monitoring system of the attachment structure of solidifying earth dam and earth and rockfill dam, comprises the following steps:
Step(1), the attachment structure emphasis monitoring of concrete dam and earth and rockfill dam is determined according to engineering characteristic and geological conditions Position and monitoring project;
Step(2), according to step(1)The emphasis monitoring position of determination and monitoring project, lay concrete dam and earth and rockfill dam Attachment structure dynamic monitoring system, mainly laid fiber-optic grating sensor, and connect optical fiber;
Step(3), data acquisition, transmission and analysis:The data collected by monitoring unit, at data processing module After reason, it is stored in data memory module, and the dynamic monitoring presentation of information of concrete dam and the attachment structure of earth and rockfill dam is existed Terminal is shown on computer;
Step(4), according to step(3)Monitor obtained information, the work to concrete dam and the attachment structure of earth and rockfill dam Character is evaluated.
Compared with prior art, its advantage is the present invention:
The present invention devises a set of dynamic monitoring system, is according to the characteristics of the attachment structure of concrete dam and earth and rockfill dam System is monitored using advanced fiber grating instrument and fiber Bragg grating (FBG) demodulator to attachment structure keypoint part, monitoring project bag Include deformation, osmotic pressure and the stress of attachment structure;Layout, monitoring instrument type selecting of the present invention from monitoring project, monitoring point and network And the analysis of monitoring means to Monitoring Result carries out comprehensive, Whole Process Design, solves power station concrete dam and earth and rockfill dam Attachment structure monitoring problem, provide experience for similar engineering.
The present invention is applied to the dynamic monitoring of the attachment structure between the rigid buildings such as native stone building and concrete, fortune It is wider with scope.The present invention uses in large-scale hydroelectric project, remarkable in economical benefits.
Brief description of the drawings
Fig. 1 is the structural representation of the attachment structure of concrete dam of the present invention and earth and rockfill dam;
Fig. 2 is the network diagram of monitoring unit of the present invention;
Fig. 3 is the structural representation of present system monitoring and Data Transmission Controlling;
Fig. 4 is optical fiber grating soil pressure meter stress time curve map;
Fig. 5 is fiber grating interface joint meter displacement changing curve figure;
Fig. 6 is fiber bragg grating osmometer head time course curve map;
Wherein, 1, fiber bragg grating osmometer;2nd, fiber grating interface joint meter;3rd, optical fiber grating soil pressure meter;4th, optical fiber Grating displacement meter, 5, side slope;6th, up stream slope;7th, attachment structure;8th, concrete dam;9th, earth and rockfill dam;10th, one-to-two coupler;11、 End box;12nd, single-core fiber;13rd, monitoring unit;14th, data processing module;15th, data memory module;16th, controller; 17th, terminal shows computer;18th, tail optical fiber;19th, fiber Bragg grating (FBG) demodulator.
Embodiment
With reference to embodiment, the present invention is described in further detail.
It will be understood to those of skill in the art that the following example is merely to illustrate the present invention, and it should not be regarded as limiting this hair Bright scope.In the examples where no specific technique or condition is specified, according to the technology or condition described by document in the art Or carried out according to product description.Instrument, software and the unreceipted production firm person of module, it is that can be obtained by purchase The conventional products obtained.
The present invention devises a set of dynamic monitoring system, is according to the characteristics of the attachment structure of concrete dam and earth and rockfill dam The analysis united from the layout, monitoring instrument type selecting and monitoring means of monitoring project, monitoring point and network to Monitoring Result is carried out Comprehensive, Whole Process Design.Embodiment is:
As shown in Fig. 1 ~ Fig. 3, a kind of dynamic monitoring system of the attachment structure of concrete dam and earth and rockfill dam, including monitoring are single Member 13, data processing module 14, data memory module 15, controller 16 and terminal show computer 17;Described controller 16 divides Do not show that computer 16 is connected with monitoring unit 13, data processing module 14, data memory module 15 and terminal, monitored for controlling Unit 13, data processing module 14, data memory module 15 and terminal show the work of computer 16;Described monitoring unit 13, Data processing module 14, data memory module 15 and terminal show that computer 16 is sequentially connected;
Described monitoring unit 13 includes the fiber Bragg grating (FBG) demodulator 19 and sensing unit being connected;Described sensing unit Including multiple passages in parallel;Each passage is provided with multiple fiber-optic grating sensors connected by single-core fiber 12;Described Fiber-optic grating sensor includes fiber bragg grating osmometer 1, fiber grating interface joint meter 2, optical fiber grating soil pressure meter 3 and optical fiber Grating displacement meter 4;
Described sensing unit passes sequentially through end box 11 and tail optical fiber 18 is connected with fiber Bragg grating (FBG) demodulator 19.
Described fiber bragg grating osmometer 1 is arranged in the side slope 5, up stream slope 6 and downstream slope of attachment structure 7, for monitoring Concrete dam 8 and the osmotic pressure of the attachment structure 7 of earth and rockfill dam 9;
Described fiber grating interface joint meter 2 is arranged in the side slope 5, up stream slope 6 and downstream slope of attachment structure 7, is used for The contact surface of attachment structure 7 of monitoring concrete dam 8 and earth and rockfill dam 9 comes to nothing, inclined slope aspect and horizontal direction detrusion;
Described optical fiber grating soil pressure meter 3 is arranged in the side slope 5, up stream slope 6 and downstream slope of attachment structure 7, for supervising Survey the positive geostatic shield of concrete dam 8 and the contact surface of attachment structure 7 of earth and rockfill dam 9;
Described Optical Fiber Grating Displacement Meter 4 is arranged in the side slope 5, up stream slope 6 and downstream slope of attachment structure 7, for monitoring Concrete dam 8 and the horizontal displacement of the attachment structure 7 of earth and rockfill dam 9.
Downstream slope is relative with up stream slope, can not be showed one by one in figure.
Preferably each passage is provided with the 6-8 fiber-optic grating sensors connected by single-core fiber.
The power of the passage can be allocated by each passage in proportion by coupler, be distributed into several branch in parallel Road.Preferably described coupler is one-to-two coupler 10.
The present invention also provides a kind of dynamic monitoring method of the attachment structure of concrete dam and earth and rockfill dam, is mixed using above-mentioned The dynamic monitoring system of the attachment structure of solidifying earth dam and earth and rockfill dam, comprises the following steps:
Step(1), the emphasis of attachment structure 7 for determining concrete dam 8 and earth and rockfill dam 9 according to engineering characteristic and geological conditions supervises Survey position and monitoring project;Described emphasis monitoring position is generally attachment structure up stream slope and side slope, and monitoring project is contact Position distortions, stress and osmotic pressure.Step(2), according to step(1)The emphasis monitoring position of determination and monitoring project, lay Concrete dam 8 and the dynamic monitoring system of the attachment structure 7 of earth and rockfill dam 9, have mainly laid fiber-optic grating sensor, and connect Good optical fiber;
Described fiber-optic grating sensor lays specific method:Fiber grating displacement is arranged in the side slope 5 of attachment structure 7 Compression and Expansion between the monitoring concrete dam 8 of meter 4 and earth and rockfill dam 7 deforms, and Optical Fiber Grating Displacement Meter 4 is in horizontally disposed, its length root Determine according to attachment structure size;In side slope 5, up stream slope 6 and downstream slope arrangement the fiber grating interface joint meter 2 of attachment structure 7 Monitoring the coming to nothing of the contact surface of attachment structure 7, inclined slope aspect and horizontal direction detrusion;Side slope 5, up stream slope 6 in attachment structure 7 The osmotic pressure distribution in seam, the optical fiber light arranged with reference to corresponding site are monitored with downstream slope arrangement fiber bragg grating osmometer 1 The Monitoring Result of grid earth pressure gauge 3 evaluates the possibility of contact surface hydraulic fracture.In the side slope 5, up stream slope 6 and downstream of attachment structure 7 Slope arrangement optical fiber grating soil pressure meter 3 monitors the positive geostatic shield of contact surface.
Step(3), data acquisition, transmission and analysis:The data collected by monitoring unit 13, through data processing module After 14 processing, it is stored in data memory module 15, and by concrete dam and the dynamic monitoring information of the attachment structure of earth and rockfill dam Terminal is shown in show on computer 16;
Step(4), according to step(3)Monitor obtained information, the work to concrete dam and the attachment structure of earth and rockfill dam Character is evaluated.
Certain following engineering is that the present invention is further illustrated for example, but protection scope of the present invention is not by this The limitation of a little examples.
Certain engineering is first-class big(1)Type engineering, its key construction(Dam, flood releasing structure and diversion and power building) For 1 grade of building.Engineering hinge is mainly made up of water retaining structure, outlet structure escape works and diversion and power building.Dash is built Thing is made up of left bank, korneforos Compacted Concrete Gravity Dam Section and right bank earth and rockfill dam, is mixed dam, dam crest overall length 1158m, wherein coagulation The long 838.035m in earth dam part, the long 319.965m in earth and rockfill dam part.Concrete dam crest elevation is 1139.00m, earth and rockfill dam dam crest Elevation is 1141.00m, and the dam crest between two dam types is connected by 5% slope.Compacted Concrete Gravity Dam Section part maximum height of dam is The attachment structure of 159m, earth and rockfill dam part maximum height of dam 75m, concrete dam and earth and rockfill dam is highly 75m, is connected for domestic highest Binding structure.In view of the basic earthquake intensity in engineering Dam Site place is VII degree and the height of attachment structure reaches 75m, attachment structure Position uses dynamic monitoring system, and specific arrangement is as follows:
(1)Attachment structure upstream dam slope
Bindiny mechanism's upstream dam slope deformation monitoring arranges 2 elevations, respectively EL.1068, EL.1098, arranges 3 groups of light altogether Fine grated interface extensometer.Seepage monitoring arranges 3 elevations, respectively EL.1068, EL.1098, EL.1128, arranges 7 altogether Fiber bragg grating osmometer, 7 optical fiber grating soil pressure meters are arranged by the same area of arrangement osmometer.
(2)Attachment structure side slope
Attachment structure side slope deformation monitoring arrange 5 elevations, respectively EL.1068, EL.1088, EL.1108, EL.1128, EL.1137,19 groups of fiber grating interface joint meters and 6 groups of fiber grating land movement meter groups are arranged altogether.In the above 14 fiber bragg grating osmometers of elevation arrangement, 7 fiber grating soil are arranged by the same area of arrangement fiber bragg grating osmometer Pressure gauge.
(3)Attachment structure downstream dam slope
Attachment structure downstream dam slope deformation monitoring arranges 2 groups of fiber grating interface joint meters in EL.1098;Seepage monitoring cloth 3 elevations, respectively EL.1068, EL.1098, EL.1128 are put, arrange 5 fiber bragg grating osmometers altogether.
The attachment structure dynamic monitoring fiber grating instrument network structure of concrete dam and earth and rockfill dam is as shown in Figure 2.
For dynamic monitoring system since in January, 2013 obtains initial value, each instrument condition of system is normal.Attachment structure optical fiber Grated interface displacement measured value change occurs mainly in embedded initial stage, gradually tends towards stability afterwards, measured value change is smaller during water storage; The change of fiber grating land movement meter group measured value is smaller, and measured value is steady;Optical fiber grating soil pressure meter measured value is smaller, with finite element meter It is consistent to be counted as fruit.Fiber bragg grating osmometer is in substantially at present passive state, is consistent with actual conditions, and typical Monitoring Result is as schemed Shown in 4- Fig. 6.
The general principle and principal character and advantages of the present invention of the present invention has been shown and described above.The technology of the industry Personnel are it should be appreciated that the present invention is not limited to the above embodiments, and the simply explanation described in above-described embodiment and specification is originally The principle of invention, without departing from the spirit and scope of the present invention, various changes and modifications of the present invention are possible, these changes Change and improvement all fall within the protetion scope of the claimed invention.The claimed scope of the invention by appended claims and its Equivalent thereof.

Claims (7)

1. the dynamic monitoring system of the attachment structure of a kind of concrete dam and earth and rockfill dam, it is characterised in that including monitoring unit, number Computer is shown according to processing module, data memory module, controller and terminal;Described controller respectively with monitoring unit, data Processing module, data memory module and terminal show that computer is connected, for controlling monitoring unit, data processing module, data to deposit Store up module and terminal shows the work of computer;Described monitoring unit, data processing module, data memory module and terminal is shown Computer is sequentially connected;
Described monitoring unit includes the fiber Bragg grating (FBG) demodulator and sensing unit being connected;Described sensing unit includes multiple Passage in parallel;Each passage is provided with multiple fiber-optic grating sensors connected by optical fiber;Described fiber-optic grating sensor Including fiber bragg grating osmometer, fiber grating interface joint meter, optical fiber grating soil pressure meter and Optical Fiber Grating Displacement Meter;
Described fiber bragg grating osmometer is arranged in the side slope, up stream slope and downstream slope of attachment structure, for monitoring concrete dam With the osmotic pressure of the attachment structure of earth and rockfill dam;
Described fiber grating interface joint meter is arranged in the side slope, up stream slope and downstream slope of attachment structure, for monitoring coagulation The attachment structure contact surface of earth dam and earth and rockfill dam comes to nothing, inclined slope aspect and horizontal direction detrusion;
Described optical fiber grating soil pressure meter is arranged in the side slope, up stream slope and downstream slope of attachment structure, for monitoring concrete Positive geostatic shield on the attachment structure of dam and earth and rockfill dam is domatic;
Described Optical Fiber Grating Displacement Meter is arranged in the side slope of attachment structure, for monitoring the connection knot of concrete dam and earth and rockfill dam The horizontal displacement of structure.
2. the dynamic monitoring system of the attachment structure of concrete dam according to claim 1 and earth and rockfill dam, it is characterised in that Described sensing unit passes sequentially through end box and tail optical fiber is connected with fiber Bragg grating (FBG) demodulator.
3. the dynamic monitoring system of the attachment structure of concrete dam according to claim 1 and earth and rockfill dam, it is characterised in that Each passage is provided with multiple fiber-optic grating sensors connected by single mode single-core fiber.
4. the dynamic monitoring system of the attachment structure of concrete dam according to claim 3 and earth and rockfill dam, it is characterised in that Each passage is provided with the 6-8 fiber-optic grating sensors connected by single mode single-core fiber.
5. the dynamic monitoring system of the attachment structure of concrete dam according to claim 1 and earth and rockfill dam, it is characterised in that The bandwidth of the passage can be allocated by each passage in proportion by coupler, be distributed into several branch roads in parallel.
6. the dynamic monitoring system of the attachment structure of concrete dam according to claim 5 and earth and rockfill dam, it is characterised in that Described coupler is one-to-two coupler.
7. a kind of dynamic monitoring method of the attachment structure of concrete dam and earth and rockfill dam, usage right requires 1 ~ 6 any one institute The concrete dam and the dynamic monitoring system of the attachment structure of earth and rockfill dam stated, it is characterised in that comprise the following steps:
Step(1), the attachment structure emphasis for determining concrete dam and earth and rockfill dam according to engineering characteristic and geological conditions monitors position And monitoring project;
Step(2), according to step(1)The emphasis monitoring position of determination and monitoring project, lay the company of concrete dam and earth and rockfill dam The dynamic monitoring system of binding structure;
Step(3), data acquisition, transmission and analysis:The data collected by monitoring unit, are handled through data processing module Afterwards, it is stored in data memory module, and by the dynamic monitoring presentation of information of concrete dam and the attachment structure of earth and rockfill dam at end End is shown on computer;
Step(4), according to step(3)Obtained information is monitored, to concrete dam and the working property of the attachment structure of earth and rockfill dam Evaluated.
CN201510116546.8A 2015-03-17 2015-03-17 A kind of dynamic monitoring system and monitoring method of the attachment structure of concrete dam and earth and rockfill dam Active CN104848891B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510116546.8A CN104848891B (en) 2015-03-17 2015-03-17 A kind of dynamic monitoring system and monitoring method of the attachment structure of concrete dam and earth and rockfill dam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510116546.8A CN104848891B (en) 2015-03-17 2015-03-17 A kind of dynamic monitoring system and monitoring method of the attachment structure of concrete dam and earth and rockfill dam

Publications (2)

Publication Number Publication Date
CN104848891A CN104848891A (en) 2015-08-19
CN104848891B true CN104848891B (en) 2018-01-16

Family

ID=53848710

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510116546.8A Active CN104848891B (en) 2015-03-17 2015-03-17 A kind of dynamic monitoring system and monitoring method of the attachment structure of concrete dam and earth and rockfill dam

Country Status (1)

Country Link
CN (1) CN104848891B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107301282A (en) * 2017-06-12 2017-10-27 天津大学 The concrete dam mechanics parameter inversion method of time series data is monitored based on multi-source

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136015B (en) * 2015-08-24 2018-06-29 中国电建集团昆明勘测设计研究院有限公司 A kind of concrete dam and earth and rockfill dam connection structure interface deformation monitoring instrument and method
CN105806311B (en) * 2015-09-30 2018-12-07 李儒峰 A kind of optical fiber slope dam is displaced sedimentation monitoring system
CN106370329B (en) * 2016-09-06 2019-02-15 河海大学 A kind of RCC dam structure behaviour monitoring system and monitoring method
CN110375898A (en) * 2019-05-30 2019-10-25 浙江大学 High-speed rail roadbed mechanical characteristic monitoring device and its application method, production method
CN111176198A (en) * 2019-12-25 2020-05-19 河北建信工程项目管理有限公司 Dynamic monitoring system and method for concrete dam
CN113447415A (en) * 2021-05-25 2021-09-28 水利部交通运输部国家能源局南京水利科学研究院 Earth and rockfill dam internal water seepage monitoring system and use method thereof
CN115600994A (en) * 2022-11-28 2023-01-13 加华地学(武汉)数字技术有限公司(Cn) Geotechnical engineering monitoring full-process digitization method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201278201Y (en) * 2008-09-03 2009-07-22 中国石油天然气股份有限公司 Pipeline landslide monitoring pre-alarming system based on fiber grating
CN102829728A (en) * 2012-09-04 2012-12-19 中铁二院工程集团有限责任公司 Comprehensive monitoring system for side slope and landslip
CN202869539U (en) * 2012-09-26 2013-04-10 北京旭日宏泰工程项目管理有限责任公司 Ancient building safety monitoring system using optical fiber grating and Internet of things technology
CN104089658A (en) * 2014-07-23 2014-10-08 苏州蓝萃电子科技有限公司 Civil engineering building monitoring system
CN104101382A (en) * 2014-07-25 2014-10-15 绵阳彬华科技有限公司 Monitoring device for health conditions of bridges and buildings

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765973B1 (en) * 2005-11-09 2007-10-15 주식회사 동호 instrument measuring underground stress and method measuring of ground movements in case of build in tunnel
CN200978430Y (en) * 2006-12-07 2007-11-21 中国水电顾问集团华东勘测设计研究院 Concrete dam joint structure
TW201035416A (en) * 2009-03-26 2010-10-01 Accuracy Structural Technology Corp Method for evaluating bridge safety with vibration measurement
CN103363903B (en) * 2012-04-10 2017-02-15 同方威视技术股份有限公司 Sensor structure and fiber bragg grating displacement sensor including the sensor structure
CN103134432A (en) * 2013-01-25 2013-06-05 南京大学 Bridge displacement monitoring system based on optical fiber sensors
CN103791882B (en) * 2014-02-28 2016-05-25 中国电建集团昆明勘测设计研究院有限公司 The full deformation monitoring method of a kind of arch dam
CN104155086B (en) * 2014-08-01 2017-01-18 浙江省建筑科学设计研究院有限公司 Wirelessly remotely controlled optical fiber sensing structure health monitoring system and application method thereof
CN204514373U (en) * 2015-03-17 2015-07-29 中国电建集团昆明勘测设计研究院有限公司 The dynamic monitoring system of the syndeton of a kind of concrete dam and earth and rockfill dam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201278201Y (en) * 2008-09-03 2009-07-22 中国石油天然气股份有限公司 Pipeline landslide monitoring pre-alarming system based on fiber grating
CN102829728A (en) * 2012-09-04 2012-12-19 中铁二院工程集团有限责任公司 Comprehensive monitoring system for side slope and landslip
CN202869539U (en) * 2012-09-26 2013-04-10 北京旭日宏泰工程项目管理有限责任公司 Ancient building safety monitoring system using optical fiber grating and Internet of things technology
CN104089658A (en) * 2014-07-23 2014-10-08 苏州蓝萃电子科技有限公司 Civil engineering building monitoring system
CN104101382A (en) * 2014-07-25 2014-10-15 绵阳彬华科技有限公司 Monitoring device for health conditions of bridges and buildings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107301282A (en) * 2017-06-12 2017-10-27 天津大学 The concrete dam mechanics parameter inversion method of time series data is monitored based on multi-source
CN107301282B (en) * 2017-06-12 2021-03-16 天津大学 Concrete dam mechanical parameter inversion method based on multi-source monitoring time sequence data

Also Published As

Publication number Publication date
CN104848891A (en) 2015-08-19

Similar Documents

Publication Publication Date Title
CN104848891B (en) A kind of dynamic monitoring system and monitoring method of the attachment structure of concrete dam and earth and rockfill dam
CN110362955A (en) Rockmass high slope stability analysis three-qimension geomechanics model exporiment method and application
CN104142187A (en) Gob-side entry retaining pasty filler on-line detection method
CN204514373U (en) The dynamic monitoring system of the syndeton of a kind of concrete dam and earth and rockfill dam
Li et al. Evolution of the broken rock zone in the mixed ground tunnel based on the DSCM
CN111811856B (en) Coal pillar dam body accumulated damage evolution comprehensive experiment device and experiment method thereof
CN102221332A (en) Fiber grating multi-point sensing device for unconsolidated strata as well as monitoring system and method
CN106094011B (en) Dome dam Microseismic monitoring system and method
CN208266894U (en) A kind of intelligent TGXG for soil-slope
CN105178150A (en) Fiber grating sensing-based asphalt pavement compaction monitoring method
CN101799430A (en) Built-in anti-seepage geomembrane damage monitoring method based on optical fiber temperature-measurement principle
CN204007961U (en) Gob-side entry retaining lotion obturator on-line monitoring system
CN201056703Y (en) Pressure dispersion type monitoring device for applied force condition of anchor wire
CN101667214B (en) Method for arranging displacement measuring points
CN111965327B (en) Plane model test device and method for stratum subsidence rule of thick surface soil and thin bedrock mining
Wu et al. Engineering rock mechanics practices in the underground powerhouse at Jinping I hydropower station
CN107796926A (en) The lower large scale buried gas pipeline crash simulation experimental rig of landslide effect and method
CN100491943C (en) Pressure dispersing anchorage cable stress state monitoring device
CN103868716B (en) Space coordinate monitoring problem cable load angular displacement progressive identification method
CN106840474A (en) A kind of axial stress measuring method of concrete support
CN109100307A (en) For monitoring the experimental provision and system of simulation oil reservoir rock deformation
CN105954171B (en) A kind of dam seepage character space-time monitoring device and monitoring method
CN105136015B (en) A kind of concrete dam and earth and rockfill dam connection structure interface deformation monitoring instrument and method
CN204963778U (en) Concrete dam and embankment dam connection structure interface deformation monitoring instrument
CN207007108U (en) A kind of long range roadbed continuous modification monitoring device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant