CN104835860B - 具有双层钝化层的太阳能电池及其制备方法 - Google Patents

具有双层钝化层的太阳能电池及其制备方法 Download PDF

Info

Publication number
CN104835860B
CN104835860B CN201510124799.XA CN201510124799A CN104835860B CN 104835860 B CN104835860 B CN 104835860B CN 201510124799 A CN201510124799 A CN 201510124799A CN 104835860 B CN104835860 B CN 104835860B
Authority
CN
China
Prior art keywords
passivation layer
layer
silicon
silicon substrate
diffusion structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510124799.XA
Other languages
English (en)
Other versions
CN104835860A (zh
Inventor
张治�
何凤琴
卢刚
郭灵山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huanghe Water Electric Light Volt Industrial Technology Co Ltd
Original Assignee
Huanghe Water Electric Light Volt Industrial Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huanghe Water Electric Light Volt Industrial Technology Co Ltd filed Critical Huanghe Water Electric Light Volt Industrial Technology Co Ltd
Priority to CN201510124799.XA priority Critical patent/CN104835860B/zh
Publication of CN104835860A publication Critical patent/CN104835860A/zh
Application granted granted Critical
Publication of CN104835860B publication Critical patent/CN104835860B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种具有双层钝化层的太阳能电池,包括依次叠层连接的背电极、硅衬底、扩散结构层、纳米线阵列、钝化层以及正面电极,所述扩散结构层与所述硅衬底形成PN结;其中,所述钝化层包括氧化硅薄膜钝化层和氮化硅薄膜钝化层,所述氧化硅薄膜钝化层位于所述扩散结构层上,包覆所述纳米线阵列;所述氮化硅薄膜钝化层覆盖于所述氧化硅薄膜钝化层上。本发明公开了如上所述太阳能电池的制备方法。该太阳能电池中实现对纳米绒面的双层钝化,增强对纳米绒面结构的钝化效果,可以改善纳米绒面表面复合严重、少子寿命低的缺陷,具有开路电压大、效率高的优势。

Description

具有双层钝化层的太阳能电池及其制备方法
技术领域
本发明涉及新结构太阳能电池制造领域,特别是涉及一种具有双层钝化层的太阳能电池及其制备方法。
背景技术
随着全球能源的短缺和气候变暖,太阳能发电等可再生能源正取代传统的火力发电,成为当今能源领域研究的热点和发展的趋势。在太阳能电池的发展历史中,非晶硅薄膜太阳能电池和晶体硅太阳能电池都已经历了近半个多世纪的发展历程。晶体硅太阳能电池效率较高,而非晶硅薄膜太阳能电池的制造成本较低,但将二者的优势结合起来,形成效率更高、成本更低的第三代太阳能电池结构受到的关注却相对较少。纳米材料和结构,由于其具有新奇的物理特性,在电学、光学上具有一系列特殊的物理性质,正在被广泛地应用于半导体制造、光电子器件、化学化工领域。将纳米材料和结构与传统晶体硅电池结合,形成新一代太阳能电池,将有助于解决长期困扰这两个领域的效率低,成本高的瓶颈问题,实现太阳能技术的飞跃。
光吸收是太阳能电池永恒的话题和研究对象,光吸收越大,被利用的可能性越大。对于常规晶体硅电池只能单面受光,且具有尺寸在微米级的金字塔绒面或者蚕卵绒面,靠着几何反射增加光程。研究表明,纳米绒面具有非常良好的陷光效果,其陷光机理与常规金字塔绒面或者蚕卵绒面有着质的不同,从紫外波段到近红外波段(350~1100nm,晶体硅太阳能电池具有光谱响应的波段),有着极低的反射率(可低于0.5%,常规绒面为7%以上),可以实现几乎均一性的吸收,因此利用纳米绒面提高电池效率是一个产业化热点。但是,纳米绒面的表面由于表面缺陷增加导致表面复合增大,使晶体硅少子寿命降低,降低了电池的开路电压,影响到电池的效率。
发明内容
有鉴于此,本发明提供了一种具有双层钝化层的太阳能电池及其制备方法,该太阳能电池中实现对纳米绒面的双层钝化,增强对纳米绒面结构的钝化效果,可以改善纳米绒面表面复合严重、少子寿命低的缺陷,具有开路电压大、效率高的优势。
为了达到上述目的,本发明采用了如下的技术方案:
一种具有双层钝化层的太阳能电池,包括依次叠层连接的背电极、硅衬底、扩散结构层、纳米线阵列、钝化层以及正面电极,所述扩散结构层与所述硅衬底形成PN结;其中,所述钝化层包括氧化硅薄膜钝化层和氮化硅薄膜钝化层,所述氧化硅薄膜钝化层位于所述扩散结构层上,包覆所述纳米线阵列;所述氮化硅薄膜钝化层位于所述氧化硅薄膜钝化层上。
其中,所述硅衬底为太阳能级硅衬底,p型或n型掺杂,晶面指数为(100);当所述硅衬底为p型掺杂,则所述扩散结构层为磷扩散结构层;当所述硅衬底为n型掺杂,则所述扩散结构层为硼扩散结构层。
其中,所述氧化硅薄膜钝化层的厚度为10~20nm,所述氮化硅薄膜钝化层的厚度为70~120nm,所述纳米线阵列的高度为100~500nm。
其中,所述扩散结构层的方块电阻为20~120Ω,深度为0.2~1μm。
进一步地,该太阳能电池还包括Al背场,位于所述背电极与硅衬底之间。
如上所述的具有双层钝化层的太阳能电池的制备方法,包括步骤:
S101、提供一硅衬底,在硅衬底第一面上制备纳米线阵列形成纳米绒面;
S102、对硅衬底第一面进行扩散,获得扩散结构层;
S103、对具有纳米绒面的硅衬底进行氧化并退火,在所述扩散结构层上形成氧化硅薄膜钝化层,所述氧化硅薄膜钝化层包覆所述纳米线阵列;
S104、在氧化硅薄膜钝化层上制备氮化硅薄膜钝化层。
进一步地,步骤S101具体包括:
首先,使用0.005~0.015M的AgNO3和4~6M的HF混合溶液在硅片表面生长Ag颗粒,生长时间为10~60s,溶液温度为20~50℃;
然后,将上述硅片置入含有4~6M的HF和0.05~0.15M的H2O2的混合溶液中生长出纳米线阵列,形成纳米绒面,生长时间为20~180s,溶液温度为20~50℃。
进一步地,步骤S103具体包括:
首先,利用氧化炉对硅片进行氧化,氧化温度为700~1000℃,氧化时间为30~60min,氧化过程全程通入高纯氧气作为保护气体;
然后,利用氧化炉对硅片进行退火,退火温度为400~500℃,退火时间为30~60min,退火过程全程通入H2和N2混合气体作为保护气体,其中,H2占体积比为10~20%。
进一步地,在步骤S101之后,还包括清洗纳米线阵列的步骤,依次采用去离子水、硝酸溶液、盐酸溶液以及去离子水清洗具有纳米线阵列的硅衬底。
进一步地,该方法还包括步骤:在氮化硅薄膜钝化层上制备正面电极;在硅衬底第二面上依次制备Al背场和背电极。
本发明的有益效果体现在:
首先,该方法利用Ag催化化学腐蚀方法形成纳米绒面,能够极大降低因干法刻蚀所造成的损伤,而且由于纳米绒面的独特减反效果,增加了光能的吸收,有利于提高纳米绒面电池的转化效率。
其次,该太阳能电池中实现对纳米绒面的双层钝化,利用氧化硅和氮化硅的双层钝化增强对纳米绒面结构的钝化效果,可以改善纳米绒面表面复合严重、少子寿命低的缺陷,具有开路电压大、效率高的优势。
最后,该方法具有制备工艺简单,并与现有的产业化设备形成良好的兼容特性,能在不增加工艺的复杂度,同时保持较低成本的前提下,制备高转换效率的太阳能电池。
附图说明
图1是本发明实施例提供的太阳能电池的结构示意图。
图2是本发明实施例提供的太阳能电池的制备方法的工艺流程图。
图3a-图3e是本发明太阳能电池的制备方法的各步骤示例性图示。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细地描述,显然,所描述的实施例仅仅是本发明一部分实例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护范围。
本发明的主要目的在于利用纳米绒面具有非常良好的陷光效果,从紫外波段到近红外波段(350-1100nm,晶体硅太阳能电池具有光谱响应的波段),有着极低的反射率;再利用氧化硅和氮化硅双层钝化的方法,以解决纳米绒面的表面由于表面缺陷增加导致表面复合增大,使晶体硅少子寿命降低的问题。在与已有的太阳能电池制备工艺兼容的前提下,提出创新结构,以期提高太阳能电池的转化效率。利用该技术易于制备高性能、低成本的太阳能电池,并最终走向工业化,创造价值。
具体地,如图1所示,本实施例提供的一种具有双层钝化层的太阳能电池,包括依次叠层连接的背电极70、Al背场80、硅衬底10、扩散结构层20、纳米线阵列30、钝化层以及正面电极60,所述扩散结构层20与所述硅衬底10形成PN结。其中,所述钝化层包括氧化硅薄膜钝化层40和氮化硅薄膜钝化层50,所述氧化硅薄膜钝化层40位于所述扩散结构层20上,并包覆所述纳米线阵列;所述氮化硅薄膜钝化层50位于所述氧化硅薄膜钝化层40上。
如上的太阳能电池中,首先,纳米线阵列30在硅衬底10上形成纳米绒面,具有非常良好的陷光效果,从紫外波段到近红外波段(350-1100nm,晶体硅太阳能电池具有光谱响应的波段),有着极低的反射率;其次,硅衬底10上具有氧化硅薄膜钝化层40和氮化硅薄膜钝化层50双层钝化层,增强对纳米绒面结构的钝化效果,可以改善纳米绒面表面复合严重、少子寿命低的缺陷,具有开路电压大、效率高的优势。
其中,所述硅衬底10为太阳能级硅衬底(纯度大于99.9999%的硅衬底),p型或n型掺杂,晶面指数为(100)。当所述硅衬底10为p型掺杂,则所述扩散结构层20为磷扩散结构层;当所述硅衬底10为n型掺杂,则所述扩散结构层20为硼扩散结构层。
其中,所述氧化硅薄膜钝化层40的厚度可以选择为10~20nm,所述氮化硅薄膜钝化层50的厚度可以选择为70~120nm,所述纳米线阵列30的高度可以选择为100~500nm。所述扩散结构层20的方块电阻大约为20~120Ω,深度可以选择为0.2~1μm.
下面参阅图2和图3a-图3e详细说明如上所述太阳能电池的制备工艺过程。
如图3所示,本实施例提供的具有双层钝化层的太阳能电池的制备方法,包括步骤:
(a)、提供一硅衬底10,在硅衬底10第一面上制备纳米线阵列30形成纳米绒面,如图3a所示。其中,本实施例中,硅衬底10为p型掺杂,可选择为厚度为180~250μm之间,面积为125mm×125mm或者156mm×156mm的单晶硅、多晶硅衬底。具体地,首先使用0.005~0.015M(典型值为0.01M)的AgNO3和4~6M(典型值为4.8M)的HF混合溶液在硅片表面生长Ag颗粒,生长时间为10~60s,溶液温度为20~50℃;然后将上述硅片置入含有4~6M(典型值为4.8M)的HF和0.05~0.15M(典型值为0.1M)的H2O2的混合溶液中生长出纳米线阵列,形成纳米绒面,生长时间为20~180s,溶液温度为20~50℃。
(b)、对具有纳米线阵列30的硅衬底10进行表面清洗,去除残余物。具体地,将样品依次浸入去离子水,浸入硝酸溶液中,去离子水、氢氟酸溶液、去离子水中,时间依次为2~3min、1小时、2~3min、30s、2~3min。通过上述清洗,制得表面洁净、无残余物的纳米线阵列。其中硝酸溶液是浓硝酸溶液、氢氟酸溶液为稀释过的氢氟酸,其典型浓度值为10%。
(c)、对硅衬底10第一面进行扩散,获得扩散结构层20,如图3b所示。具体地,利用管式闭管扩散炉,液态三氯氧磷为扩散源,利用氮气作为载气对三氯氧磷为扩散源进行气体输送进行扩散形成pn结。扩散完毕后,关闭三氯氧磷扩散源,并原位进行高温恒定表面浓度的磷的推进和再分布;高温推进的温度为500~1500℃之间,推进再分布时间为1s~10h,该过程通氮气进行保护。扩散工艺过程中,找一个陪片(参考样品),以便扩散完后使得所形成的方块电阻约在20~120Ω变化,深度为0.2~1μm的扩散结构层20。由于扩散过程中,会在电池表面形成磷硅玻璃,它会影响电池的效率,因此用HF酸、HNO3酸和水的混合腐蚀液来消除磷硅玻璃,清除完磷硅玻璃后用去离子水清洗干净并烘干。
(d)、对具有纳米绒面的硅衬底10进行氧化并退火,在所述扩散结构层20上形成氧化硅薄膜钝化层40,如图3c所示。具体地,首先利用氧化炉对硅片进行氧化,氧化温度为700~1000℃,氧化时间为30~60min,氧化过程全程通入高纯氧气作为保护气体;然后利用氧化炉对硅片进行退火,退火温度为400~500℃,退火时间为30~60min,退火过程全程通入H2和N2混合气体作为保护气体,其中,H2占体积比为10~20%,最终得到包覆纳米线阵列30氧化硅薄膜钝化层40。
(e)、在氧化硅薄膜钝化层40上制备氮化硅薄膜钝化层50,如图3d所示。该步骤可采用传统的太阳能电池制造工艺进行,采用等离子体增强化学气相沉积(PECVD)工艺,生长SiNx薄膜,生长的厚度为70~120nm。
(f)、在氮化硅薄膜钝化层50上制备正面电极60;在硅衬底10第二面(在此,第二面是指与前述第一面相对的一面)上依次制备Al背场80和背电极70,如图3e所示。该步骤中,利用传统生产线工艺,通过丝网印刷工艺制备正面电极60、背电极70、铝背场80并烧结完成太阳能电池的制备。其中,制备的正面电极的副栅的典型宽度为110~150μm,主栅的典型宽度为1.5~2mm。
本发明与现有技术相比具有明显的优点和有益效果。由以上技术方案可知,本发明提供的具有双层钝化层的太阳能电池及其制备方法,至少具有下列优点:首先,首先,该方法利用Ag催化化学腐蚀方法形成纳米绒面,能够极大降低因干法刻蚀所造成的损伤,而且由于纳米绒面的独特减反效果,增加了光能的吸收,有利于提高纳米绒面电池的转化效率。其次,该太阳能电池中实现对纳米绒面的双层钝化,利用氧化硅和氮化硅的双层钝化增强对纳米绒面结构的钝化效果,可以改善纳米绒面表面复合严重、少子寿命低的缺陷,具有开路电压大、效率高的优势。最后,该方法具有制备工艺简单,并与现有的产业化设备形成良好的兼容特性,能在不增加工艺的复杂度,同时保持较低成本的前提下,制备高转换效率的太阳能电池。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (1)

1.一种具有双层钝化层的太阳能电池的制备方法,其特征在于,包括步骤:
S101、提供一硅衬底,在硅衬底第一面上制备纳米线阵列形成纳米绒面,所述纳米线阵列的高度为100~500nm;该步骤具体包括:
首先,使用0.005~0.015M的AgNO3和4~6M的HF混合溶液在硅片表面生长Ag颗粒,生长时间为10~60s,溶液温度为20~50℃;
然后,将上述硅片置入含有4~6M的HF和0.05~0.15M的H2O2的混合溶液中生长出纳米线阵列,形成纳米绒面,生长时间为20~180s,溶液温度为20~50℃;
最后,依次采用去离子水、硝酸溶液、去离子水、氢氟酸溶液以及去离子水清洗具有纳米线阵列的硅衬底,时间依次为2~3min、1小时、2~3min、30s、2~3min;
S102、对硅衬底第一面进行扩散,获得扩散结构层,所述扩散结构层的方块电阻为20~120Ω,深度为0.2~1μm;其中,所述硅衬底为太阳能级硅衬底,p型或n型掺杂,晶面指数为(100);当所述硅衬底为p型掺杂,则所述扩散结构层为磷扩散结构层;当所述硅衬底为n型掺杂,则所述扩散结构层为硼扩散结构层;
S103、对具有纳米绒面的硅衬底进行氧化并退火,在所述扩散结构层上形成氧化硅薄膜钝化层,所述氧化硅薄膜钝化层包覆所述纳米线阵列,所述氧化硅薄膜钝化层的厚度为10~20nm;该步骤具体包括:
首先,利用氧化炉对硅片进行氧化,氧化温度为700~1000℃,氧化时间为30~60min,氧化过程全程通入高纯氧气作为保护气体;
然后,利用氧化炉对硅片进行退火,退火温度为400~500℃,退火时间为30~60min,退火过程全程通入H2和N2混合气体作为保护气体,其中,H2占体积比为10~20%;
S104、在氧化硅薄膜钝化层上制备氮化硅薄膜钝化层,所述氮化硅薄膜钝化层的厚度为70~120nm;
S105、在氮化硅薄膜钝化层上制备正面电极,在硅衬底第二面上依次制备Al背场和背电极。
CN201510124799.XA 2015-03-20 2015-03-20 具有双层钝化层的太阳能电池及其制备方法 Active CN104835860B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510124799.XA CN104835860B (zh) 2015-03-20 2015-03-20 具有双层钝化层的太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510124799.XA CN104835860B (zh) 2015-03-20 2015-03-20 具有双层钝化层的太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN104835860A CN104835860A (zh) 2015-08-12
CN104835860B true CN104835860B (zh) 2018-04-13

Family

ID=53813614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510124799.XA Active CN104835860B (zh) 2015-03-20 2015-03-20 具有双层钝化层的太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN104835860B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655448B (zh) * 2016-04-06 2018-01-09 广东爱康太阳能科技有限公司 一种高效彩色多晶太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN104835860A (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
CN101777603B (zh) 背接触太阳能电池的制造方法
WO2017020689A1 (zh) 基于p型硅衬底的背接触式太阳能电池及其制备方法
Kelzenberg et al. High-performance Si microwire photovoltaics
CN103887347B (zh) 一种双面p型晶体硅电池结构及其制备方法
WO2016078365A1 (zh) 高效n型双面太阳电池
CN105355693B (zh) 一种可提高光电转换效率的perc太阳能光伏电池
WO2017020690A1 (zh) 基于p型硅衬底的背接触式太阳能电池
CN102751371B (zh) 一种太阳能薄膜电池及其制造方法
CN102403369A (zh) 一种用于太阳能电池的钝化介质膜
CN209232797U (zh) 硅基太阳能电池及光伏组件
CN110767777B (zh) 可降低成本提高转换效率的叠层太阳电池的制备方法
CN102487105A (zh) 一种制备立体结构高效太阳能电池的方法
JP2013165160A (ja) 太陽電池の製造方法及び太陽電池
CN103646994A (zh) 一种太阳电池正面电极的制备方法
CN103219426A (zh) 一种超小绒面太阳电池及其制备方法
CN103594530A (zh) 正面热氧化、选择性发射结与背钝化结合的晶硅太阳能电池及其制造方法
CN104716209A (zh) 基于硅基纳米线的太阳能电池及其制备方法
CN106328736B (zh) 一种抗lid黑硅太阳能高效电池及其生产方法
CN102903775A (zh) 用于聚光和激光输能的晶体硅太阳能电池结构及其制作方法
CN104064623B (zh) 一种提升太阳电池转换效率的后处理方法
CN104835860B (zh) 具有双层钝化层的太阳能电池及其制备方法
CN204067375U (zh) 一种n型局域铝背晶体硅太阳能电池
CN108010990B (zh) 一种晶体硅太阳能电池片的制作方法
CN109461783A (zh) 一种双面晶硅太阳能电池及其制作方法
Srivastava et al. Nanostructured black silicon for efficient thin silicon solar cells: potential and challenges

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant