CN104821845A - 一种对光模块的收端光功率进行校准的方法 - Google Patents

一种对光模块的收端光功率进行校准的方法 Download PDF

Info

Publication number
CN104821845A
CN104821845A CN201510243080.8A CN201510243080A CN104821845A CN 104821845 A CN104821845 A CN 104821845A CN 201510243080 A CN201510243080 A CN 201510243080A CN 104821845 A CN104821845 A CN 104821845A
Authority
CN
China
Prior art keywords
optical module
optical
receiving end
luminous power
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510243080.8A
Other languages
English (en)
Inventor
范巍
李平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATOP Corp
Original Assignee
ATOP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATOP Corp filed Critical ATOP Corp
Priority to CN201510243080.8A priority Critical patent/CN104821845A/zh
Publication of CN104821845A publication Critical patent/CN104821845A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种对光模块的收端光功率进行校准的方法,所述光模块为SFP小型可热插拔光电收发模块。本发明的校准方法,其因通过对APD雪崩光电二极管的P-I曲线图进行分段,对每段分别采用一次函数进行分段线性按拟合,进而得到各段的校准系数,以保证收端光功率满足SFF-8472要求±3dB的精度要求;且分段不同,其就可以适应不同型号光电二极管的光模块,适用范围更大;同时对于光模块中的MCU微控制器而言,因其只需要进行一次函数的计算,校准系数只有两个常量,相对于传统的校准方法中复杂对数运算,其具有运算简单,易于实现的优点。

Description

一种对光模块的收端光功率进行校准的方法
技术领域
本发明涉及一种在光信号传输情况下使用的光模块。更具体地说,本发明涉及一种用在光信号传输情况下的光模块收端光功率校准方法。
背景技术
按照SFF-8472协议规定,光模块需要在不同的接收端光功率输入下,实时采样接收端光功率并上报给设备,以此达到监控和诊断光模块是否正常工作、链路衰减是否正常的目的。因此光模块生产过程中需要对收端光功率进行校准,从而使得光模块在不同光功率输入的情况下能准确监控并上报。协议规定监控的光功率精度为±3dB,部分设备厂家要求的精度为±1.5dB甚至更高,因此,如何提高光模块收端光功率的监控精度尤为重要。
普通带数字诊断功能的SFP光模块多采用线性的PIN光电二极管作为接收端组件,然而随着光通信技术的发展,长距离传输的迫切要求使得SFP光模块采用了具有非线性特性的APD雪崩光电二极管器件,且其使用更加广泛。
对于采用PIN光电二极管作为接收端组件的光模块其传统的线性校准方法是,通过控制衰减器的衰减分别输入到光模块一个强光和一个弱光,再分别采样两个点的光电流值,得到两组数据(PWR1、PWR2和I1、I2),从而计算出一次函数(PWR=k·I+b)中的两个参数k和b,将这两个参数写入下位机完成校准。光模块正常工作时,实时采样接收端的光电流值,再根据上述公式计算出此时的光功率值,按照协议要求写入A2[104-105]区域,完成监控值上报。
对于采用APD雪崩光电二极管作为接收端光组件的光模块,由于其具有非线性特性,导致传统的线性校准方法无法满足精度要求。尤其是APD器件,其I-P曲线的指数关系更是无法直接采用传统的线性校准方式,如果采用传统线性方法进行校准,无法保证±3dB的精度要求,因此只能采用如下介绍的对数关系进行校准,以使其达到协议精度的要求。
光模块选择使用APD雪崩光电二极管作为接收端组件的原因,主要是为了利用雪崩倍增效应使光电流倍增后提高接收灵敏度,而APD雪崩光电二极管需要有一定的反向偏压才能产生相应的倍增效应,因此APD雪崩光电二极管的正常工作电压始终在临近击穿电压(Vbr)附近,当收端光功率很小时(PWR<-20dBm),光电流变化也很小,当收端光功率大到一定程度后,输出的光电流将会呈指数型增长,通过坐标关系可以绘制出如图1所示的图表。
APD雪崩光电二极输出光电流(I)和输入光功率(PWR)的关系可以用如下公式表示:
I=k·aPWR+b    (公式1)
对于光模块而言,其需要通过接收端的电路实时采样光电流,通过公式2计算出此时的光功率,并更新到SFF-8472协议规定的EEPROM字节。
PWR=k·logaI+b    (公式2)
由公式2可知,接收端光功率PWR和光电流的关系(P-I)如图2,呈对数关系。
采用对数关系进行光模块的校准,其校准虽然能达到协议精度要求,但却在光模块正常工作时,其每一次光功率的监控上报均需要进行对数运算,才能实现。然而出于成本和封装的考虑,光模块多采用MCU微控制器或者集成芯片完成其需要的计算功能,但MCU微控制器对于浮点型运算的支持很有限,如果采用公式2进行对数运算,会占用MCU微控制器太多资源,增加了MCU微控制器的负荷,影响其运算及运行速度。
发明内容
本发明的一个目的是解决至少上述问题和/或缺陷,并提供至少后面将说明的优点。
本发明还有一个目的是通过提供一种对光模块的收端光功率进行校准的方法,其因通过对APD雪崩光电二极管的P-I曲线图进行分段,对每段分别采用一次函数进行分段线性按拟合,进而得到各段的校准系数,以保证收端光功率满足SFF-8472要求±3dB的精度要求;且分段不同,其就可以适应不同型号光电二极管的光模块,适用范围更大,且分段数越多,监控精度越高,当段数足够多时(n>5),可使收端光功率监控的精度可以远超SFF-8472协议的要求;同时对于光模块中的MCU微控制器而言,因其只需要进行一次函数的计算,校准系数只有两个常量,相对于传统的校准方法中复杂对数运算,其具有运算简单,易于实现的优点。
本发明还有一个目的是通过提供一种采用本发明校准方法的光模块进行光功率数字监控上报的方法,光模块在工作时,MCU微控制器计算中最复杂的环节也只涉及一次函数运算,不涉及对数关系运算,相对于采用传统的校准方法的光模块进行光功率数字监控上报,其虽然多了查找的环节,但查找范围小,查找迅速,其相对于对数运算,其运算简单,解决了MCU微控制器复杂对数运算导致的MCU微控制器无法满足时序,资源的浪费,增大负荷等问题,使得MCU微控制器运算简单,其运算负荷量显著减少,其响应及运行速度得到显著提高。
为了实现根据本发明的这些目的和其它优点,提供了一种对光模块收端光功率进行校准的方法,所述光模块为SFP小型可热插拔光电收发模块,包括以下步骤:
步骤一,根据所述光模块中光电二极管的型号,将光模块接收端接收光信号额定范围对应的光功率PWR分为n段,且每段均对应一个光功率值PWRn,其中所述光功率PWR的取值范围为-6dBm~-32dBm;
步骤二,所述光模块的光电二极管接收外部设备依次输入的光功率值PWRn对应的光信号,并将其转换成对应的光电流输出给所述光模块的采样电路,所述采样电路输出对应的光电流值In到MCU微控制器;
步骤三,所述MCU微控制器基于光功率值PWRn以及光电流值In,根据以下公式求出所述光模块接收端光功率PWR各段所对应的校准系数kn、bn
PWRn=kn*I+bn
步骤四,所述MCU微控制器将光电流值In以及其对应的光功率校准系数kn、bn以及步骤三中的公式,分别写入EEPPOM存储器中指定的校准区域,完成校准。
优选的是,其中,在步骤一中,所述光模块光电二极管为PIN光电二极管时,所述n的取值为2。
优选的是,其中,在步骤一中,所述光模块光电二极管为APD雪崩光电二极管时,所述n的取值为大于等于5。
优选的是,其中,在步骤二中,所述外部设备包括激光器和光衰减控制器,所述激光器产生激光信号,并通过光衰减器将所述激光信号调整成与各段光功率值PWRn对应的光信号输入至所述光模块的光电二极管中。
优选的是,其中,在步骤四中,所述MCU微控制器将光电流值In以及与其相对应光功率校准系数kn、bn,分别写入EEPPOM存储器中指定的校准区域时,对光电流值In以及光功率校准系数kn、bn按分段进行区分。
本发明的目的还可以进一步由一种采用所述校准方法的光模块来实现,包括:所述光模块的收端包括APD雪崩光电二极管、MCU微控制器,所述APD雪崩光电二极与MCU微控制器通过采样电路进行连接,且所述MCU微控制器还连接有EEPPOM存储器。
本发明的目的还可以进一步由一种采用校准后的光模块对其收端的光功率进行上报的方法来实现,包括以下步骤:
步骤一,所述光模块的APD雪崩光电二极管接收光信号,并将其转换成对应的光电流输出给采样电路,所述采样电路输出对应的光电流值I到MCU微控制器;
步骤二,所述光模块的MCU微控制器基于接收到的光电流值I,对存储在EEPPOM存储器校准区域中光电流值I进行查找,以找到光电流值I所对应的段,进而找到该段对应的光模块收端光功率校准系数k、b,并基于接收到的光电流值I,采用以下公式
PWR=k*I+b
计算得出此时光模块收端的光功率PWR值,以用于收端光功率值的监控上报。
本发明至少包括以下有益效果:其一,本发明的校准方法,其因通过对APD雪崩光电二极管的P-I曲线图进行分段,对每段分别采用一次函数进行分段线性按拟合,进而得到各段的校准系数,以保证收端光功率满足SFF-8472要求±3dB的精度要求。
其二,本发明的校准方法,其通过对P-I曲线的分段不同,使得其能适应PIN光电二极管或APD雪崩光电二极管不同型号的光模块,适用范围更大,适应性更强;且分段数越多,监控精度越高,当段数足够多时(n>5),可使收端光功率监控的精度远超SFF-8472协议的要求。
其三,本发明的校准方法,其对于光模块中的MCU微控制器而言,因其只需要进行一次函数的计算,校准系数只有两个常量,相对于传统的校准方法中复杂对数运算,其具有运算简单,易于实现的优点。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1为光模块中APD雪崩光电二极管的指数关系I-P曲线图;
图2为光模块中APD雪崩光电二极管的对数关系P-I曲线图;
图3为本发明的另一个实施例中APD雪崩光电二极管的分段线性按拟合的P-I曲线图;
图4为本发明的另一个实施例中光模块的结构示意图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。
根据本发明的一种对光模块收端光功率进行校准的方法实现形式,其主要用于在光模块生产过程中,所述光模块为SFP小型可热插拔光电收发模块,其中包括以下步骤:
步骤一,根据所述光模块中光电二极管的型号,将光模块接收端接收光信号额定范围的光功率PWR分为n段,且每段均对应一个光功率值PWRn,其中所述光功率PWR的取值范围为-6dBm~-32dBm,光模块的接收端均具有一个工作范围,这个范围由过载点~灵敏度点组成,且这个范围取决于光模块接收端的光器件,因此所述光功率PWR的取值范围取决于光模块中光电二极管的额定工作范围,其通常因光电二极管的额定工作范围或型号不同,其要求的范围也不同,因此其不是一个定值,所以本发明给出的取值范围为-6dBm~-32dBm,其只是一个典型值,其表达的是一种典型的APD雪崩光电二极管的过载典型值-6dBm,以及灵敏度的典型值-32dBm,超出这个范围,该型号的APD雪崩光电二极管就可能不工作或者损坏了,因此对于光模块中因其具体的光电二极管工作范围不同,而对本发明中的光功率PWR的取值范围进行的修改或替换,仍然在本发明的保护范围之内。
本发明的APD雪崩光电二极管的分段线性按拟合的P-I曲线图如图3所示,这里n的取值具体根据所述光模块中光电二极管的型号进行区分,根据不同的n的取值用于适应分别采用PIN光电二极管或APD雪崩光电二极管的SFP小型可热插拔光电收发模块的收端光功率的校准,而光功率PWR的取值范围正好是APD雪崩光电二极管的分段线性按拟合的P-I曲线中光功率的工作范围,不同的光功率值PWR就有一个对应的光电流值I,进而使得光功率值PWR与光电流值I在对应区间构成APD雪崩光电二极管的分段线性按拟合的P-I曲线图;
步骤二,所述光模块的光电二极管接收外部设备依次输入的光功率值PWRn对应的光信号,并将其转换成对应的光电流输出给所述光模块的采样电路,所述采样电路输出对应的光电流值In到MCU微控制器;
步骤三,所述MCU微控制器基于光功率值PWRn以及光电流值In,根据以下公式求出所述光模块接收端光功率PWR各段所对应的校准系数kn、bn
PWRn=kn*I+bn
其在对APD雪崩光电二极管的分段线性按拟合的P-I曲线图即曲线图中PWR的取值范围进行分段后,每段采用如上所示的一次函数公式进行拟合计算,以求得SFP小型可热插拔光电收发模块的收端光功率在不同的PWR的取值范围对应的各段校准系数kn、bn
步骤四,所述MCU微控制器将光电流值In以及其对应的光功率校准系数kn、bn以及步骤三中的公式,分别写入EEPPOM存储器中指定的校准区域,完成校准。本发明因通过对APD雪崩光电二极管的P-I曲线图进行分段,对每段分别采用一次函数进行分段线性按拟合,进而得到各段的校准系数,以保证收端光功率满足SFF-8472要求±3dB的精度要求;同时其分段还使得本校准方法能适应分别采用PIN光电二极管或APD雪崩光电二极管的SFP小型可热插拔光电收发模块的收端光功率的校准,具有适应范围广的有利之处;另外,因其在校准过程中,其MCU微控制器的运算为一次函数,其计算简单,运算速度快,不会造成资源的浪费,不会增大MCU微控制器负荷等问题,使得在后期光模块在工作时,具有提高MCU微控制运算及运行效率的有利之处,进而提高对光模块收端光功率数字监控上报的效率。并且,这种方式只是一种较佳实例的说明,但并不局限于此。
在另一种实例中,在步骤一中,所述光模块光电二极管为PIN光电二极管时,所述n的取值为2。采用这种方案应用于采用PIN光电二极管的SFP小型可热插拔光电收发模块的收端光功率的校准,其分段少却能实现保证收端光功率满足SFF-8472要求±3dB的精度要求,且其校准时,MCU微控制器只需要进行一次函数的计算,使得光模块在后期使用时,其具有运算简单,可实施性好、操作性强的有利之处。并且,这种方式只是一种较佳实例的说明,但并不局限于此。
在另一种实例中,在步骤一中,所述光模块光电二极管为APD雪崩光电二极管时,所述n的取值为大于等于5。采用这种方案应用于APD雪崩光电二极管的SFP小型可热插拔光电收发模块的收端光功率的校准,其n的取值为5时就能满足其形成的函数曲线就逼近了APD雪崩光电二极管的P-I曲线图,就能实现保证收端光功率满足SFF-8472要求±3dB的精度要求,同时分段越多,分段数越多,监控精度越高,当段数足够多时(n>5),其就无限逼近了APD雪崩光电二极管的分段线性按拟合的P-I曲线图,其在保证了协议精度为±3dB的要求的同时,甚至超过协议要求的监控精度,且其校准时,MCU微控制器只需要进行一次函数的计算,使得光模块在后期使用时,具有运算简单,可实施性好、操作性强的有利之处。并且,这种方式只是一种较佳实例的说明,但并不局限于此。
在另一种实例中,在步骤二中,所述外部设备包括激光器和光衰减控制器,所述激光器产生激光信号,并通过光衰减器将所述激光信号调整成与各段光功率值PWRn对应的光信号输入至所述光模块的光电二极管中。采用这种方案使得校准时,APD雪崩光电二极管的输入光功率可按需进行调整,相对于通过不同线缆的长度来实现光功率调调整的方法,具有操作简单,可行性好的有利之处。并且,这种方式只是一种较佳实例的说明,但并不局限于此。
在另一种实例中,在步骤四中,所述MCU微控制器将光电流值In以及与其对应的光功率校准系数kn、bn,分别写入EEPPOM存储器中指定的校准区域时,对光电流值In以及光功率校准系数kn、bn按分段进行区分。采用这种方案使得光模块后期使用时,其只需要通过采样到的光电流值I对相应的EEPPOM存储器中指定的校准区域进行查找,以通过光电流值I查找到对应的分段,进而查找到该段的校准系数kn、bn,以得到其此时的光功率值PWR完成数字监控上报的工作,其虽然相对于传统的方法多出查找这一步骤,但其查找范围小,查找速度比其MCU微控制器进行对数运算而言,其MCU微控制器不会造成资源的浪费,不会增大MCU微控制器负荷等问题,使得在后期光模块在工作时,具有提高MCU微控制运算及运行效率的有利之处,进而提高对光模块收端光功率数字监控上报的效率的有利之处。并且,这种方式只是一种较佳实例的说明,但并不局限于此。
如图4所示上述方案中的校准方法的光模块实现方式,包括:所述光模块1的收端10包括APD雪崩光电二极管11、MCU微控制器12,所述APD雪崩光电二极与MCU微控制器通过采样电路13进行连接,且所述MCU微控制器还连接有EEPPOM存储器14。采用这种方案具有使其校准方法具有可实施性的有利之处。并且,这种方式只是一种较佳实例的说明,但并不局限于此。
上述方案中的一种采用校准后的光模块对其收端的光功率进行上报的方法的一种实现方式,包括以下步骤:
步骤一,所述光模块的APD雪崩光电二极管接收光信号,并将其转换成对应的光电流输出给采样电路,所述采样电路输出对应的光电流值I到MCU微控制器;
步骤二,所述光模块的MCU微控制器基于接收到的光电流值I,对存储在EEPPOM存储器校准区域中光电流值I进行查找,以找到光电流值I所对应的段,进而找到该段对应的光模块收端光功率校准系数k、b,并基于接收到的光电流值I,采用以下公式
PWR=k*I+b
计算得出此时光模块收端的光功率PWR值,以用于收端光功率值的监控上报。采用这种方案在光模块正常工作时,因MCU微控制器只需要根据接收到的光电流的采样值,在EEPROM存储器中指定校准区域内进行查找,找到采样光电流值I对应的段数,进而该段对应的光功率校准系数k,b,再将其代入本方案中的一次函数公式计算,以得出本次采样对应的光功率值并上报,进而完成了光模块收端光功率的数字监控上报的工作,因其计算中最复杂的环节也只涉及一次函数运算,相对于传统校方法下光模块工作状态,其因不涉及对数关系运算,虽然多了查找的环节,但其查找范围有限,其查找速度迅速,相对于传统的校准方法,其使得MCU微控制器运算简单,其运算负荷量显著减少,其响应及运行速度得到显著提高,同时因本发明采用的采用一次函数的分段线性拟合曲线的方式逼近对数曲线的方法来拟合校准收端光功率的方法,使得其具有满足协议精度为±3dB的要求,甚至超过协议要求的监控精度的有利之处。并且,这种方式只是一种较佳实例的说明,但并不局限于此。
这里说明的设备数量和处理规模是用来简化本发明的说明的。对本发明的对光模块收端光功率进行校准的方法的应用、修改和变化对本领域的技术人员来说是显而易见的。
如上所述,根据本发明,其一,本发明的校准方法,其因通过对APD雪崩光电二极管的P-I曲线图进行分段,对每段分别采用一次函数进行分段线性按拟合,进而得到各段的校准系数,以保证收端光功率满足SFF-8472要求±3dB的精度要求。
其二,本发明的校准方法,其通过对P-I曲线的分段不同,使得其能适应PIN光电二极管或APD雪崩光电二极管不同型号的光模块,适用范围更大,适应性更强;且分段数越多,监控精度越高,当段数足够多时(n>5),可使收端光功率监控的精度远超SFF-8472协议的要求。
其三,本发明的校准方法,其对于光模块中的MCU微控制器而言,因其只需要进行一次函数的计算,校准系数只有两个常量,相对于传统的校准方法中复杂对数运算,其具有运算简单,易于实现的优点。
其四,采用本发明校准方法的光模块进行光功率数字监控上报,其光模块在工作时,MCU微控制器计算中最复杂的环节也只涉及一次函数运算,不涉及对数关系运算,相对于采用传统的校准方法的光模块进行光功率数字监控上报,其虽然多了查找的环节,但查找范围小,查找迅速,其相对于对数运算,其运算简单,解决了MCU微控制器复杂对数运算导致的MCU微控制器无法满足时序,资源的浪费,增大负荷等问题,使得MCU微控制器运算简单,其运算负荷量显著减少,其响应及运行速度得到显著提高。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用。它完全可以被适用于各种适合本实用的领域。对于熟悉本领域的人员而言,可容易地实现另外的修改。因此在不背离权利要求及等同范围所限定的一般概念下,本实用并不限于特定的细节和这里示出与描述的图例。

Claims (7)

1.一种对光模块的收端光功率进行校准的方法,所述光模块为SFP小型可热插拔光电收发模块,其特征在于,包括以下步骤:
步骤一,根据所述光模块中光电二极管的型号,将光模块接收端接收光信号额定范围所对应的光功率PWR分为n段,且每段均取一个对应的光功率值PWRn,其中所述光功率PWR的取值范围为-6dBm~-32dBm;
步骤二,所述光模块的光电二极管接收外部设备依次输入光功率值PWRn对应的光信号,并将其转换成对应的光电流输出给所述光模块的采样电路,所述采样电路输出对应的光电流值In到MCU微控制器;
步骤三,所述MCU微控制器基于光功率值PWRn以及光电流值In,根据以下公式求出所述光模块接收端光功率PWR各段所对应的校准系数kn、bn
PWRn=kn*I+bn
步骤四,所述MCU微控制器将光电流值In以及其对应的光功率校准系数kn、bn以及步骤三中的公式,分别写入EEPPOM存储器中指定的校准区域,完成校准。
2.如权利要求1所述的对光模块的收端光功率进行校准的方法,其特征在于,在步骤一中,所述光模块光电二极管为PIN光电二极管时,所述n的取值为2。
3.如权利要求2所述的对光模块的收端光功率进行校准的方法,其特征在于,在步骤一中,所述光模块光电二极管为APD雪崩光电二极管时,所述n的取值为大于等于5。
4.如权利要求2所述的对光模块的收端光功率进行校准的方法,其特征在于,在步骤二中,所述外部设备包括激光器和光衰减控制器,所述激光器产生激光信号,并通过光衰减器将所述激光信号调整成与各段光功率值PWRn对应的光信号输入至所述光模块的光电二极管中。
5.如权利要求1所述的对光模块的收端光功率进行校准的方法,其特征在于,在步骤四中,所述MCU微控制器将光电流值In以及与其相对应的光功率校准系数kn、bn,分别写入EEPPOM存储器中指定的校准区域时,对光电流值In以及光功率校准系数kn、bn按分段进行区分。
6.一种采用如权利要求1-5所述校准方法的光模块,其特征在于,包括:所述光模块的收端包括APD雪崩光电二极管、MCU微控制器,所述APD雪崩光电二极与MCU微控制器通过采样电路进行连接,且所述MCU微控制器还连接有EEPPOM存储器。
7.一种采用如权利要求6所述的光模块对其收端的光功率进行上报的方法,其特征在于,包括以下步骤:
步骤一,所述光模块的APD雪崩光电二极管接收光信号,并将其转换成对应的光电流输出给采样电路,所述采样电路输出对应的光电流值I到MCU微控制器;
步骤二,所述光模块的MCU微控制器基于接收到的光电流值I,对存储在EEPPOM存储器校准区域中光电流值I进行查找,以找到光电流值I所对应的段,进而找到该段对应的光模块收端光功率校准系数k、b,并基于接收到的光电流值I,采用以下公式
PWR=k*I+b
计算得出此时光模块收端的光功率PWR值,以用于收端光功率值的监控上报。
CN201510243080.8A 2015-05-13 2015-05-13 一种对光模块的收端光功率进行校准的方法 Pending CN104821845A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510243080.8A CN104821845A (zh) 2015-05-13 2015-05-13 一种对光模块的收端光功率进行校准的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510243080.8A CN104821845A (zh) 2015-05-13 2015-05-13 一种对光模块的收端光功率进行校准的方法

Publications (1)

Publication Number Publication Date
CN104821845A true CN104821845A (zh) 2015-08-05

Family

ID=53732029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510243080.8A Pending CN104821845A (zh) 2015-05-13 2015-05-13 一种对光模块的收端光功率进行校准的方法

Country Status (1)

Country Link
CN (1) CN104821845A (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105187134A (zh) * 2015-08-06 2015-12-23 普联技术有限公司 发射功率的闭环校准方法及装置
CN106330296A (zh) * 2016-08-31 2017-01-11 无锡市电子仪表工业有限公司 一种光模块参数校准、补偿和自修正的方法
CN106487445A (zh) * 2016-09-06 2017-03-08 深圳极智联合科技股份有限公司 一种bosa接收功率的校准方法和校准装置
CN107483111A (zh) * 2017-06-27 2017-12-15 青岛海信宽带多媒体技术有限公司 一种基于温度的光模块发射光功率的校准方法和装置
CN109327258A (zh) * 2018-11-01 2019-02-12 深圳市亚派光电器件有限公司 光模块收端光功率的校准方法、装置及可读存储介质
CN111060197A (zh) * 2019-11-27 2020-04-24 上海传输线研究所(中国电子科技集团公司第二十三研究所) 一种光电探测器及其校准与测试方法
CN111800190A (zh) * 2020-06-03 2020-10-20 武汉电信器件有限公司 基于雪崩光电二极管的光模块的信号强度校准方法及装置
CN112104417A (zh) * 2020-08-14 2020-12-18 武汉光迅科技股份有限公司 光功率检测及参数标定方法、装置、电子设备及存储介质
CN112290996A (zh) * 2020-11-05 2021-01-29 四川天邑康和通信股份有限公司 一种应用于pon组件自动测试系统的光衰减器补偿方法
CN112564826A (zh) * 2020-12-10 2021-03-26 四川华拓光通信股份有限公司 光模块收端监控光功率的校准方法
WO2021129764A1 (zh) * 2019-12-24 2021-07-01 深圳市中兴微电子技术有限公司 Bosa接收功率校准方法及装置
CN113281564A (zh) * 2021-05-26 2021-08-20 珠海格力电器股份有限公司 一种用电设备的耗电功率计算方法、处理器及用电设备
CN114966997A (zh) * 2021-02-20 2022-08-30 青岛海信宽带多媒体技术有限公司 一种光模块及接收光功率监控方法
CN115085804A (zh) * 2021-03-11 2022-09-20 青岛海信宽带多媒体技术有限公司 一种光模块及接收光功率计算方法
CN115548858A (zh) * 2022-11-24 2022-12-30 南京伟思医疗科技股份有限公司 具有多级能量监控和能量校正功能的激光器控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101086511A (zh) * 2007-06-12 2007-12-12 北京中星微电子有限公司 电能计量中的功率修正电路和功率修正方法
CN102252820A (zh) * 2011-06-22 2011-11-23 成都新易盛通信技术有限公司 光模块生产中的在线自动化测试系统
CN102394694A (zh) * 2011-11-02 2012-03-28 成都优博创技术有限公司 一种高采样精度的rssi监测电路
CN102610996A (zh) * 2012-01-19 2012-07-25 厦门优迅高速芯片有限公司 快速光功率校准方法及用于快速光功率校准的装置
CN103067077A (zh) * 2013-01-07 2013-04-24 青岛海信宽带多媒体技术有限公司 提高小光监控精度的采集装置及监控信号采集方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101086511A (zh) * 2007-06-12 2007-12-12 北京中星微电子有限公司 电能计量中的功率修正电路和功率修正方法
CN102252820A (zh) * 2011-06-22 2011-11-23 成都新易盛通信技术有限公司 光模块生产中的在线自动化测试系统
CN102394694A (zh) * 2011-11-02 2012-03-28 成都优博创技术有限公司 一种高采样精度的rssi监测电路
CN102610996A (zh) * 2012-01-19 2012-07-25 厦门优迅高速芯片有限公司 快速光功率校准方法及用于快速光功率校准的装置
CN103067077A (zh) * 2013-01-07 2013-04-24 青岛海信宽带多媒体技术有限公司 提高小光监控精度的采集装置及监控信号采集方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105187134A (zh) * 2015-08-06 2015-12-23 普联技术有限公司 发射功率的闭环校准方法及装置
CN105187134B (zh) * 2015-08-06 2018-09-28 普联技术有限公司 发射功率的闭环校准方法及装置
CN106330296A (zh) * 2016-08-31 2017-01-11 无锡市电子仪表工业有限公司 一种光模块参数校准、补偿和自修正的方法
CN106487445A (zh) * 2016-09-06 2017-03-08 深圳极智联合科技股份有限公司 一种bosa接收功率的校准方法和校准装置
CN106487445B (zh) * 2016-09-06 2019-04-12 深圳极智联合科技股份有限公司 一种bosa接收功率的校准方法和校准装置
CN107483111A (zh) * 2017-06-27 2017-12-15 青岛海信宽带多媒体技术有限公司 一种基于温度的光模块发射光功率的校准方法和装置
CN109327258A (zh) * 2018-11-01 2019-02-12 深圳市亚派光电器件有限公司 光模块收端光功率的校准方法、装置及可读存储介质
CN111060197A (zh) * 2019-11-27 2020-04-24 上海传输线研究所(中国电子科技集团公司第二十三研究所) 一种光电探测器及其校准与测试方法
WO2021129764A1 (zh) * 2019-12-24 2021-07-01 深圳市中兴微电子技术有限公司 Bosa接收功率校准方法及装置
CN111800190A (zh) * 2020-06-03 2020-10-20 武汉电信器件有限公司 基于雪崩光电二极管的光模块的信号强度校准方法及装置
CN112104417A (zh) * 2020-08-14 2020-12-18 武汉光迅科技股份有限公司 光功率检测及参数标定方法、装置、电子设备及存储介质
CN112104417B (zh) * 2020-08-14 2022-03-08 武汉光迅科技股份有限公司 光功率检测及参数标定方法、装置、电子设备及存储介质
CN112290996A (zh) * 2020-11-05 2021-01-29 四川天邑康和通信股份有限公司 一种应用于pon组件自动测试系统的光衰减器补偿方法
CN112564826A (zh) * 2020-12-10 2021-03-26 四川华拓光通信股份有限公司 光模块收端监控光功率的校准方法
CN114966997A (zh) * 2021-02-20 2022-08-30 青岛海信宽带多媒体技术有限公司 一种光模块及接收光功率监控方法
CN114966997B (zh) * 2021-02-20 2023-09-26 青岛海信宽带多媒体技术有限公司 一种光模块及接收光功率监控方法
CN115085804A (zh) * 2021-03-11 2022-09-20 青岛海信宽带多媒体技术有限公司 一种光模块及接收光功率计算方法
CN113281564A (zh) * 2021-05-26 2021-08-20 珠海格力电器股份有限公司 一种用电设备的耗电功率计算方法、处理器及用电设备
CN115548858A (zh) * 2022-11-24 2022-12-30 南京伟思医疗科技股份有限公司 具有多级能量监控和能量校正功能的激光器控制方法

Similar Documents

Publication Publication Date Title
CN104821845A (zh) 一种对光模块的收端光功率进行校准的方法
CN104836613A (zh) 一种对光模块的收端光功率进行校准的方法
CN103067077B (zh) 提高小光监控精度的采集装置及监控信号采集方法
CN101557601B (zh) 驻波检测方法、驻波检测装置和基站
CN103336255A (zh) 一种高精度故障指示器的校准方法
CN105656548A (zh) 基于gpon-olt突发接收光功率的检测系统及应用方法
CN203444012U (zh) 电力系统内宽范围电流的高精度快速测量电路
CN101394230A (zh) 智能10Gbps可插拔光收发模块及其主工作流程
CN104243025A (zh) 一种高精度消光比测试方法及系统
CN103746744B (zh) 一种支持apd应用的平均光电流监控电路
CN203104449U (zh) 提高小光监控精度的采集装置
CN102594448B (zh) 一种消光比测量装置
CN202050415U (zh) 聚变装置中模拟信号光纤直接隔离传输系统
CN103560791A (zh) 一种自动校准超高速dac采样窗时漂和温漂技术
CN201750415U (zh) 一种光收发模块的接收光功率监视电路
CN203423692U (zh) 一种兼容型平均光功率监控电路
CN201928240U (zh) 一种光agc控制电路
CN112564826B (zh) 光模块收端监控光功率的校准方法
CN102594458B (zh) 光控自动增益控制电路及控制电压的算法
CN204615829U (zh) 一种插损、回损、波长相关损耗测试装置
CN204578538U (zh) 光衰减器
CN102426057B (zh) 基于达林顿型光敏三极管的空间多点瞬时光强信号采集方法
CN204612901U (zh) 一种插损、回损、波长相关损耗测试装置
CN114826394B (zh) 一种高精度大动态范围的光信道衰减探测系统及方法
CN107483107A (zh) 带射频功率检测的光切换开关

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150805