CN104847317A - Method for raising recovery efficiency of super-deep low permeability heavy oil reservoir - Google Patents

Method for raising recovery efficiency of super-deep low permeability heavy oil reservoir Download PDF

Info

Publication number
CN104847317A
CN104847317A CN201410049797.4A CN201410049797A CN104847317A CN 104847317 A CN104847317 A CN 104847317A CN 201410049797 A CN201410049797 A CN 201410049797A CN 104847317 A CN104847317 A CN 104847317A
Authority
CN
China
Prior art keywords
well
reservoir
improves
heavy crude
recovery ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410049797.4A
Other languages
Chinese (zh)
Inventor
吴光焕
赵红雨
李伟忠
邓宏伟
尹小梅
王一平
赵梅
隋永婷
梁金萍
石军平
李伟
王传飞
李洪毅
杨艳霞
陈桂华
陈明铭
路言秋
刘西雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shengli Geological Scientific Reserch Institute
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shengli Geological Scientific Reserch Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shengli Geological Scientific Reserch Institute filed Critical China Petroleum and Chemical Corp
Priority to CN201410049797.4A priority Critical patent/CN104847317A/en
Publication of CN104847317A publication Critical patent/CN104847317A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2405Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection in association with fracturing or crevice forming processes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping

Abstract

The invention provides a method for raising the recovery efficiency of super-deep low permeability heavy oil reservoir. The method comprises steps of pumping a pad fluid, pumping pressure higher than stratum fracture pressure to extrude a sand carrying fluid and sand into the stratum, and stopping a pump and closing a well after a displacement fluid is injected; opening the well, and continuingly injecting an oil soluble viscosity reducer after the well is closed for one to two days; injecting liquid carbon dioxide after the oil soluble viscosity reducer is injected, and soaking the well for the first time; continuously injecting a high temperature anti-expansion agent and steam after the well is soaked; and soaking the well for the second time, staring to produce after the well is soaked. By adopting the method for raising the recovery efficiency of the super-deep low permeability heavy oil reservoir, the fluid injection pressure and the viscosity of crude oil of the super-deep low permeability heavy oil reservoir can be greatly reduced, and high flow transfusion channels are formed in the stratum through fracturing the stratum, the flow capability of the heavy oil in the stratum can be raised, and the steam injection efficiency and the effect of thermal recovery and exploitation can be greatly raised.

Description

Super Deep tight reservoir heavy crude reservoir improves the method for recovery ratio
Technical field
The present invention relates to oil extraction in oil field technical field, particularly a kind of oil-soluble viscosity reducer and liquid carbon dioxide of utilizing assists the raising of pressure break thermal recovery to surpass the method for Deep tight reservoir thick oil recovery ratio.
Background technology
Along with a large amount of consumption of conventional gas and oil resource and the constantly soaring of oil demand, features such as viscous crude is wide with its distribution, reserves are large and become the main force of current unconventional development of resources, especially in recent years, along with the increasing of unconventional petroleum resources exploitation dynamics, heavy oil development has also turned to super Deep tight reservoir heavy crude reservoir by middle-shallow layer.
Bury the features such as dark, strata pressure is high, permeability is low because super Deep tight reservoir viscous crude has, after therefore conventional heavy oil development measure is difficult to directly application or application, effect is undesirable.Current the Technology of Heavy Oil Recovery mainly contains SAGD (SAGD), chemical auxiliary steam is handled up and the technology such as horizontal well steam injection development.Wherein SAGD (SAGD) requires that reservoir buried depth is less than 1000m, and reservoir thickness is greater than 20m, and therefore SAGD technology cannot be applied to super Deep tight reservoir heavy crude reservoir; And single thinner or CO2 auxiliary soaking viscosity reduction technology, owing to being difficult to overcome hypotonic and bury the contradiction that the injection pressure deeply caused is high, steam quality is low, impact scope is little, be also difficult to play a role in the exploitation of super Deep tight reservoir heavy crude reservoir; Although horizontal well steam injection development does not exist the problems referred to above, horizontal well has certain requirement to reservoir thickness, and the drilling well investment cost of horizontal well is higher, and investment cycle is long.
Therefore, for super Deep tight reservoir heavy crude reservoir, be badly in need of exploring a kind of development scheme, to reduce steam injection pressure cost-effectively under hypotonic condition, improve steam injection quality; Improve stratum flow conductivity, reduce viscosity of crude, increase the percolation ability of viscous crude in low permeability formation, thus improve reserves exploitation degree and recovery ratio.We have invented a kind of method that super Deep tight reservoir heavy crude reservoir newly improves recovery ratio for this reason, solve above technical problem.
Summary of the invention
The object of this invention is to provide a kind of method utilizing oil-soluble viscosity reducer and liquid carbon dioxide to assist pressure break thermal recovery, significantly reduce fluid infusion pressure and the viscosity of crude of super Deep tight reservoir heavy crude reservoir, and high water conservancy diversion seepage channel can be formed in the earth formation by pressure break, increase viscous crude fluid ability in the earth formation, thus significantly improve steam injection efficiency and Simulation on whole pay zones effect.
Object of the present invention realizes by following technical measures: super Deep tight reservoir heavy crude reservoir improves the method for recovery ratio, the method that this super Deep tight reservoir heavy crude reservoir improves recovery ratio comprises: step 1, pump into prepad fluid, then with the infusion pressure higher than formation fracture pressure, load fluid and sand grains are clamp-oned stratum, termination of pumping closing well after continuation injection displacement fluid; Step 2, after closing well 1-2 days, drives a well and inject oil-soluble viscosity reducer continuously in pit shaft; Step 3, after oil-soluble viscosity reducer injects and terminates, continues to clamp-on liquid carbon dioxide continuously, then carries out first time stewing well; Step 4, after stewing well terminates, injects high temperature antiexpansion and steam continuously in pit shaft; And step 5, carry out the stewing well of second time, after stewing well terminates, opening well and making production.
Object of the present invention also realizes by following technical measures:
This super Deep tight reservoir heavy crude reservoir improves fracturing fracture position in the method for recovery ratio and is positioned at the middle and lower part of oil reservoir.
In step 1, sand grains is quartz sand or ceramsite sand.
In step 1, prepad fluid ratio is 35%-55%, and the discharge capacity that pumps into of load fluid is 3.0m 3/ min-5.0m 3/ min, sanding concentration is 15%-28%.
In step 2, oil-soluble viscosity reducer injection rate is 0.2-0.3t/m, and injection rate remains on 20-30m 3/ h.
In step 3, liquid carbon dioxide injection rate>=0.75t/m, injection rate remains on 15-20m 3/ h.
In step 3, the first time stewing well time is 3 days, with the recovery of the diffusion and reservoir temperature that ensure pressure.
In step 4, steam injection amount is at 10-15t/m, and well head steam quality is greater than 70%, to ensure that steam has enough mass dryness fractions in shaft bottom.
In steps of 5, the second time stewing well time is 5 days, to ensure pressure and temperature effective diffusion in the earth formation of injecting steam.
Super Deep tight reservoir heavy crude reservoir in the present invention improves the method for recovery ratio, at the super Deep tight reservoir Development of Viscous Crude Oil initial stage, can provide a kind of cost-effective new method for improving steam injection efficiency under hypotonic condition.Be applicable to oil reservoir buried depth and be greater than 1600m, in-place permeability is lower than 200 × 10 -3μm 2heavy crude reservoir.The present invention is first by forming long crack in the earth formation, reduce the ground steam injection pressure of thinner, carbon dioxide and steam, overcome because ultra-deep layer and the hypotonic fluid caused inject difficult problem, and improve the steam quality in shaft bottom, and the viscous crude that the high flow-guiding channel that pressure break is formed also is conducive in stratum flows to pit shaft smoothly; Next utilizes the feature that oil-soluble viscosity reducer depolymerization viscosity reduction, reducing viscosity by emulsifying and flash-point are high, highly breaks, and effectively prevent the formation of the high-viscous emulsified band of condensed water leading edge to aggregations such as the colloid in Deep tight reservoir viscous crude, asphalitines; The effect that carbon dioxide can play the row of helping of expanding, improve vapour volume, expands steam zone.Help row's characteristic to work in coordination with viscosity reduction with oil-soluble viscosity reducer, steam generation by the dissolving viscosity reduction of carbon dioxide, energization, mix mass transfer and energization helps row to act on, the basis reducing viscosity of crude increases its fluid ability in low permeability formation, thus improves thermal recovery cycle development effectiveness further.
Adopt the present invention, Wellhead steam injection pressure can be made to reduce 5MPa-6MPa, steam injection mass dryness fraction improves 15%-30%, effective reduction viscosity of crude, individual well daily oil production improves 2-3 doubly, and can obviously slow down production decline speed, increase substantially the recovery ratio of super Deep tight reservoir heavy crude reservoir, there is huge economic benefit.
Accompanying drawing explanation
Fig. 1 is the flow chart that super Deep tight reservoir heavy crude reservoir of the present invention improves a specific embodiment of the method for recovery ratio.
Detailed description of the invention
For making above and other object of the present invention, feature and advantage can become apparent, cited below particularly go out preferred embodiment, and coordinate institute's accompanying drawings, be described in detail below.
As shown in Figure 1, Fig. 1 is the flow chart that super Deep tight reservoir heavy crude reservoir of the present invention improves a specific embodiment of the method for recovery ratio.
In step 101, pump into prepad fluid, then with the infusion pressure higher than formation fracture pressure, load fluid and sand grains are clamp-oned stratum, termination of pumping closing well after continuation injection displacement fluid.Prepad fluid ratio is 35%-55%, and the discharge capacity that pumps into of load fluid is 3.0m 3/ min-5.0m 3/ min, sanding concentration is 15%-28%.In one embodiment, sand grains is quartz sand or ceramsite sand.Flow process enters into step 102.
In step 102, after closing well 1-2 days, drive a well and inject oil-soluble viscosity reducer continuously in pit shaft.Oil-soluble viscosity reducer injection rate is 0.2-0.3t/m, and injection rate remains on 20-30m 3/ h.Flow process enters into step 103.
In step 103, after oil-soluble viscosity reducer injects and terminates, continue to clamp-on liquid carbon dioxide continuously, then carry out first time stewing well.Liquid carbon dioxide injection rate>=0.75t/m, injection rate remains on 15-20m 3/ h.The first time stewing well time is about 3 days, with the recovery of the diffusion and reservoir temperature that ensure pressure.Flow process enters into step 104.
In step 104, after stewing well terminates, in pit shaft, inject high temperature antiexpansion and steam continuously.Steam injection amount is at 10-15t/m, and well head steam quality is greater than 70%, to ensure that steam has enough mass dryness fractions in shaft bottom.Flow process enters into step 105.
In step 105, carry out the stewing well of second time, after stewing well terminates, opening well and making production.
In an application specific embodiment of the present invention, comprise the following steps:
A. forehand prepad fluid 138.8m3; With 4.7m 3the speed of/min pumps into load fluid 97.6m3, and add quartz sand 30m3, sand is than scope 7.1%-65.6%; Just squeeze displacement fluid 9.0m 3, discharge capacity 2.7m 3/ min, termination of pumping pressure 9.5MPa, then closing well;
B. after driving a well, with 22m 3the speed of/h injects oil-soluble viscosity reducer 15t;
C. with 17m 3the speed of/h injects liquid carbon dioxide 60t;
D. stewing well drove a well after 3 days, injected high temperature antiexpansion 30m 3, then with 180m 3the speed of/d injects steam, and steam injection pressure 16.5MPa, temperature 335 DEG C, mass dryness fraction 68.4%, cumulative injection is 1200t.
E. stewing well opening well and making production after 4 days.
In application another specific embodiment of the present invention, comprise the following steps:
A. forehand prepad fluid 121.7m3; With 3.9m 3/ min speed pumps into load fluid 164.5m3, and add quartz sand 36m3, sand is than scope 7.0%-71.2%; Just squeeze displacement fluid 6.8m 3, discharge capacity 2.7m 3/ min, termination of pumping pressure 8.7MPa, then closing well;
B. after driving a well, with 20m 3the speed of/h injects oil-soluble viscosity reducer 15t;
C. with 19m 3the speed of/h injects liquid carbon dioxide 100t;
D. stewing well drove a well after 3 days, injected high temperature antiexpansion 8t, then with 168m 3the speed of/d injects steam, and steam injection pressure 14.1MPa, temperature 336.1 DEG C, mass dryness fraction 76.0%, cumulative injection is 1200t.
E. stewing well opening well and making production after 4 days.

Claims (9)

1. surpass the method that Deep tight reservoir heavy crude reservoir improves recovery ratio, it is characterized in that, the method that this super Deep tight reservoir heavy crude reservoir improves recovery ratio comprises:
Step 1, pumps into prepad fluid, then with the infusion pressure higher than formation fracture pressure, load fluid and sand grains is clamp-oned stratum, termination of pumping closing well after continuation injection displacement fluid;
Step 2, after closing well 1-2 days, drives a well and inject oil-soluble viscosity reducer continuously in pit shaft;
Step 3, after oil-soluble viscosity reducer injects and terminates, continues to clamp-on liquid carbon dioxide continuously, then carries out first time stewing well;
Step 4, after stewing well terminates, injects high temperature antiexpansion and steam continuously in pit shaft; And
Step 5, carries out the stewing well of second time, after stewing well terminates, and opening well and making production.
2. super Deep tight reservoir heavy crude reservoir according to claim 1 improves the method for recovery ratio, it is characterized in that, this super Deep tight reservoir heavy crude reservoir improves fracturing fracture position in the method for recovery ratio and is positioned at the middle and lower part of oil reservoir.
3. super Deep tight reservoir heavy crude reservoir according to claim 1 improves the method for recovery ratio, and it is characterized in that, in step 1, sand grains is quartz sand or ceramsite sand.
4. super Deep tight reservoir heavy crude reservoir according to claim 1 improves the method for recovery ratio, and it is characterized in that, in step 1, prepad fluid ratio is 35%-55%, and the discharge capacity that pumps into of load fluid is 3.0m 3/ min-5.0m 3/ min, sanding concentration is 15%-28%.
5. super Deep tight reservoir heavy crude reservoir according to claim 1 improves the method for recovery ratio, and it is characterized in that, in step 2, oil-soluble viscosity reducer injection rate is 0.2-0.3t/m, and injection rate remains on 20-30m 3/ h.
6. super Deep tight reservoir heavy crude reservoir according to claim 1 improves the method for recovery ratio, and it is characterized in that, in step 3, liquid carbon dioxide injection rate>=0.75t/m, injection rate remains on 15-20m 3/ h.
7. super Deep tight reservoir heavy crude reservoir according to claim 1 improves the method for recovery ratio, it is characterized in that, in step 3, the first time stewing well time is 3 days, with the recovery of the diffusion and reservoir temperature that ensure pressure.
8. super Deep tight reservoir heavy crude reservoir according to claim 1 improves the method for recovery ratio, and it is characterized in that, in step 4, steam injection amount is at 10-15t/m, and well head steam quality is greater than 70%, to ensure that steam has enough mass dryness fractions in shaft bottom.
9. super Deep tight reservoir heavy crude reservoir according to claim 1 improves the method for recovery ratio, it is characterized in that, in steps of 5, the second time stewing well time is 5 days, to ensure pressure and temperature effective diffusion in the earth formation of injecting steam.
CN201410049797.4A 2014-02-13 2014-02-13 Method for raising recovery efficiency of super-deep low permeability heavy oil reservoir Pending CN104847317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410049797.4A CN104847317A (en) 2014-02-13 2014-02-13 Method for raising recovery efficiency of super-deep low permeability heavy oil reservoir

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410049797.4A CN104847317A (en) 2014-02-13 2014-02-13 Method for raising recovery efficiency of super-deep low permeability heavy oil reservoir

Publications (1)

Publication Number Publication Date
CN104847317A true CN104847317A (en) 2015-08-19

Family

ID=53847244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410049797.4A Pending CN104847317A (en) 2014-02-13 2014-02-13 Method for raising recovery efficiency of super-deep low permeability heavy oil reservoir

Country Status (1)

Country Link
CN (1) CN104847317A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105332672A (en) * 2015-11-17 2016-02-17 中国石油集团长城钻探工程有限公司 Multi-element composite water-control oil-enhancement method for extracting oil
CN105952425A (en) * 2016-07-11 2016-09-21 中国石油大学(华东) Method for improving ordinary heavy oil reservoir recovery ratio by adopting chemical agents to assist CO2 huff and puff
CN106837284A (en) * 2016-12-28 2017-06-13 中国石油集团川庆钻探工程有限公司工程技术研究院 A kind of pressure break connection of handling up for improving Recovery Factor of Low-Permeability Reservoirs makees method
CN107290011A (en) * 2017-07-28 2017-10-24 中国矿业大学 Integral type polymorphic type gas reservoir payzone air water contribution rate measurement apparatus
CN107762474A (en) * 2017-11-10 2018-03-06 中国石油天然气股份有限公司 A kind of low-permeability heavy oil reservoir fracturing process
CN107869336A (en) * 2016-09-23 2018-04-03 中国石油化工股份有限公司 Super-viscous oil chemistry auxiliary thermal recovery improves recovery ratio method
CN108729897A (en) * 2018-05-22 2018-11-02 中国石油大学(北京) A kind of carbon dioxide-slippery water batch-mixed fracturing design method
CN110520502A (en) * 2017-02-17 2019-11-29 沙特阿拉伯石油公司 Adjust subsurface formations
CN110886597A (en) * 2019-12-31 2020-03-17 清华大学 Nano-fluid assisted carbon dioxide huff and puff oil production method
CN114439440A (en) * 2020-11-03 2022-05-06 中国石油化工股份有限公司 Viscosity reduction pressure flooding method for deep low-permeability heavy oil reservoir
CN114622881A (en) * 2020-12-14 2022-06-14 中国石油化工股份有限公司 Low-permeability heavy oil reservoir viscosity-reduction pressure-reduction driving exploitation method
CN115263255A (en) * 2021-04-30 2022-11-01 中国石油天然气股份有限公司 Method for exploiting thick oil reservoir

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060231455A1 (en) * 2003-07-16 2006-10-19 Ola Olsvik Method for production and upgrading of oil
CN101255788A (en) * 2008-04-15 2008-09-03 中国石化集团胜利石油管理局石油开发中心 Thermochemistry auxiliary reinforced steam flooding method
CN102080523A (en) * 2011-01-06 2011-06-01 中国石油化工股份有限公司 Compound huff-puff oil recovery method by using steam and oil-soluble viscosity reducer
US20130255953A1 (en) * 2012-03-30 2013-10-03 Synoil Fluids Holdings Inc. Method and apparatus for preparing fracturing fluids
KR20130128228A (en) * 2012-05-16 2013-11-26 한국화학연구원 Method for recovering bitumen from oil sand by injecting gas
CN103510932A (en) * 2012-06-19 2014-01-15 中国石油化工股份有限公司 Chemical cold-production method applicable to medium-deep low-permeability heavy oil reservoir
CN103541704A (en) * 2012-07-11 2014-01-29 中国石油化工股份有限公司 Method of improving deep super-thick oil reservoir recovery efficiency
CN103573231A (en) * 2012-07-23 2014-02-12 中国石油化工股份有限公司 Method for improving recovery ratio of sensitive heavy oil reservoir

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060231455A1 (en) * 2003-07-16 2006-10-19 Ola Olsvik Method for production and upgrading of oil
CN101255788A (en) * 2008-04-15 2008-09-03 中国石化集团胜利石油管理局石油开发中心 Thermochemistry auxiliary reinforced steam flooding method
CN102080523A (en) * 2011-01-06 2011-06-01 中国石油化工股份有限公司 Compound huff-puff oil recovery method by using steam and oil-soluble viscosity reducer
US20130255953A1 (en) * 2012-03-30 2013-10-03 Synoil Fluids Holdings Inc. Method and apparatus for preparing fracturing fluids
KR20130128228A (en) * 2012-05-16 2013-11-26 한국화학연구원 Method for recovering bitumen from oil sand by injecting gas
CN103510932A (en) * 2012-06-19 2014-01-15 中国石油化工股份有限公司 Chemical cold-production method applicable to medium-deep low-permeability heavy oil reservoir
CN103541704A (en) * 2012-07-11 2014-01-29 中国石油化工股份有限公司 Method of improving deep super-thick oil reservoir recovery efficiency
CN103573231A (en) * 2012-07-23 2014-02-12 中国石油化工股份有限公司 Method for improving recovery ratio of sensitive heavy oil reservoir

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
彭仁田: "《石油开发工程》", 31 July 2006 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105332672A (en) * 2015-11-17 2016-02-17 中国石油集团长城钻探工程有限公司 Multi-element composite water-control oil-enhancement method for extracting oil
CN105952425A (en) * 2016-07-11 2016-09-21 中国石油大学(华东) Method for improving ordinary heavy oil reservoir recovery ratio by adopting chemical agents to assist CO2 huff and puff
CN107869336A (en) * 2016-09-23 2018-04-03 中国石油化工股份有限公司 Super-viscous oil chemistry auxiliary thermal recovery improves recovery ratio method
CN106837284A (en) * 2016-12-28 2017-06-13 中国石油集团川庆钻探工程有限公司工程技术研究院 A kind of pressure break connection of handling up for improving Recovery Factor of Low-Permeability Reservoirs makees method
CN110520502A (en) * 2017-02-17 2019-11-29 沙特阿拉伯石油公司 Adjust subsurface formations
CN107290011A (en) * 2017-07-28 2017-10-24 中国矿业大学 Integral type polymorphic type gas reservoir payzone air water contribution rate measurement apparatus
CN107290011B (en) * 2017-07-28 2019-07-09 中国矿业大学 Integral type polymorphic type gas reservoir payzone air water contribution rate measuring device
CN107762474A (en) * 2017-11-10 2018-03-06 中国石油天然气股份有限公司 A kind of low-permeability heavy oil reservoir fracturing process
CN108729897A (en) * 2018-05-22 2018-11-02 中国石油大学(北京) A kind of carbon dioxide-slippery water batch-mixed fracturing design method
CN110886597A (en) * 2019-12-31 2020-03-17 清华大学 Nano-fluid assisted carbon dioxide huff and puff oil production method
CN110886597B (en) * 2019-12-31 2021-01-26 清华大学 Nano-fluid assisted carbon dioxide huff and puff oil production method
CN114439440A (en) * 2020-11-03 2022-05-06 中国石油化工股份有限公司 Viscosity reduction pressure flooding method for deep low-permeability heavy oil reservoir
CN114622881A (en) * 2020-12-14 2022-06-14 中国石油化工股份有限公司 Low-permeability heavy oil reservoir viscosity-reduction pressure-reduction driving exploitation method
CN115263255A (en) * 2021-04-30 2022-11-01 中国石油天然气股份有限公司 Method for exploiting thick oil reservoir
CN115263255B (en) * 2021-04-30 2024-03-01 中国石油天然气股份有限公司 Method for exploiting thick oil reservoir

Similar Documents

Publication Publication Date Title
CN104847317A (en) Method for raising recovery efficiency of super-deep low permeability heavy oil reservoir
CN107255027B (en) Compound modification method for carbonate rock reservoir
CN101575983B (en) Directional fracturing permeability improvement outburst elimination method in coal mine and device thereof.
CN109653721B (en) Fracturing and energy-increasing oil displacement integrated process method for shallow low-pressure low-permeability oil reservoir
CN106567702A (en) Method for improving complexity index of deep shale gas fracture
CN106837274B (en) A method of oil displacement agent injection oil reservoir being improved into recovery ratio using pressure break
CN105626006A (en) CO2 drive technological limit well spacing determination method for low-permeability oil reservoir
CN106761606B (en) The asynchronous note CO of different well of symmetrical cloth seam2Oil production method
CN104847320A (en) Ultra-deep-seated and low-permeable thickened oil identified viscosity reduction method
CN109723423B (en) Composite acid fracturing method for supporting crack front edge by using phase-change material
CN102146782A (en) Steam and nitrogen composite swallowing-spitting oil extraction method
CN102080522A (en) Oil extraction method for oil deposit of shallow-layer super heavy oil
CN106321044A (en) Proppant-carrying acid fracturing method for high-temperature ultra-deep carbonate reservoir
CN106703775B (en) Coal bed gas fracturing method
CN101915079B (en) Integrated de-plugging yield increasing process
CN104265254A (en) Oil production technological method for multi-stage plug injection of oil-soluble viscosity reducer and liquid CO2 in deep super-heavy oil
CN105317415A (en) Seamed net fracturing technological method
CN105332672A (en) Multi-element composite water-control oil-enhancement method for extracting oil
CN110118079B (en) Fracturing exploitation method for high-wax-content oil layer
CN109184656A (en) One kind, which adopting no note type and isolates well point, taps the latent power and proposes efficacious prescriptions method
CN107246257B (en) Heterogeneous reservoir is acidified remodeling method
CN114059980B (en) Shale reservoir fracturing method
CN110439528B (en) Carbon dioxide acid fracturing method for low-permeability heterogeneous carbonate rock gas reservoir
CN104948157A (en) Method for steam huff and puff heavy oil reservoir development shifted after fracturing sand control
CN107558950A (en) Orientation blocking method for the closing of oil shale underground in situ production zone

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150819