CN104819098B - A kind of wind-power electricity generation maximum power tracking method of Speedless sensor - Google Patents

A kind of wind-power electricity generation maximum power tracking method of Speedless sensor Download PDF

Info

Publication number
CN104819098B
CN104819098B CN201510176090.4A CN201510176090A CN104819098B CN 104819098 B CN104819098 B CN 104819098B CN 201510176090 A CN201510176090 A CN 201510176090A CN 104819098 B CN104819098 B CN 104819098B
Authority
CN
China
Prior art keywords
mrow
msub
speed
fan
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510176090.4A
Other languages
Chinese (zh)
Other versions
CN104819098A (en
Inventor
王磊
罗治伟
苏晓杰
张虎
陈柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201510176090.4A priority Critical patent/CN104819098B/en
Publication of CN104819098A publication Critical patent/CN104819098A/en
Application granted granted Critical
Publication of CN104819098B publication Critical patent/CN104819098B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种无速度传感器的风力发电最大功率跟踪方法,其步骤为:1)通过实验获取最大风能捕获与电机转速之间的关系曲线;2)对发电机电磁转矩进行建模分析;3)在最大功率跟踪状态时对传动链模型进行分析;4)确定最佳输出功率与感应电机同步速度之间关系,并建立查找表;5)为系统设计一种自适应控制器。本发明不需要用测量风力发电机的转速以及风力大小和方向,就可以实现风力发电机在低风速时的最大功率跟踪。由于风的大小和方向受各种原因的影响很难保证一直不变,准确测量过程复杂并提高了系统成本。因此,本发明有效地解决了常规风力发电系统需要测量风力大小和方向所面临的测量难题,在一定程度上减少了系统成本。

The invention discloses a method for tracking the maximum power of wind power generation without a speed sensor. The steps are as follows: 1) obtaining the relationship curve between the maximum wind energy capture and the motor speed through experiments; 2) modeling and analyzing the electromagnetic torque of the generator ;3) Analyze the transmission chain model in the state of maximum power tracking; 4) Determine the relationship between the optimal output power and the synchronous speed of the induction motor, and establish a look-up table; 5) Design an adaptive controller for the system. The invention can realize the maximum power tracking of the wind power generator at low wind speed without measuring the speed of the wind power generator and the size and direction of the wind force. Because the magnitude and direction of the wind are affected by various reasons, it is difficult to ensure that it remains constant, and the accurate measurement process is complicated and increases the system cost. Therefore, the present invention effectively solves the measurement difficulties faced by the conventional wind power generation system when it needs to measure the magnitude and direction of wind force, and reduces the system cost to a certain extent.

Description

一种无速度传感器的风力发电最大功率跟踪方法A wind power generation maximum power tracking method without speed sensor

技术领域technical field

本发明涉及一种风力发电系统最大功率跟踪控制领域,尤其涉及一种不需要速度传感器的最大功率跟踪的控制方法。The invention relates to the field of maximum power tracking control of a wind power generation system, in particular to a control method for maximum power tracking that does not require a speed sensor.

背景技术Background technique

风在空间和时间上很难保证一直不变,加之其不可预测性、间歇性,风能的充分利用面临着诸多挑战。目前风力发电系统中用的较多的是变速定浆系统,风机所获得风能与风轮的叶尖速和风速的比值(叶尖速比)相关。在风速较低的时候,控制的目的就是随着风速变化,通过电力电子装置调整风机的转速,使叶尖比处于最佳值,保证风机所捕获的风能最大,发电效率最高。Wind is difficult to keep constant in space and time, coupled with its unpredictability and intermittent nature, the full utilization of wind energy faces many challenges. At present, variable-speed fixed-pitch systems are mostly used in wind power generation systems. The wind energy obtained by the fan is related to the ratio of the tip speed of the wind rotor to the wind speed (tip speed ratio). When the wind speed is low, the purpose of the control is to adjust the speed of the fan through the power electronic device as the wind speed changes, so that the blade tip ratio is at the optimum value, so as to ensure the maximum wind energy captured by the fan and the highest power generation efficiency.

现有的风力发电系统最大功率跟踪控制方法主要有以下几种:The existing maximum power tracking control methods for wind power generation systems mainly include the following types:

1)直接转速控制法:随着风速的变化,测量风速以及风机转速的大小,通过调整风机的转速使叶尖比保持不变,且为最佳恒定值,以达到最大功率跟踪的目的。该方法若要正常运行,测量风速以及风机转速大小是必不可缺的过程,而风速的大小却难以准确测量,并且速度传感器的使用,增加了系统的运行成本。1) Direct speed control method: As the wind speed changes, measure the wind speed and the fan speed, and adjust the fan speed to keep the blade tip ratio constant and the best constant value, so as to achieve the purpose of maximum power tracking. For this method to work normally, it is an indispensable process to measure the wind speed and the fan speed, but it is difficult to measure the wind speed accurately, and the use of speed sensors increases the operating cost of the system.

2)扰动观察法(爬坡法):对风机的转速进行适当的扰动△ωw之后观察风机获取机械功率的变化△Pw,直到(△Pw/△ωw)=0,此时风机所捕获的风能最大。此种控制策略虽然不需要风机的各个参数以及在不同风速下风机所能获得的最大风能先验知识,但是这种控制仅仅适用于小惯性风机系统,对于具有中等或者较大惯性的风机系统,风机的转速不能随着风速的变化迅速变化,导致控制效果下降,并且还需要速度传感器,增加了运行成本。2) Disturbance observation method (climbing method): Appropriately disturb the speed of the fan △ω w and then observe the change of the mechanical power obtained by the fan △P w until (△P w /△ω w )=0, at this time the fan Maximum wind energy captured. Although this control strategy does not require prior knowledge of the various parameters of the fan and the maximum wind energy that the fan can obtain at different wind speeds, this control is only suitable for small inertia fan systems. For fan systems with medium or large inertia, The speed of the fan cannot change rapidly with the change of the wind speed, resulting in a decrease in the control effect, and a speed sensor is also required, which increases the operating cost.

3)功率反馈法(最佳功率—转速曲线法):此策略首先需要获取最大风能捕获与风机转速之间的关系曲线,控制的目的就是通过测量风机转速的大小确定风机最大风能捕获,作为控制器的基准值。此方法虽然不需要测量风速的大小,但面临着测量风机转速以及风机输出最大功率的问题,只能处在最大功率跟踪的次优状态,基本可以达到最大功率跟踪的目的。3) Power feedback method (optimal power-speed curve method): This strategy first needs to obtain the relationship curve between the maximum wind energy capture and the fan speed. The purpose of control is to determine the maximum wind energy capture of the fan by measuring the fan speed, as a control the benchmark value of the device. Although this method does not need to measure the wind speed, it faces the problem of measuring the fan speed and the maximum output power of the fan. It can only be in the suboptimal state of maximum power tracking, and can basically achieve the purpose of maximum power tracking.

发明内容Contents of the invention

针对现有技术中存在的上述不足,本发明提供了一种减少控制系统成本的无速度传感器的风力发电最大功率跟踪方法。Aiming at the above-mentioned deficiencies in the prior art, the present invention provides a method for tracking the maximum power of wind power generation without a speed sensor that reduces the cost of the control system.

为了解决上述技术问题,本发明采用了如下技术方案:In order to solve the problems of the technologies described above, the present invention adopts the following technical solutions:

一种无速度传感器的风力发电最大功率跟踪方法,该方法包括如下步骤:A wind power generation maximum power tracking method without a speed sensor, the method comprising the steps of:

1)通过实验获取最大风能捕获与电机转速之间的关系曲线:1) Obtain the relationship curve between the maximum wind energy capture and the motor speed through experiments:

风轮捕获的气动功率与风机转速之间的关系为The relationship between the aerodynamic power captured by the wind rotor and the fan speed is

风机的机械转矩与风机转速之间的关系为The relationship between the mechanical torque of the fan and the fan speed is

其中,Pwopt为最大捕获功率,ωwopt为Pwopt所对应的风机最佳转速,ρ为空气密度;R为叶轮旋转平面半径,Cpopt)为最佳叶尖比所对应的风能利用系数,λ=ωwR/ν为叶尖速比,ωw为风机的角速度,ν为风速;Among them, P wopt is the maximum capture power, ω wopt is the optimal fan speed corresponding to P wopt , ρ is the air density; R is the radius of the impeller rotation plane, C popt ) is the wind energy corresponding to the optimal tip ratio Utilization factor, λ=ω w R/ν is the tip speed ratio, ω w is the angular velocity of the fan, and ν is the wind speed;

变速定浆风力发电系统,随着风速的大小调节风机转速使风机叶尖比处于最佳值,风机能够达到最大风能捕获,所能捕获的最大风能与风机转速的立方成正比;Variable-speed fixed-pitch wind power generation system, adjust the fan speed according to the wind speed so that the tip ratio of the fan is at the optimum value, the fan can achieve the maximum wind energy capture, and the maximum wind energy that can be captured is proportional to the cube of the fan speed;

2)对发电机电磁转矩进行建模分析:2) Modeling and analysis of generator electromagnetic torque:

发电机的电磁转矩为The electromagnetic torque of the generator is

其中:ωs为发电机的同步速度,rr为发电机转子电阻,Irs)为发电机的转子电流,s为发电机的转差率,发电机的转速用ωr表示,则s表示为Among them: ω s is the synchronous speed of the generator, r r is the rotor resistance of the generator, I rs ) is the rotor current of the generator, s is the slip ratio of the generator, and the rotational speed of the generator is represented by ω r , Then s is expressed as

与发电机的电磁转矩相关的变量仅为ωs、ωr,故发电机的电磁转矩表示为Tesr);The variables related to the electromagnetic torque of the generator are only ω s and ω r , so the electromagnetic torque of the generator is expressed as T esr );

3)在最大功率跟踪状态时对传动链模型进行分析:3) Analyze the transmission chain model in the state of maximum power tracking:

由于发电机与传动机构相连,若忽略静态和粘性磨擦,其高速轴的方程表达为Since the generator is connected with the transmission mechanism, if the static and viscous friction are ignored, the equation of the high-speed shaft is expressed as

式中,J为风机高速轴的转动惯量;Tmec为风机的机械转矩;Te为发电机的电磁转矩,In the formula, J is the moment of inertia of the high-speed shaft of the fan; T mec is the mechanical torque of the fan; T e is the electromagnetic torque of the generator,

由公式(5)可知,当风力发电系统在最大功率跟踪状态稳定运行时,则Tmec,Tesr)满足It can be known from formula (5) that when the wind power generation system operates stably in the maximum power tracking state, then T mec , T esr ) satisfy

通过公式(1)、公式(2)可知,当捕获功率Pwopt已知时,可以确定风机最佳转速ωwopt以及风机的最佳转矩Tmecopt,且两者一一对应;通过公式(6)以及已知的Tmecopt,ωropt可以确定发电机最佳同步速度ωs,最终可以确定发电机最大功率跟踪时机械转矩大小与发电机同步速度之间的关系即Tmeopts);It can be seen from formula (1) and formula (2) that when the capture power P wopt is known, the optimal fan speed ω wopt and the optimal torque T mecopt of the fan can be determined, and there is a one-to-one correspondence between the two; through the formula (6 ) and the known T mecopt , ω ropt can determine the optimal synchronous speed ω s of the generator, and finally determine the relationship between the mechanical torque and the synchronous speed of the generator during maximum power tracking of the generator, namely T meopts ) ;

4)确定最佳输出功率与感应电机同步角速度之间关系,并建立查找表:4) Determine the relationship between the optimal output power and the synchronous angular velocity of the induction motor, and establish a lookup table:

风机最佳发电功率与发电机的电磁转矩和转速的关系表示为The relationship between the optimal power generation of the wind turbine and the electromagnetic torque and speed of the generator is expressed as

Pωoptsopt)=Tmeoptsopt)×ωropt(Tmeopt) (7)P ωoptsopt )=T meoptsopt )×ω ropt (T meopt ) (7)

当输入电源的角速度为ωe,对应的发电机的同步角速度为ωs时,由于机械损耗,铜耗的存在,发电机的输出电功率为Pgopt满足下式When the angular velocity of the input power supply is ω e and the synchronous angular velocity of the corresponding generator is ω s , due to the existence of mechanical loss and copper loss, the output electric power of the generator is P gopt satisfying the following formula

Pgopt=Pwoptsopt)-Pmech-less-3rs|Is|2-3rr|Ir|2 (8)P gopt =P woptsopt )-P mech-less -3r s |I s | 2 -3r r |I r | 2 (8)

其中:3rs|Is|2、3rr|Ir|2分别为在发电机定子和转子上的铜耗,Pmech-less为机械损耗,将不同的ωsopt分别代入式(8)可以得到发电机最大输出功率Pgopt,进而可以确定Pgopt与ωs的关系,并可以将它们之间的关系逐个存入表中,建立查找表。Among them: 3r s |I s | 2 , 3r r |I r | 2 are the copper losses on the stator and rotor of the generator respectively, and P mech-less is the mechanical loss. Substituting different ω sopt into formula (8) can be The maximum output power P gopt of the generator is obtained, and then the relationship between P gopt and ω s can be determined, and the relationship between them can be stored in the table one by one to establish a lookup table.

本发明的有益效果是:本发明不需要用测量风力发电机的转速以及风力大小和方向,就可以实现风力发电机在低风速时的最大功率跟踪。由于风的大小和方向受各种原因的影响很难保证一直不变,准确测量过程复杂并且增加了系统的成本。因此,本发明有效地解决了常规风力发电系统需要测量风力大小和方向所面临的测量难题,在一定程度上减少了系统运行成本。The beneficial effect of the invention is that the invention can realize the maximum power tracking of the wind generator at low wind speed without measuring the rotational speed of the wind generator and the magnitude and direction of the wind force. Because the magnitude and direction of the wind are affected by various reasons, it is difficult to ensure that it remains constant, and the accurate measurement process is complicated and increases the cost of the system. Therefore, the present invention effectively solves the measurement difficulties faced by the conventional wind power generation system when it needs to measure the magnitude and direction of wind force, and reduces the system operating cost to a certain extent.

附图说明Description of drawings

图1为无速度传感器的风力发电最大功率跟踪原理图;Figure 1 is a schematic diagram of maximum power tracking of wind power generation without a speed sensor;

图2为最大捕获功率与风机转速的关系曲线;Figure 2 is the relationship curve between the maximum captured power and the fan speed;

图3为感应电机等效模型;Figure 3 is an equivalent model of an induction motor;

图4为查找表的建立过程示意图;Fig. 4 is the schematic diagram of the establishment process of look-up table;

图5为无速度传感器的风力发电最大功率跟踪电路控制图;Fig. 5 is the control diagram of the maximum power tracking circuit of wind power generation without speed sensor;

图6为风速为某一给定值时最大功率跟踪分析示意图。Fig. 6 is a schematic diagram of maximum power tracking analysis when the wind speed is a given value.

具体实施方式detailed description

下面结合附图和具体实施方式对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.

一种无速度传感器的风力发电最大功率跟踪方法,其原理如图1所示,该方法包括如下步骤:A wind power generation maximum power tracking method without a speed sensor, its principle is as shown in Figure 1, and the method comprises the following steps:

1)通过实验获取最大风能捕获与电机转速之间的关系曲线:1) Obtain the relationship curve between the maximum wind energy capture and the motor speed through experiments:

由空气动力学理论可得风轮捕获的气动功率表示为According to the aerodynamic theory, the aerodynamic power captured by the wind wheel can be expressed as

式中:ρ为空气密度;R为叶轮旋转平面半径;Cp(λ,β)为风力机的风能利用系数;β为桨距角;ν为风速;λ=ωwR/ν为叶尖速比,ωw为风机的角速度。在最大功率跟踪阶段,一般只调节风机的转速,而桨距角保持不变。此阶段控制的目的就是随着风速改变相应地改变风机的角速度,使λ值处于最佳叶尖比值,则风能利用系数Cp(λ,β)保持不变;In the formula: ρ is the air density; R is the radius of the impeller rotation plane; C p (λ, β) is the wind energy utilization coefficient of the wind turbine; β is the pitch angle; ν is the wind speed; λ=ω w R/ν is the blade tip Speed ratio, ω w is the angular velocity of the fan. In the maximum power tracking stage, generally only the fan speed is adjusted, while the pitch angle remains unchanged. The purpose of the control at this stage is to change the angular velocity of the fan accordingly with the change of the wind speed, so that the λ value is at the optimal blade tip ratio, and the wind energy utilization coefficient C p (λ, β) remains unchanged;

风轮捕获的气动功率与风机转速之间的关系为The relationship between the aerodynamic power captured by the wind rotor and the fan speed is

风机的机械转矩与风机转速之间的关系为The relationship between the mechanical torque of the fan and the fan speed is

其中,ωwopt为捕获功率Pwopt所对应的风机最佳转速,Cpopt)为最佳叶尖比所对应的风能利用系数。最大捕获功率与风机转速的关系曲线如图2所示。由公式(2)和公式(3)可知,Pwopt、Tmecopt均是关于ωwopt的单调递增函数,且均与ωwopt一一对应。Among them, ω wopt is the optimal fan speed corresponding to the captured power P wopt , and C popt ) is the wind energy utilization coefficient corresponding to the optimal blade tip ratio. The relationship curve between the maximum captured power and the fan speed is shown in Figure 2. It can be known from formula (2) and formula (3) that both P wopt and T mecopt are monotonously increasing functions about ω wopt and correspond to ω wopt one-to-one.

变速定浆风力发电系统,随着风速的大小调节风机转速使风机叶尖比处于最佳值,风机能够达到最大风能捕获,所能捕获的最大风能与风机转速的立方成正比。The variable-speed fixed-pitch wind power generation system adjusts the fan speed according to the wind speed so that the tip ratio of the fan is at an optimal value, and the fan can achieve the maximum wind energy capture, and the maximum wind energy that can be captured is proportional to the cube of the fan speed.

2)对发电机电磁转矩进行建模分析:2) Modeling and analysis of generator electromagnetic torque:

异步电机在基频以下运行时,如果磁通太弱,则没有充分利用电机铁心;如果磁通过大,导致铁心饱和产生过大的励磁电流,严重时还会因绕组过热而损坏电机。故定子端电压通常采用恒压频比控制方式,即保持VSe不变,其中VS定子端电压,ωe为定子端电源角速度。ωs为发电机的同步速度,且其满足ωs=2ωe/np,np代表电磁极对数。故若定子端电压采用恒压频比控制方式,则VSs也将保持不变,定子端电压VS可以表示为V(ωs)。When the asynchronous motor is running below the base frequency, if the magnetic flux is too weak, the motor core will not be fully utilized; if the magnetic flux is large, the core will be saturated to generate excessive excitation current, and in severe cases, the motor will be damaged due to overheating of the winding. Therefore, the stator terminal voltage usually adopts a constant voltage frequency ratio control method, that is, keeps V Se unchanged, where V S stator terminal voltage, ω e is the angular velocity of the stator terminal power supply. ω s is the synchronous speed of the generator, and it satisfies ω s =2ω e /n p , and n p represents the number of electromagnetic pole pairs. Therefore, if the stator terminal voltage adopts the constant voltage frequency ratio control method, V Ss will also remain unchanged, and the stator terminal voltage V S can be expressed as V(ω s ).

感应电机的等效模型如图3所示,其中Ir为等效电路转子电流,Is为等效电路定子电流可分别表示为The equivalent model of the induction motor is shown in Fig. 3, where Ir is the rotor current of the equivalent circuit, and Is is the stator current of the equivalent circuit, which can be expressed as

发电机的电磁转矩表示为The electromagnetic torque of the generator is expressed as

其中:ωs为发电机的同步速度,rr为发电机转子电阻,Irs)为发电机的转子电流,s为发电机的转差率,发电机的转速用ωr表示,则s表示为Among them: ω s is the synchronous speed of the generator, r r is the rotor resistance of the generator, I rs ) is the rotor current of the generator, s is the slip ratio of the generator, and the rotational speed of the generator is represented by ω r , Then s is expressed as

由上述公式(4)、公式(5)、公式(6)和公式(7)可知,与发电机的电磁转矩相关的变量仅为ωs、ωr,发电机的电磁转矩可以表示为Tesr)。From the above formula (4), formula (5), formula (6) and formula (7), it can be seen that the variables related to the electromagnetic torque of the generator are only ω s and ω r , and the electromagnetic torque of the generator can be expressed as T esr ).

3)在最大功率跟踪状态时对传动链模型进行分析:3) Analyze the transmission chain model in the state of maximum power tracking:

由于发电机与传动机构相连,若忽略静态和粘性磨擦,其高速轴的方程表达为Since the generator is connected with the transmission mechanism, if the static and viscous friction are ignored, the equation of the high-speed shaft is expressed as

式中,J为风机高速轴的转动惯量;Tmec为风机的机械转矩;Te为发电机的电磁转矩。In the formula, J is the moment of inertia of the high-speed shaft of the fan; T mec is the mechanical torque of the fan; T e is the electromagnetic torque of the generator.

根据动力学理论对发电机系统的传动链进行分析可知,在最大功率跟踪时,只有当风机的最佳机械转矩Tmecopt与发电机的电磁转矩Te大小相等、方向相反时,发电系统才能够稳定运行于最大功率跟踪状态。由公式(8)可知,当风力发电系统在最大功率跟踪状态稳定运行时,则Tmec,Tesr)满足According to the analysis of the transmission chain of the generator system according to the dynamic theory, in the case of maximum power tracking, only when the optimal mechanical torque T mecopt of the fan and the electromagnetic torque T e of the generator are equal in magnitude and opposite in direction, the power generation system Only then can it run stably in the maximum power tracking state. It can be known from formula (8) that when the wind power generation system operates stably in the maximum power tracking state, then T mec , T esr ) satisfy

通过公式(2)、公式(3)可知,当捕获功率Pwopt已知时可以确定风机最佳转速ωwopt以及风机的最佳转矩Tmecopt,且两者一一对应;通过公式(9)以及已知的Tmecopt,ωropt可以确定发电机当前的最佳同步速度ωs,即可以最终确定发电机最大功率跟踪时机械转矩大小与发电机同步速度之间的关系即Tmeopts)。From formula (2) and formula (3), it can be seen that when the capture power P wopt is known, the optimal fan speed ω wopt and the optimal torque T mecopt of the fan can be determined, and there is a one-to-one correspondence between them; through formula (9) As well as the known T mecopt , ω ropt can determine the current optimal synchronous speed ω s of the generator, that is, the relationship between the mechanical torque and the synchronous speed of the generator during maximum power tracking of the generator can be finally determined, that is, T meopts ).

4)确定最佳输出功率与感应电机同步角速度之间关系,并建立查找表:4) Determine the relationship between the optimal output power and the synchronous angular velocity of the induction motor, and establish a lookup table:

风机最佳发电功率与发电机的电磁转矩和转速的关系为The relationship between the optimal power generation of the wind turbine and the electromagnetic torque and speed of the generator is

Pωoptsopt)=Tmeoptsopt)×ωropt(Tmeopt) (10)P ωoptsopt )=T meoptsopt )×ω ropt (T meopt ) (10)

当输入电源的角速度为ωe,对应的发电机的同步角速度为ωs时,由于机械损耗,铜耗的存在,风机的输出电功率为Pgopt满足下式When the angular velocity of the input power supply is ω e and the synchronous angular velocity of the corresponding generator is ω s , due to the existence of mechanical loss and copper loss, the output power of the fan is P gopt satisfying the following formula

Pgopt=Pwoptsopt)-Pmech-less-3rs|Is|2-3rr|Ir|2 (11)P gopt =P woptsopt )-P mech-less -3r s |I s | 2 -3r r |I r | 2 (11)

其中:3rs|Is|2、3rr|Ir|2分别为在风机定子和转子上的铜耗,Pmech-less为机械损耗,机械损耗Pmech-less与转速以及发电机的参数相关。将不同的ωsopt分别代入式(11)可以得到发电机最大输出功率Pgopt,进而可以确定Pgopt与ωs的关系,并可以将它们之间的关系逐个存入表中,最后建立它们之间一一对应的离散数组,建立查找表,整个过程如图4所示。Among them: 3r s |I s | 2 , 3r r |I r | 2 are the copper loss on the fan stator and rotor respectively, P mech-less is the mechanical loss, and the mechanical loss P mech-less is related to the speed and the parameters of the generator relevant. Substituting different ω sopt into equation (11) can obtain the maximum output power P gopt of the generator, and then determine the relationship between P gopt and ω s , and store the relationship between them in the table one by one, and finally establish their relationship One-to-one correspondence between the discrete array, the establishment of a lookup table, the whole process is shown in Figure 4.

本发明还为无速度传感器的风力发电最大功率跟踪方法设计了一种自适应控制器,自适应调节同步速度的基本算法为The present invention also designs an adaptive controller for the maximum power tracking method of wind power generation without a speed sensor, and the basic algorithm for adaptively adjusting the synchronous speed is

ωs(k)=ωs(k-1)+△ωs(k) (12)ω s (k)=ω s (k-1)+△ω s (k) (12)

式中:k为自适应周期的序号;为增益,它可以缩放自适应调节同步速度ωs步的大小,提高控制的快速性。其中In the formula: k is the sequence number of the adaptive cycle; As a gain, it can scale and adaptively adjust the synchronous speed ω s step size, and improve the rapidity of control. in

式中,n为自适应周期内采样的次数。In the formula, n is the number of sampling in the adaptive cycle.

无速度传感器的风力发电最大功率跟踪电路控制如图5所示,现在对其工作原理进行一定的分析,当风速为某一给定值时,风能捕获与风机转速、风机转矩与风机转速的关系曲线以及发电机在不同同步速度下的电磁转矩与发电机在传动链左侧的等效转速的关系曲线如图6所示。当风机运行于OP1点,发电机的同步速度为ωs1。通过调整发电机网侧电源的频率,使ωs在ωs1与ωsopt之间以适当的速度增加,由于Te<Tw故风机做加速运动,直至达到最佳速度为止。同理,当风机运行于OP2点,发电机的同步速度为ωs2。通过调整发电机网侧电源的频率,使ωs在ωs2与ωsopt之间以适当的速度减小,由于Te>Tw故风机做减速运动,直至达到最佳速度为止。The maximum power tracking circuit control of wind power generation without speed sensor is shown in Figure 5. Now, its working principle is analyzed to a certain extent. When the wind speed is a given value, the relationship between wind energy capture and fan speed, fan torque and fan speed The relationship curve and the relationship curve between the electromagnetic torque of the generator at different synchronous speeds and the equivalent speed of the generator on the left side of the transmission chain are shown in Figure 6. When the fan runs at OP1, the synchronous speed of the generator is ω s1 . By adjusting the frequency of the grid-side power supply of the generator, ω s increases at an appropriate speed between ω s1 and ω sopt . Since T e < T w , the fan accelerates until it reaches the optimal speed. Similarly, when the fan runs at OP2, the synchronous speed of the generator is ω s2 . By adjusting the frequency of the grid-side power supply of the generator, ω s decreases at an appropriate speed between ω s2 and ω sopt . Since T e > T w , the fan decelerates until it reaches the optimal speed.

最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it is noted that the above embodiments are only used to illustrate the technical solutions of the present invention without limitation. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be carried out Modifications or equivalent replacements without departing from the spirit and scope of the technical solution of the present invention shall be covered by the claims of the present invention.

Claims (1)

1.一种无速度传感器的风力发电最大功率跟踪方法,其特征在于,该方法包括如下步骤:1. a wind power generation maximum power tracking method without speed sensor, is characterized in that, the method comprises the steps: 1)通过实验获取风轮捕获的气动功率与电机转速之间的关系曲线:1) Obtain the relationship curve between the aerodynamic power captured by the wind wheel and the motor speed through experiments: 风轮捕获的气动功率与风机转速之间的关系为The relationship between the aerodynamic power captured by the wind rotor and the fan speed is <mrow> <msub> <mi>P</mi> <mrow> <mi>w</mi> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mi>&amp;rho;&amp;pi;R</mi> <mn>5</mn> </msup> <msub> <mi>C</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <msup> <mi>&amp;lambda;</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>w</mi> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> <mn>3</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>P</mi> <mrow> <mi>w</mi> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mi>&amp;rho;&amp;pi;R</mi> <mn>5</mn> </msup> <msub> <mi>C</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <msup> <mi>&amp;lambda;</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>w</mi> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> <mn>3</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> 风机的机械转矩与风机转速之间的关系为The relationship between the mechanical torque of the fan and the fan speed is <mrow> <msub> <mi>T</mi> <mrow> <mi>m</mi> <mi>e</mi> <mi>c</mi> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mrow> <mi>w</mi> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <msub> <mi>&amp;omega;</mi> <mrow> <mi>w</mi> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>T</mi> <mrow> <mi>m</mi> <mi>e</mi> <mi>c</mi> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mrow> <mi>w</mi> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <msub> <mi>&amp;omega;</mi> <mrow> <mi>w</mi> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> 其中,Pwopt为风轮捕获的气动功率,ωwopt为Pwopt所对应的风机最佳转速,ρ为空气密度;R为叶轮旋转平面半径,Cpopt)为最佳叶尖速比所对应的风能利用系数,λ=ωwR/ν为叶尖速比,ωw为风机的角速度,ν为风速;Among them, P wopt is the aerodynamic power captured by the wind rotor, ω wopt is the optimal fan speed corresponding to P wopt , ρ is the air density; R is the radius of the impeller rotation plane, C popt ) is the optimal tip speed ratio The corresponding wind energy utilization coefficient, λ=ω w R/ν is the blade tip speed ratio, ω w is the angular velocity of the fan, and ν is the wind speed; 变速定桨风力发电系统,随着风速的大小调节风机转速使风机叶尖速比处于最佳值,风机能够达到最大风能捕获,所能捕获的最大风能与风机转速的立方成正比;Variable-speed fixed-pitch wind power generation system adjusts the fan speed according to the wind speed so that the fan blade tip speed ratio is at the optimum value, and the fan can achieve the maximum wind energy capture, and the maximum wind energy that can be captured is proportional to the cube of the fan speed; 2)对发电机电磁转矩进行建模分析:2) Modeling and analysis of generator electromagnetic torque: 发电机的电磁转矩表示为The electromagnetic torque of the generator is expressed as <mrow> <msub> <mi>T</mi> <mi>e</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mo>|</mo> <msub> <mi>I</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mn>2</mn> </msup> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>/</mo> <mi>s</mi> </mrow> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>T</mi> <mi>e</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mo>|</mo> <msub> <mi>I</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mn>2</mn> </msup> <msub> <mi>r</mi> <mi>r</mi> </msub> <mo>/</mo> <mi>s</mi> </mrow> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> 其中:ωs为发电机的同步速度,rr为发电机转子电阻,Irs)为发电机的转子电流,s为发电机的转差率,发电机的转速用ωr表示,则s表示为Among them: ω s is the synchronous speed of the generator, r r is the rotor resistance of the generator, I rs ) is the rotor current of the generator, s is the slip ratio of the generator, and the rotational speed of the generator is represented by ω r , Then s is expressed as <mrow> <mi>s</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> </mrow> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>s</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> </mrow> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> 与发电机的电磁转矩相关的变量仅为ωs、ωr,发电机的电磁转矩表示为Tesr);The variables related to the electromagnetic torque of the generator are only ω s and ω r , and the electromagnetic torque of the generator is expressed as T esr ); 3)在最大功率跟踪状态时对传动链模型进行分析:3) Analyze the transmission chain model in the state of maximum power tracking: 由于发电机与传动机构相连,若忽略静态和粘性磨擦,风机高速轴的方程表达为Since the generator is connected with the transmission mechanism, if the static and viscous friction are ignored, the equation of the high-speed shaft of the fan is expressed as <mrow> <mi>J</mi> <mfrac> <mrow> <msub> <mi>d&amp;omega;</mi> <mi>r</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>T</mi> <mrow> <mi>m</mi> <mi>e</mi> <mi>c</mi> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>T</mi> <mi>e</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>J</mi> <mfrac> <mrow> <msub> <mi>d&amp;omega;</mi> <mi>r</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>T</mi> <mrow> <mi>m</mi> <mi>e</mi> <mi>c</mi> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>T</mi> <mi>e</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> 式中,J为风机高速轴的转动惯量;Tmecopt为风机的机械转矩;Te为发电机的电磁转矩;In the formula, J is the moment of inertia of the high-speed shaft of the fan; T mecopt is the mechanical torque of the fan; T e is the electromagnetic torque of the generator; 由公式(5)可知,当风力发电系统在最大功率跟踪状态稳定运行时,则Tmecopt,Tesr)满足It can be known from formula (5) that when the wind power generation system operates stably in the maximum power tracking state, then T mecopt , T esr ) satisfy <mrow> <msub> <mi>T</mi> <mrow> <mi>m</mi> <mi>e</mi> <mi>c</mi> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>T</mi> <mi>e</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mn>3</mn> <mo>|</mo> <msub> <mi>I</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mn>2</mn> </msup> <msub> <mi>r</mi> <mi>r</mi> </msub> </mrow> <mrow> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>T</mi> <mrow> <mi>m</mi> <mi>e</mi> <mi>c</mi> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>T</mi> <mi>e</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mn>3</mn> <mo>|</mo> <msub> <mi>I</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mn>2</mn> </msup> <msub> <mi>r</mi> <mi>r</mi> </msub> </mrow> <mrow> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> 通过公式(1)、公式(2)可知,当风轮捕获的气动功率Pwopt已知时,可以确定风机最佳转速ωwopt以及风机的机械转矩Tmecopt,且两者一一对应;通过公式(6)以及已知的Tmecopt,ωr可以确定当前发电机的同步速度ωs,即可以最终确定发电机最大功率跟踪时风机的机械转矩与发电机同步速度之间的关系即Tmecopts);According to formula (1) and formula (2), when the aerodynamic power P w o pt captured by the wind rotor is known, the optimal fan speed ω wopt and the mechanical torque T mecopt of the fan can be determined, and there is a one-to-one correspondence between them ; Through the formula (6) and the known T mecopt , ω r can determine the synchronous speed ω s of the current generator, that is, the relationship between the mechanical torque of the fan and the synchronous speed of the generator can be finally determined when the maximum power of the generator is tracked That is T mecopts ); 4)确定最佳输出功率与感应电机同步角速度之间关系,并建立查找表:4) Determine the relationship between the optimal output power and the synchronous angular velocity of the induction motor, and establish a lookup table: 风轮捕获的气动功率与风机的机械转矩和转速的关系为The relationship between the aerodynamic power captured by the wind wheel and the mechanical torque and speed of the fan is Pωopts)=Tmecopts)×ωr(Tmecopt) (7)P ωopts )=T mecopts )×ω r (T mecopt ) (7) 当输入电源的角速度为ωe,对应的发电机的同步速度为ωs时,由于机械损耗,铜耗的存在,风机的输出电功率为Pgopt满足下式When the angular velocity of the input power supply is ω e and the corresponding synchronous speed of the generator is ω s , due to the mechanical loss and copper loss, the output power of the fan is P gopt satisfying the following formula Pgopt=Pwopts)-Pmech-less-3rs|Is|2-3rr|Ir|2 (8)P gopt =P wopts )-P mech-less -3r s |I s | 2 -3r r |I r | 2 (8) 其中:3rs|Is|2、3rr|Ir|2分别为在风机定子和转子上的铜耗,Pmech-less为机械损耗,将不同的ωs分别代入式(8)可以得到风机的输出电功率Pgopt,进而可以确定Pgopt与ωs的关系,并可以将它们之间的关系逐个存入表中,建立查找表。Among them: 3r s |I s | 2 , 3r r |I r | 2 are the copper loss on the fan stator and rotor respectively, P mech-less is the mechanical loss, and substituting different ω s into formula (8) respectively can be obtained The output electric power P gopt of the fan, and then the relationship between P gopt and ω s can be determined, and the relationship between them can be stored in a table one by one to establish a lookup table.
CN201510176090.4A 2015-04-15 2015-04-15 A kind of wind-power electricity generation maximum power tracking method of Speedless sensor Expired - Fee Related CN104819098B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510176090.4A CN104819098B (en) 2015-04-15 2015-04-15 A kind of wind-power electricity generation maximum power tracking method of Speedless sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510176090.4A CN104819098B (en) 2015-04-15 2015-04-15 A kind of wind-power electricity generation maximum power tracking method of Speedless sensor

Publications (2)

Publication Number Publication Date
CN104819098A CN104819098A (en) 2015-08-05
CN104819098B true CN104819098B (en) 2017-10-10

Family

ID=53729525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510176090.4A Expired - Fee Related CN104819098B (en) 2015-04-15 2015-04-15 A kind of wind-power electricity generation maximum power tracking method of Speedless sensor

Country Status (1)

Country Link
CN (1) CN104819098B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106194603B (en) * 2016-08-31 2018-10-19 沈阳航空航天大学 A kind of device and method of synchronism detection wind energy conversion system pneumatic efficiency and generating efficiency
CN110966142B (en) * 2018-09-28 2021-06-22 北京金风科创风电设备有限公司 Control method and device for wind turbine
CN112968511B (en) * 2021-02-09 2024-05-17 广东逸动科技有限公司 Marine propeller charging control method and system and marine propeller

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2381094B1 (en) * 2010-04-13 2013-04-23 Gamesa Innovation & Technology, S.L. METHODS OF MONITORING OF AEROGENERATORS
CN102108937A (en) * 2011-02-25 2011-06-29 南京航空航天大学 Wind-speed and rotating-speed sensorless full-wind-speed control strategy for fixed propeller-pitch variable speed permanent magnet synchronous wind generator set
CN103701388B (en) * 2013-11-06 2017-01-11 国家电网公司 Selection method for speed identification strategy of permanent magnet direct drive wind power system
CN103899480B (en) * 2014-03-21 2016-11-16 上海大学 Maximum Power Point Tracking Method of Wind Power System Based on Boost Converter

Also Published As

Publication number Publication date
CN104819098A (en) 2015-08-05

Similar Documents

Publication Publication Date Title
Belmokhtar et al. Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator)
CN1732617B (en) Power generation system and its control method
CN106655945B (en) A kind of PMSM maximum torque per ampere control method with mechanical elastic energy storage device
CN102072083B (en) Maximum wind energy tracking method for double-fed wind power generation system
CN110345013B (en) Magnetic suspension vertical axis wind turbine generator control method based on neural network model predictive control
CN104819098B (en) A kind of wind-power electricity generation maximum power tracking method of Speedless sensor
Bansal et al. CM-scale air turbine and generator for energy harvesting from low-speed flows
CN105221353B (en) Method for diagnosing impeller pneumatic asymmetric fault of double-fed wind generating set
CN104612904B (en) A kind of double feed wind power generator group maximal wind-energy capture method
Sarkar et al. A study of MPPT schemes in PMSG based wind turbine system
CN102305875B (en) Measuring method for effective wind speed of wind generating set and measuring device for implementing method
CN104763586A (en) Control method and equipment used for wind power generator set
CN110360051A (en) One kind is small-sized to determine paddle permanent magnet synchronous wind generator group controller
CN102749955B (en) Tracking control method for maximum power of wind and photovoltaic complementary power generation system
CN103899480B (en) Maximum Power Point Tracking Method of Wind Power System Based on Boost Converter
CN103117693A (en) Wind turbine simulator without operating rotating speed differential and control method thereof
Shao et al. Vector control of the brushless doubly-fed machine for wind power generation
CN104865401A (en) Wind speed detection method used for wind power generator set and device thereof
CN104234934A (en) Wind power generator rotating speed control method
JP4082054B2 (en) Maximum power point tracking control method and apparatus for wind power generation equipment
Putri et al. Modeling and control of permanent magnet synchronous generator variable speed wind turbine
Thongam et al. A method of tracking maximum power points in variable speed wind energy conversion systems
CN101383577B (en) Tracking control method for maximum wind energy of electrically excited doubly salient pole wind turbine system
CN103066904B (en) Tracking control method of maximum power of permanent magnetic wind generator
CN210218187U (en) Pneumatic efficiency test device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171010

Termination date: 20190415