CN104811994A - 接近度检测 - Google Patents

接近度检测 Download PDF

Info

Publication number
CN104811994A
CN104811994A CN201510039962.2A CN201510039962A CN104811994A CN 104811994 A CN104811994 A CN 104811994A CN 201510039962 A CN201510039962 A CN 201510039962A CN 104811994 A CN104811994 A CN 104811994A
Authority
CN
China
Prior art keywords
equipment
period
channel
message
control message
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510039962.2A
Other languages
English (en)
Other versions
CN104811994B (zh
Inventor
I·诺尔斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imagination Technologies Ltd
Original Assignee
Imagination Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imagination Technologies Ltd filed Critical Imagination Technologies Ltd
Priority to CN201911022531.XA priority Critical patent/CN110636454B/zh
Publication of CN104811994A publication Critical patent/CN104811994A/zh
Application granted granted Critical
Publication of CN104811994B publication Critical patent/CN104811994B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/12Arrangements for observation, testing or troubleshooting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/65Arrangements characterised by transmission systems for broadcast
    • H04H20/71Wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/35Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users
    • H04H60/49Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying locations
    • H04H60/51Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying locations of receiving stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • H04W40/16Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality based on interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Abstract

接近度检测。本发明提供了一种估计网络中的第一设备与第二设备的接近度的方法,各设备能够根据无线通信协议进行通信,该方法包括:在所述第一设备处分析第一消息,根据所述协议,所述第一消息被构造成致使所述第一设备在第一时段期间执行第一测量;通过所述网络广播第二消息,根据所述协议,所述第二消息指示所述网络中的设备在所述第一时段期间不进行发送,以能够执行所述第一测量;在所述第二设备处,忽略所述指示并且在所述第一时段期间发送第一信号;在所述第一设备处,在所述第一时段期间响应于所述第一控制消息执行所述第一测量;根据所述第一信号的强度,形成所述第一设备与所述第二设备的接近度的度量。

Description

接近度检测
技术领域
本发明涉及用于估计无线设备与一个或多个其它无线设备的接近度的方法、装置和系统。
背景技术
以高数据速率进行无线数据通信的能力带来了一些新型改进的应用和设备。传统上有线连接的一些系统现在通过用无线能力取代连线而正得到改进。例如,传统的5.1环绕声系统需要六个扬声器,这些扬声器位于房间内的不同部分并且连线到中央接收器。许多用户发现,安装这种系统所需的布线非常不方便并且麻烦。因此,多扬声器系统配备有无线能力,让用户容易安装和使用这些系统。
一些无线多扬声器系统采用与系统中的扬声器无线连接的集线器。集线器可存储用户的音乐收藏并且可控制系统中扬声器的输出。用户可借助(例如)集线器上的用户接口或连接到集线器的设备来选择扬声器的输出。在多房间环境中,例如,扬声器可设置在房屋内的各房间中。用户可借助集线器选择哪个扬声器将提供音频输出并且集线器将音频数据发送到所选择的扬声器,供重放。这样允许用户收听扬声器所处的任何房间中的音频,而不需要每个房间独立存储音乐。
通常,采用集线器的这种系统在专有的对等网(peer-to-peer mesh)网络进行操作。这种专有系统为所有者提供了用他们的专用设备实现不同功能的灵活性、控制和自由度。然而,这种专有系统的问题在于,它们不可兼容来自其它卖家的设备。这样会限制其它卖家制造用于无线扬声器系统的设备(诸如,额外的扬声器或媒体源),因此也限制了顾客的选择。
因此,需要允许设备在诸如无线多房间环境的环境下保持与其它设备兼容的同时具有额外功能的技术。
发明内容
根据本发明的第一方面,提供了一种估计包括至少第一设备和第二设备的设备的网络中所述第一设备与所述第二设备的接近度的方法,所述网络中的各设备能够根据预定无线通信协议进行通信,该方法包括:在所述第一设备处分析第一控制消息,根据所述通信协议,所述第一控制消息被构造成致使所述第一设备在第一时段期间执行第一信道质量测量;通过所述网络广播第二控制消息,根据所述通信协议,所述第二控制消息指示与所述网络连接的设备在所述第一时段期间不进行发送,以能够执行所述第一信道质量测量;在所述第二设备处,忽略所述指示并且在所述第一时段的至少一部分期间发送第一信号;在所述第一设备处,在所述第一时段期间响应于所述第一控制消息执行所述第一信道质量测量;根据在所述第一设备处接收的所述第一信号的强度,形成所述第一设备与所述第二设备的接近度的度量。
所述方法还可包括以下步骤:在所述第二设备处,发送所述第一控制消息。所述第二设备可广播所述第二控制消息。
所述设备的网络可包括第三设备,所述方法还可包括以下步骤:在所述第三设备处,发送所述第一控制消息。所述方法还可包括以下步骤:在所述第三设备处,将发送时间消息发送到所述第二设备,所述发送时间消息被构造成致使所述第二设备执行所述发送的步骤。
可在第一设备处生成第一控制消息。
优选地,以预定模式调节所述第一信号的发送功率。优选地,所述形成的步骤包括分析第一报告消息以检测所述预定模式的表示,所述第一报告消息包括指示所述第一设备处的接收功率的柱状图。
优选地,所述方法还包括以下步骤:分析第一报告消息,根据所述第一通信协议,所述第一报告消息指示所述第一信道质量测量的结果。
优选地,所述方法还包括以下步骤:在第三设备或所述第三设备处,在第二时段的至少一部分期间发送第二信号。可在大致相同的功率下发送第一信号和第二信号。所述形成的步骤可附加地根据在所述第一设备处接收的所述第二信号的强度。所述形成的步骤可包括比较所述第一信号的强度与所述第二信号的强度,以确定所述第二设备和所述第三设备中的哪个最靠近所述第一设备。所述方法还可包括以下步骤:在所述第一设备处,选择媒体进行回放;选择确定的所述第二设备或所述第三设备;在所选择的所述第二设备或所述第三设备处回放所选择的所述媒体。
优选地,所述方法还包括以下步骤:广播第三控制消息,根据所述通信协议,所述第三控制消息能够致使设备在第三时段期间不进行发送;在所述第一设备处,在所述第三时段期间执行第二信道质量测量,其中,所述形成的步骤附加地根据所述第二信道质量测量。
优选地,所述预定无线通信协议是IEEE 802.11协议。优选地,所述第一控制消息包括所述IEEE 802.11协议定义的测量请求元素。
根据本发明的第二方面,提供了一种估计包括至少第一设备和第二设备的设备的网络中所述第一设备与所述第二设备的接近度的无线设备,所述网络中的各设备能够根据预定无线通信协议进行通信,该无线设备包括:控制器,其被构造成产生第一控制消息,根据所述通信协议,所述第一控制消息被构造成致使所述第二设备在第一时段期间执行第一信道质量测量;收发器,其通过所述网络广播第二控制消息,根据所述通信协议,所述第二控制消息指示与所述网络连接的设备在所述第一时段期间不进行发送,以能够执行所述第一信道质量测量;所述控制器被进一步构造成致使所述第一设备忽略所述指示并且在所述第一时段的至少一部分期间发送第一信号;接近度估计器,其被构造成根据在所述第二设备处接收的所述第一信号的强度,形成所述第一设备与所述第二设备的接近度的度量。
所述无线设备可以是所述第一设备,所述收发器可被进一步构造成:将所述第一控制消息发送到所述第二设备;从所述第二设备接收第一报告消息。优选地,所述第一报告根据所述通信协议指示所述第一信道质量测量的结果。
所述控制器可被构造成产生发送时间消息;所述收发器被构造成将所述发送时间消息发送到所述第一设备,以致使所述第一设备忽略所述指示并且发送所述第一信号。
无线设备可以是第二设备。
所述收发器可被进一步构造成:将所述第一控制消息发送到所述第二设备;从所述第二设备接收第一报告消息,根据所述通信协议,所述第一报告消息指示所述第一信道质量测量的结果。
根据本发明的第三方面,提供了一种估计包括至少第一设备和第二设备的设备的网络中所述第一设备与所述第二设备的接近度的方法,所述网络中的各设备能够根据预定无线通信协议进行通信,该方法包括:选择用于执行第一信道质量测量的第一信道,所述第一信道是没有被所述设备的网络使用的信道;在所述第一设备处接收第一控制消息,根据所述通信协议,所述第一控制消息被构造成致使所述第一设备在第一时段期间在所述第一信道上执行第一信道质量测量;在所述第二设备处,在所述第一时段的至少一部分期间在所述第一信道上发送第一信号;在所述第一设备处,在所述第一时段期间响应于所述第一控制消息执行所述第一信道质量测量;根据在所述第一设备处接收的所述第一信号的强度,形成所述第一设备与所述第二设备的接近度的度量。
所述方法还可包括在所述第一时段的至少一部分期间在第二信道上保持所述第一设备和所述第二设备之间的连接的步骤。
所述方法还可包括在所述第一时段的至少一部分期间在第二信道上保持所述第二设备和第三设备之间的连接的步骤。
所述设备的网络可包括第三设备,所述方法还可包括以下步骤;在所述第三设备处,发送所述第一控制消息;在所述第三设备处,将发送时间消息发送到所述第二设备,所述发送时间消息被构造成致使所述第二设备执行所述发送的步骤。
所述方法还可包括以下步骤:在所述第二设备处,在所述发送的步骤之前,禁用所述第二设备和所述第一设备之间的连接,所述连接是通过第二信道进行的。
所述设备的网络可包括第四设备,所述方法还包括在所述第一时段的至少一部分期间在第二信道上保持所述第三设备和所述第四设备之间的连接的步骤。
根据本发明的第四方面,提供了一种估计包括至少第一设备和第二设备的设备的网络中所述第一设备与所述第二设备的接近度的无线设备,所述网络中的各设备被构造成根据预定无线通信协议通过通信信道进行通信,该无线设备包括:控制器,其被构造成选择用于执行第一信道质量测量的第一信道,所述第一信道为不是所述通信信道的信道;收发器,其被构造成将第一控制消息发送到所述第二设备,根据所述通信协议,所述第一控制消息被构造成致使所述第二设备在第一时段期间在所述第一信道上执行所述第一信道质量测量;控制器,其被进一步构造成致使所述第一设备在所述第一时段的至少一部分期间发送第一信号;接近度估计器,其被构造成根据在所述第二设备处接收的所述第一信号的强度,形成所述第一设备与所述第二设备的接近度的度量。
所述第一设备可以是所述无线设备,所述收发器可被进一步构造成:将所述第一控制消息发送到所述第二设备;从所述第二设备接收第一报告消息。优选地,所述第一报告根据所述通信协议指示所述第一信道质量测量的结果。
所述控制器可被构造成产生发送时间消息;所述收发器可被构造成将所述发送时间消息发送到所述第一设备,以致使所述第一设备忽略所述指示并且发送所述第一信号。
根据本发明的第五方面,提供了一种用于实现所述方法的机器可读代码。
根据本发明的第六方面,提供了一种上面编码有用于实现所述方法的非暂态机器可读代码的机器可读存储介质。
附图说明
现在,将参照附图通过示例的方式描述本发明,其中:
图1示出包括无线设备的示例网络;
图2示出用于估计无线设备与其它无线设备的接近度的示例过程;
图3示出用于估计无线设备与其它无线设备的接近度的另一个示例过程;
图4a和图4b示出用于估计无线设备与其它无线设备的接近度的又一个示例过程;
图5是接入点的示意图;
图6是无线站的示意图;
图7是示出针对干扰信号的示例功率传输模式的图表;
图8a和图8b是接收功率指示器(RPI)报告中的示例柱状图;
图9a是示出针对干扰信号的示例功率传输模式的图表;
图9b是示出在不同距离测得的接收功率的图表;
图10a至图10d是在图9b的不同距离测得的接收功率的示例RPI柱状图。
具体实施方式
提出下面的描述,使本领域的任何技术人员能够制成和使用本发明,并且是在特定应用的背景下提供的。本领域的技术人员将容易清楚对公开的实施方式的各种修改形式。
在不脱离本发明的精神和范围的情况下,本文中限定的总体原理可应用于其它实施方式和应用。因此,本发明不旨在限于示出的实施方式,而是将被赋予与本文公开的原理和特征一致的最广范围。
Wi-Fi通信协议通常被用于计算设备、网络服务器等之间的许多无线应用。它越来越多地被用于诸如流送或回放音频和/或视频数据的功能的家庭应用和诸如使用便携式游戏设备进行游戏的其它多媒体应用。将参照可根据IEEE 802.11Wi-Fi通信协议进行操作的设备和网络描述以下公开的方法、设备和网络。以下描述的总体原理可应用于根据诸如蓝牙的其它通信协议进行操作的设备和系统。
图1是示出可例如在具有接入点(AP)10和多个无线站(STA)11、12的家庭中实现的示例网络100的示意图。在一个示例中,AP 10和STA 11、12可以是诸如无线扬声器的媒体回放设备。AP 10可连接到媒体源。媒体源可位于互联网中(例如,流送服务),连接到AP 10(例如,存储在本地计算机、移动设备或网络驱动器上),或可源自STA之一(例如,媒体可经由DAB进行广播并且在配备有DAB接收器的一个STA处被接收并且通过Wi-Fi被提供到另一个STA)或者存储在STA上。用户可操作便携式设备13,便携式设备13可以是例如智能电话、平板、笔记本、手表等,其能够经由Wi-Fi连接到AP 10或者在一些模式(诸如,Wi-Fi直连)下连接到STA 11或12中的一个。
在一些应用中,可有利的是,确定便携式设备13相对于AP 10和STA 11、12的位置。例如,在多房间媒体环境中,可有利的是,确定用户(可正携带着便携式设备13)相对于无线扬声器的位置,无线扬声器可以是AP 10和STA 11、12。通过确定便携式设备13的位置,可选择最接近便携式设备13的AP 10或STA 11或12进行例如音频的回放。
可通过操纵Wi-Fi标准的某些特征来估计便携式设备13与AP 10或STA 11、12的接近度,而不打破该标准展示的规则。根据标准,这些特征用于除了确定Wi-Fi设备相对于其它Wi-Fi设备的接近度之外的目的。通过以新方式利用这些特征,设备可以与该标准相符并且根据该标准进行操作并且还能够提供在该标准中未定义的接近度估计的新特征。
图2示出用于估计便携式设备13与AP 10和STA 11的接近度的过程。用于估计便携式设备13与STA 12的接近度的过程与针对STA11的过程类似。
在本文描述的示例构成中,无线网络100可在基础构架模式下或者在点对点(ad-hoc)或独立基本服务集(IBSS)模式下操作。在IBSS模式下,AP 10可以是作为软件启用接入点(softAP)操作的STA。softAP可连接到另一个AP(未示出),以能够将数据发送到IBSS并且从IBSS发送数据。
AP 10将第一控制消息发送到便携式设备13。第一控制消息可以是诸如测量请求201的符合Wi-Fi标准的消息。根据该标准,这种测量请求用于避免与干扰系统(诸如,雷达系统)共信道操作,从而收集关于信道状态的信息,以辅助进行新信道选择,并且评定信道上存在的总体干扰水平。因此,这种测量请求传统上被Wi-Fi兼容设备用于检测干扰,以避免具有高干扰的信道。
如Wi-Fi标准所要求的,测量请求201包含接收STA执行指定测量动作的请求。AP 10能够指定测量请求201的某些参数(诸如,测量类型(可以是基本请求、空闲信道估计(CCA)请求或接收功率指示器(RPI)柱状图请求)、信道编号、测量起始时间和测量持续时间)。因此,AP 10能够指定便携式设备13执行测量的时段t1。
AP 10广播第二控制消息(可具有与第一控制消息不同的格式),第二控制消息可致使接收消息的设备在指定的时段期间保持安静(即,不发送)。控制消息可以是包含安静元素(下文中,被称为安静消息202)的帧(诸如,信标帧或探测响应帧)。如Wi-Fi标准指定的,发送一个或多个安静元素允许安排安静间隔,在安静间隔期间,在当前信道中将不发生网络100上的发送。AP 10可使用安静元素内的字段(诸如,安静计数、安静周期、安静持续时间和安静偏移量)来指定网络中的设备将保持安静的时段。AP 10广播安静消息202,可被网络中的设备(例如,STA 11和12和便携式设备13)接收,来指示这些设备在指定时段t1期间保持安静。通过广播安静消息202,AP 10还指示它本身在指定时段t1期间保持安静。安静消息中的指定时段可以是在测量请求201中指定的相同时段t1。这样允许便携式设备13执行测量,而没有STA 11和12的干扰,因为它们在安静间隔205和206期间将不进行发送。
便携式设备13在时段t1期间执行测量请求201所指定的测量。在时段t1的至少一部分期间,AP 10发送第一信号204。通过产生和广播安静消息202,还需要AP 10保持安静。然而,AP 10忽略保持安静的这条指令并且在安静间隔期间没有保持安静使得它可发送第一信号204。在执行测量的同时(如果便携式设备13此时处于一定范围内),便携式设备13能检测第一信号204。第一信号204将在上面正在执行测量203的信道(可在测量请求201中指定)上发送。第一信号204的发送功率可以处于预定功率水平。
可在时段t1的全部或一部分期间发送第一信号204。例如,可在时段t1的一半期间发送第一信号204。通过以预定模式变化第一信号204的功率,可以确定在测量203期间测得的信号是第一信号204。以下标题为“检测预定功率模式”的小节提供如何可识别第一信号204的示例。
在时段t1过去之后,测量过程203、第一信号204的发送和安静间隔205和206将结束。
根据Wi-Fi标准,响应于测量请求201,便携式设备13发送测量报告207,测量报告207提供在测量过程203期间收集的测量信息。测量报告207可由AP 10接收。根据测量报告207,AP 10可形成便携式设备13与AP 10的接近度的度量。测量报告207提供的测量信息可指示AP 10发送的第一信号204。当测量203正在发生的同时其它STA 11和12安静时,在便携式设备13处的接收功率可大部分来自第一信号204和任何背景噪声(可如下所述地被扣除)。因此,测量报告207中提供的信息可指示第一信号204的接收功率(STA 11和12并没有任何发送),该接收功率可用于估计便携式设备13与AP 10的接近度。
测量报告207可包括RPI柱状图报告,如Wi-Fi标准中定义的。RPI柱状图报告包括八个RPI级或“桶(bucket)”的在测量时段203期间观察到的RPI密度。这可提供便携式设备13处的第一信号204的接收功率水平的指示,从而可提供便携式设备13与AP 10的接近度的指示。例如,如果RPI柱状图报告在RPI 0(功率≤-87dBm)比在较高RPI密度下具有数量更大的RPI密度,则这可表明便携式设备13相对远离AP 10。如果RPI柱状图报告在RPI 7(-57dBm<功率)比在较低RPI密度下具有数量更大的RPI密度,则这可表明便携式设备13相对接近AP 10。因此,可通过分析RPI柱状图报告来形成AP 10和便携式设备13之间的距离的度量。以下,在“检测预定功率模式”子节中给出可如何利用RPI柱状图报告提供设备接近度的指示的示例。
AP 10还可估计便携式设备13与STA 11的接近度。以下描述的步骤208至215描述了用于估计便携式设备13与STA 11的接近度的过程。这些步骤可独立于步骤201至207中的上述便携式设备13与AP 10的接近度测量来执行。另选地,除了便携式设备13与AP 10的接近度测量之外,还可执行步骤208至215。
AP 10将第二测量请求208发送到便携式设备13。测量请求208可指定与测量请求201相同的参数,但测量起始时间不同。因此,AP 10能够指定便携式设备13执行第二测量211的第二时段t2。AP 10广播第二安静消息209,从而指示网络100中的设备(包括AP 10本身)在时段t2期间保持安静。
AP 10将消息(下文中,被称为发送时间消息210)发送到STA 11,指示STA 11在时段t2的至少一部分期间发送第二信号212。可在AP广播第二安静消息209之前或之后(但在第二测量211之前)发送发送时间消息。发送时间消息210可指示第二信号212的参数,使得STA 11发送与第一信号204具有基本上类似性质(诸如,发送功率、功率变化模式、信道等)的第二信号212。第一信号204和第二信号212的性质可以是预定的,使得AP 10和STA 11和12默认地发送具有相同预定性质的信号。当估计便携式设备13与STA 11的接近度时,优选地,第一信号204和第二信号212具有类似的性质。这样允许比较这些信号的测量结果,以确定便携式设备13相对于AP 10和STA 11的接近度。在时段t2期间,AP 10将保持安静(即,不发送)。可通过发送安静消息209或者通过发送发送时间消息210来触发AP 10的这个安静间隔213。
STA 11接收发送时间消息210,发送时间消息210致使STA 11忽略(或,换句话讲,无视)安静消息209中保持安静的指令并且在第二时段t2期间发送第二信号212。
发送时间消息210可以是在比Wi-Fi命令更高的级下发送的消息。例如,发送时间消息210可以是通过高于低级Wi-Fi功能的层(例如,UPNP命令层或应用层)发送的消息,并且允许网络中的设备交换数据。
在第二时段t2期间,便携式设备13执行第二测量211,STA 11发送第二信号212并且AP 10和STA 12在安静间隔213和214期间不发送。因此,便携式设备13能够从STA 11接收第二信号212,而没有来自AP 11和STA 12的干扰。根据Wi-Fi标准,从便携式设备13向AP 10发送第二测量报告215,指示来自STA 11的第二信号212的接收功率。例如,如果第二测量报告包括RPI柱状图报告,如上所述,便携式设备13与STA 12的接近度的度量可以例如是仅仅基于第二测量报告。另选地,接近度的度量可以是基于第一测量报告和第二测量报告的比较。可比较第一测量报告207和第二测量报告215中指示的接收功率水平,以估计AP 10和STA 11相对于便携式设备13的接近度。例如,如果报告207和215指示第二测量211期间接收的功率大于第一测量203期间接收的功率,则AP 10可确定STA 11比AP 10更接近便携式设备13。
在本文描述的过程中,AP 10可通过向便携式设备13发送额外的执行背景测量的测量请求来确定背景噪声功率。AP 10可广播额外的安静消息,使得网络中的设备(包括AP 10)在背景测量期间是安静的。这些安静消息与安静消息202和209类似,然而,它们将不被忽略,因为网络中的所有设备将需要保持安静,以发生背景测量。背景测量检测到的功率水平可以被从测量过程203和211期间接收到的功率水平中扣除,以根据第一信号204和第二信号212提供对接收功率更准确的测量。
可按与STA 11的方式类似的方式,估计STA 12(和与AP 10连接的任何STA)与便携式设备13的接近度。可独立于指示来自网络中的其它设备的接收功率的其它测量报告来执行接近度估计。另选地,可基于指示来自AP 10和/或STA 11的接收功率的一个或多个额外的测量报告207和/或215来执行STA 12的接近度估计。
AP 10可从便携式设备13接收多个测量报告,各报告指示网络中的设备(AP 10和STA 11、12)发送的信号的接收功率水平。各报告中的功率水平提供发送设备与测量设备的距离的指示,在这种情况下,测量设备是便携式设备13。通过比较各报告的功率水平,可以确定发送设备与便携式设备13的相对接近度。
可使用便携式设备13与AP 10和STA 11和12的接近度估计值来选择AP 10、STA 11或STA 12中最接近便携式设备13的一个。这个对最接近设备的选择可以是例如选择最接近用户智能电话的无线扬声器。可针对连接到AP 10的所有设备周期性执行接近度估计,因为便携式设备13可移动到不同位置,因此最接近便携式设备13的设备10、11或12会发生变化。因此,在多房间环境中,携带诸如智能电话的便携式设备13的用户可从第一个房间移动到第二个房间并且让第二个房间中的扬声器自动播放正在第一个房间中播放的音乐,而用户不必选择第二个房间中的扬声器。AP 10可确定哪个扬声器最接近用户,选择最接近用户的扬声器,并且将消息发送到最接近的扬声器来播放音乐。如果正在播放音乐的扬声器不是最接近用户的扬声器,则AP10还可向该扬声器发送停止播放音乐的消息。
接近度测量的顺序可被存储在例如AP中的应用层程序中并且在其中进行分析,以确定便携式设备13是固定的还是移动的,或者追踪相对于设备10、11或12中的一个或多个的移动。这可用于预测移动(例如,背离或向着给定设备10、11或12移动),或者可与一天当中的时间的信息相关联,从而为便携式设备13的给定用户生成典型的移动模式(例如,一天当中在特定房间中花费的一定时间)。
在上述的过程中,便携式设备13执行的步骤(例如,接收测量请求、响应于该请求并且根据该请求执行测量、发送测量报告、接收安静消息等)可由符合Wi-Fi标准的任何设备执行。另外,STA执行的一些步骤可由符合Wi-Fi标准的任何设备执行(例如,接收安静消息并且响应于该安静消息不发送)。
AP 10和STA 11和12执行的一些步骤可不符合Wi-Fi标准(例如,在作为接收到的第二安静消息209中指定的安静间隔的时段t2期间忽略第二安静消息209以发送第二信号212)。在这种情况下,STA 11接收发送时间消息210(可例如根据诸如UPnP的更高级协议进行传送),发送时间消息210致使STA 11无视该STA 11的Wi-Fi控制器安排的任何动作并且替代地发送由发送时间消息210指定的第二信号212。
通过允许Wi-Fi MAC层上方的层(例如,应用)控制Wi-Fi MAC层的一般在Wi-Fi标准下将不被允许的某些方面,可以进行上述无视动作。
图3示出用于估计便携式设备13与AP 10和STA 11的接近度的另一个过程。在这个过程中,便携式设备13处的Wi-Fi MAC层的某些方面能够由诸如应用的更高层来控制。
步骤301至308描述了用于估计便携式设备13与AP 10的接近度的过程。步骤309至316描述了用于估计便携式设备13与STA 11的接近度的另一个过程。用于估计便携式设备13与STA 11的接近度的过程可独立于如步骤301至308中描述的、用于估计便携式设备13与AP 10的接近度的过程来执行。另选地,除了步骤301至308之外,还可执行步骤309至316,以估计便携式设备13与AP 10和/或STA 11的接近度。
AP 10处的诸如应用的更高级实体可触发将控制消息发送到AP 10的较低MAC层。例如,控制消息301可以是符合Wi-Fi标准的消息,诸如,MLME-MEASURE.request消息。MLME-MEASURE.request消息致使AP 10以与上述的测量请求201和208类似的方式执行测量。控制消息301能够指定AP执行测量305的时段t3。与以上类似地,AP 10广播安静消息302,安静消息302指明网络100中的设备在时段t3期间保持安静。
AP 10将发送时间消息303(类似于上述的发送时间消息210)发送到便携式设备13,从而指示便携式设备13在时段t3的至少一部分期间发送信号304。信号304可与上述的信号204和212类似。发送时间消息303致使便携式设备13忽视安静消息302并且在时段t3期间发送信号304。发送时间消息303可在安静消息302之前或之后(但在测量时段305之前)发送。
在时段t3期间,AP 10执行被请求的测量305,便携式设备13发送信号304并且STA 11和12在安静间隔306和307期间保持安静。因此,AP 10能够从便携式设备13接收信号304,而没有来自STA 11和12的任何潜在干扰。
AP 10可产生测量报告308(可类似于上述的测量报告207和215),测量报告308指示来自便携式设备13的信号304的接收功率。测量报告308可根据Wi-Fi标准借助例如MLME-MEASURE.confirm原语被报告给AP 10处的更高层实体。
步骤309至316描述了用于估计便携式设备13与STA 11的接近度的过程。
AP 10将测量请求309发送到STA 11。测量请求309与上述的测量请求201和208类似。与以上类似地,AP 10广播安静消息310,安静消息310指明网络100中的设备在时段t4期间保持安静。
AP 10将发送时间消息311(类似于上述的发送时间消息210)发送到便携式设备13,从而指示便携式设备13在时段t4的至少一部分期间发送信号312。信号312可与上述的信号204和212类似。发送时间消息311致使便携式设备13忽视安静消息310并且在时段t4期间发送信号312。发送时间消息311可在安静消息310之前或之后(但在测量时段313之前)发送。
在时段t4期间,STA 11执行被请求的测量313,便携式设备13发送信号312并且AP 10和STA 12在安静间隔314和315期间保持安静。因此,STA 11能够从便携式设备13接收信号312,而没有来自AP 10和STA 12的任何潜在干扰。
STA 11产生测量报告316(可类似于上述的测量报告207和215)并且将测量报告316发送到AP 10,从而指示来自便携式设备13的信号312的接收功率。如上所述,可使用测量报告316确定便携式设备13与STA 11的接近度的度量。另外,便携式设备13与STA 11的接近度的测量可基于测量报告308和316的比较。
图4a示出用于估计便携式设备13与AP 10的接近度的另一个过程。图4b示出用于估计便携式设备13与STA 11的接近度的另一个过程。在这些过程中,在测量时段期间测得的信号在当前没有被网络上的设备正使用的信道上发送。因此,可使用与正用于设备之间数据通信的信道不同的信道来执行测量。在这些示例中,不需要发送安静消息,这样,网络中的设备可有助于传送数据,而不必观察安静时段。当在设备之间流送实时媒体时,这可是尤其有利的。
在图4a和图4b的过程中,AP 10可确定应该在其上执行估计接近度的测量的信道。这个确定可基于例如AP 10或网络上的另一个设备执行的信道评估(例如,CCA),以选择空闲信道或随机选择当前在网络内没有正被使用的信道(下文中,被称为“所选择信道”)。优选地,所选择信道不重叠当前网络中的设备正使用的信道,使得正常流量不干扰接近度测量。例如,当建立网络中的设备之间的连接时或在信道切换期间,可确定当前正用于流量的信道(下文中,被称为“连接信道”)。
如图4a中的过程所示的,AP 10将测量请求601发送到便携式设备13。测量请求601可类似于上述的测量请求201。AP 10指定测量请求601中的所选择信道编号和用于执行测量的时段。测量请求601可通过AP 10和便携式设备13之间的连接信道发送。测量请求601中指定的所选择信道不同于连接信道。
AP 10可具有两个RF接口(例如,在WiFi设备的情况下,802.11n或后续标准提供2.4GHz和5GHz接口),从而可允许AP 10同时在两个不同信道上通信。因此,在测量时段中,AP 10将信号602(可类似于本文中描述的信号204)在所选择信道上发送,同时在连接信道上保持与STA 11和/或STA 12的连接,它通过连接信道能分别与STA 11和/或STA 12进行数据603和/或604的传送。一旦完成了所选择信道上的信号602的测量,就由便携式设备13产生用于该信号602的测量报告605(可类似于本文中描述的测量报告207)。便携式设备13接着可通过连接信道将测量报告605发送到AP 10。接着,如本文针对测量报告207描述的,可使用测量报告605估计便携式设备13与AP 10的接近度。
图4b的过程表明可如何估计便携式设备13与STA 11的接近度。还可按类似方式估计便携式设备13与STA 12的接近度。AP 10通过连接信道将如上所述的测量请求601发送到便携式设备13。测量请求指定测量时段和用于执行测量的所选择信道。AP 10还将发送时间消息606(可类似于本文中描述的发送时间消息210)发送到STA11,从而指定发送信号607(可类似于上述的信号602)的时段和信道。
STA 11可具有一个或两个RF接口。如果STA 11具有两个RF接口,则STA 11可在所选择信道上发送信号607并且同时在连接信道上保持与AP 10的连接,如以上针对具有两个RF接口的AP 10描述的。如果STA 11具有一个RF接口,则STA 11可暂时禁用它与AP 10的连接并且将信道从连接信道切换到所选择信道,以执行信号607的发送。在STA 11正发送信号607的同时,AP 10可通过连接信道保持与STA 12的连接,以传送数据608。一旦发送了信号607,STA 11就可切换回连接信道并且与AP 10重新连接以发送测量报告609,接着,可使用测量报告609来估计便携式设备13与STA 11的接近度,如本文中针对测量报告207描述的。因此,针对图4a和4b描述的过程允许在没有任何安静时段的情况下执行接近度估计。
图5是AP 10的示意图。AP 10可以是专用接入点设备或作为softAP操作的STA。AP 10包括Wi-Fi天线401、Wi-Fi收发器402、Wi-Fi驱动器403和接近度测量器404。Wi-Fi天线401、Wi-Fi收发器402和Wi-Fi驱动器403可根据Wi-Fi标准操作。接近度测量器404可以是控制用于估计便携式设备13与网络100中的AP 10和/或STA 11和12的接近度的过程的应用。接近度测量器404可访问Wi-Fi驱动器403,从而允许触发或控制Wi-Fi驱动器403的某些功能。这些功能可以是例如提供和触发发送测量请求和安静消息,访问接收到的测量报告,致使测量信号的发送,忽视任何安静消息等。接近度测量器404可检查和分析接收到的测量报告中的数据,以形成便携式设备13与网络中的AP 10和/或STA 11和12的接近度的度量,如上所述。
当将测量请求消息发送到用于估计接近度的设备时,AP 10可针对正进行测量的设备的身份存储测量起始时间的记录。从设备接收到的测量报告包含测量的起始时间,这样,AP 10可将接收到的测量报告与进行测量的设备关联。这样允许AP 10从可正在正常进行干扰测量(作为标准的部分)的任何其它设备提取该设备的正确测量报告。
在无线媒体设备的示例中,接近度测量器404可确定AP 10或STA 11或12中的哪个最接近便携式设备14并且将最接近设备的标识提供给媒体控制器405。媒体控制器405控制媒体的回放并且可选择所标识的最接近设备来回放媒体。
图6是STA 11或12的示意图。STA 11或12可具有或可不具有任何AP或softAP能力。STA 11或12包括Wi-Fi天线501、Wi-Fi收发器502、Wi-Fi驱动器503和控制器504。Wi-Fi天线501、Wi-Fi收发器502和Wi-Fi驱动器503可根据Wi-Fi标准进行操作。
在图2中的上述接近度估计过程中,需要STA 11忽略安静消息209并且在安静间隔t2期间发送信号212。接收安静消息209将一般致使Wi-Fi驱动器503造成Wi-Fi收发器502在安静时段t2期间不进行发送。然而,控制器504借助发送时间消息210接收指令(在接收安静消息209之前或之后)以在t2期间发送信号212,控制器504可以是在STA 11或12上运行的应用。控制器504可访问Wi-Fi驱动器530并且致使它忽视安静间隔并且发送信号212。
在图3中的上述接近度估计过程中,不需要STA 11和12忽略安静消息。因此,在这种情况下,STA 11和12不需要包括控制器504。然而,在这种情况下,便携式设备13将需要包括诸如控制器,使其能够忽略安静消息302和310,使得它可在安静间隔t3和t4期间发送信号304和312。
AP 10和STA 11和12可包括媒体输出406和506,媒体输出406和506分别用于回放Wi-Fi天线(例如,从便携式设备13)接收的媒体。媒体输出406和506可以是例如音频和/或视频输出(诸如,扬声器和/或显示器)。AP 10和STA 11和12还可包括一个或多个媒体输入(未示出),媒体输入提供经由除了Wi-Fi之外的通信手段的与媒体源(未示出)的连接。例如,媒体输入可以是用于辅助设备、USB端口、以太网端口、与DAB接收器的连接、蓝牙收发器等的3.5mm输入。在媒体输入处输入的媒体可被媒体输出406或506输出或者通过Wi-Fi发送到网络100中被媒体控制器405选择用于回放媒体的另一个设备。
在多扬声器环境的示例中,AP 10和STA 11和12可以是无线扬声器。AP 10可以是softAP并且STA 11和12也可具有成为softAP的能力。可选择设备10、11或12中的一个作为主扬声器,主扬声器控制从扬声器的操作。优选地,将选择主扬声器作为softAP进行操作。因此,作为softAP操作的设备10、11或12可发生变化。
检测预定功率模式
如以上提到的,测量报告207、215、308、316、605和/或609可包括RPI柱状图报告。RPI柱状图报告是基于接收到的干扰功率,使得接收到的功率的样本是在取样时段期间取得的,在样本时段内接收到的功率被分类为落入一个功率“桶”。在Wi-Fi标准中有8个桶。对落入各桶内的样本数量进行计数,以产生柱状图。可利用RPI柱状图来估计发送或“干扰”设备与执行RPI测量的设备的接近度。
在这个示例中,设备以阶梯干扰模式发送信号204、212、304、312、602和/或607(下文中,被称为“干扰器”设备)。干扰器初始地在已知时段内以第一功率水平进行发送,然后切换至不同的功率水平。这样在RPI柱状图报告的柱状图中产生两个不同的尖峰。功率水平之间的差异控制柱状图中的尖峰之间的间隔。因在柱状图中发现尖峰,可通过与其它STA进行比较,推导出距离度量。例如,这可基于尖峰之间的中点、或柱状图值的“重心”。
例如,图7中示出的图表示出正在忽略安静消息并且正故意干扰的干扰器可发送的信号的示例类型。这个示例表明,干扰信号的发送功率在测量时段的50%内最初处于第一功率,然后在测量时段的剩余50%内切换至第二(较低)功率。其它示例可使用针对功率水平的不同时间比,或者首先具有较低功率,或者具有多于2个功率水平。
下表示出如何可通过RPI柱状图解释该干扰的简化示例。行代表单个测量时段内的测量设备的100μs的取样时段。最右边的8列表示RPI柱状图报告的不同功率“桶”。左起第二列表示接收到的干扰功率(在这个示例中,在开始的5个取样时段内,-77dBm,然后在最后的5个取样时段内,-87dBm,-即,反映以上的步骤功能)。
如可看到的,RPI柱状图首先将5个取样时段(均为100μs)记录在RPI条目2(功率桶-82<P≤-77)中,随后将5个取样时段(均为100μs)记录在RPI条目0(功率桶P≤-87)中。该表的底行表示在最终测量报告中可在RPI密度中看到的示例。RPI密度代表接收到的功率在各功率桶中在整体测量时段中的比例。这用8个字节来代表,其中,每个桶一个字节,对所有桶求和,达到255(有一些四舍五入的误差)。因此,如果在整个测量时段内接收到的功率在一个桶内,则该桶的RPI密度将是255(一个字节所能表达的最大值)并且其它的将是零。在以上的示例中,PRI密度将零记录在各RPI条目中,除了条目0和2二者是128的值之外,从而对应于这两个桶中的干扰功率的50-50分割。因此,在柱状图中有“尖峰”。真实系统不能产生与这一样干净的报告,但仍然将存在能检测到的尖峰。这些尖峰具有匹配尺寸,因为这两个功率水平是在同一持续时间内发送的,尖峰之间的间隔取决于功率水平的相对大小。
随着干扰器越来越近或进一步远离,两个尖峰在柱状图报告中左移或右移。例如,远离(即,低接收功率)的干扰器可产生诸如以上表中的RPI报告的RPI报告,如图8a中示出的,在图8a中,尖峰指示低干扰功率。相反,较高功率(即,较接近)的干扰器可产生诸如图8b中示出的RPI报告的RPI报告,在图8b中,尖峰指示高干扰功率。
可使用不同干扰器的尖峰的相对位置作为它们相对相距距离的度量。例如,RPI测量报告的“重心”可被发现且被当作用于比较干扰器的值(例如,这将显而易见具有以上表中的RPI值1)。这将类似于在没有任何噪声或其它干扰器的情况下的两个尖峰之间的中点。然而,可使用任何合适的比较(例如,最左或最右尖峰的位置)。
使用两个功率水平(造成一对尖峰)提供了可在柱状图中寻找的可识别模式。可以只具有单个功率水平并且在柱状图中寻找单个峰,但在存在噪声和其它干扰器的情况下更难以发现。在真实系统中更容易发现两个峰的情况,因为它们具有已知高度和间隔。还可通过在没有故意干扰的情况下执行测量并且从结果中扣除这些来减轻其它干扰问题。另选地,可取得多个测量值并且进行求平均。
在另一个示例中,干扰器可具有斜坡干扰模式,如图9a中所示。这个示例表明,干扰信号的发送功率在测量时段t期间以线性方式倾斜。在这种情况下,功率开始是非零值并且增加。其它示例可以斜降,开始于零,等等。
图9b示出如正执行标准Wi-Fi信道测量的设备所测得的接收到的干扰功率。这个图表示出四个不同的接收到的功率分布,每个功率分布对应于相距不同距离的干扰器--分布1是最接近的,4是最远离的。
总体上,随着干扰器更远离,接收到的功率分布具有成比例降低的幅度,但斜坡的斜率保持大体相同。一旦干扰器离得足够远,一些斜率将消失于噪底,如用分布4示出的。
通过得知斜坡的梯度(最高点和最低点之差),可确定功率斜坡将覆盖柱状图中多少桶。此外,对于线性斜坡,在被斜坡覆盖的各桶中,应该花费测量时段的大致相同比例的时间,这意味着对于这些桶中的每个而言,RPI密度大致相等。
例如,对于图9b中的距离1,发现强干扰,这意味着干扰器在附近。这会导致图10a中的柱状图。在这个示例中,斜坡梯度使得它覆盖5个柱状图桶,这是向着柱状图的上端看到的。在这5个桶中的每个中测量时段中带有干扰的比例(即,RPI密度)是x,在这个示例中,可预计x是大致255/5=51。图10b示出距离2的柱状图。因为梯度相同,所以RPI密度是x的桶的数量仍然是5,但由于整体功率较低,导致柱状图下移。类似地,图10c中的距离3的柱状图表明,5个x的桶进一步使柱状图下移。在这种情况下,接收到的最低功率恰好处于噪底,这样5x的块达到柱状图的最低功率桶。对于距离4,斜坡的一部分消失在噪底下方。这导致如图10d中所示的柱状图,该柱状图只包含其中RPI密度为x的三个桶,最低桶的RPI密度是2x。这是因为,在这个示例中,噪底之下花费的时间被计数到最低桶,从而导致相对于接下来的三个桶,最低桶中带有干扰值的时间是两倍那么多。
可用RPI柱状图,基于RPI密度的可识别块在柱状图中所处的位置(例如,后沿、前沿等)估计干扰设备的接近度。通过得知在各桶中应该是什么RPI密度,允许进行扩展,即使是当干扰器到噪底之下时—例如,在上述示例中,已知应该是5个x的桶,所以可确定干扰中有多少没有被发现,并且相应确定接近度。
在真实系统中,结果不能像这一样干净,噪声和其它干扰可影响结果,使柱状图中有更多不一致的RPI密度。然而,在柱状图中仍然将存在可识别图案。还可通过在没有故意干扰的情况下执行测量并且从结果中扣除这些来减轻其它干扰问题。另选地,可取得多个测量值并且进行求平均。
在需要比使用8条目柱状图可获得的分辨率更高的分辨率的情况下,接着可执行多次测量,其中,在测量之间分出干扰斜坡(例如,测量1在功率A和B之间形成斜坡,测量2在功率B和C之间形成具有相同梯度的斜坡,等等)。
如本文所述的,接近度估计是基于在一对或多对设备之间发送和接收的一个或多个信号。测得的信号的性质(诸如,信号强度、误码率等)可表征设备之间的物理距离。总体上,从发送信号这点来说,信号强度随着距离的增大而减小。因此,信号的某些性质将随着距离增大而变差。通过测量接收设备处信号的某些性质,可以估计接收设备距离发送设备发送信号的位置多近或多远。因此,例如,与发送设备相距短距离的第一测量设备可被视为比距离发送设备较大距离的第二测量设备更靠近发送设备。
此外,所发送信号的强度减小的速率取决于它正经过的介质。例如,当经过诸如墙壁和屋顶/地板时,相比于经过空气,信号可遭遇更大的衰减。因此,在一些情况下,发送设备可与接收设备相距短距离,但墙壁可大大衰减两个设备之间的信号,从而导致信号比信号只经过空气时变差。因此,例如,与发送设备在同一房间中的第一测量设备可被视为比相距较短距离但在另一个房间中的第二测量设备更接近发送设备,因为第二测量设备将由于通过墙壁的更大衰减而接收差的信号。
在本文所述的示例中,利用所发送信号的接收到的功率作为确定接收到的信号的强度以形成接近度测量的方式。然而,所发送信号的强度可用其它方式(诸如,信号质量、数据速率、误码率、应答的数量)来确定。例如,发送设备在安静间隔期间发送的信号可以是一系列帧,测量设备可用这一系列帧来确定数据率。可报告测量设备测得的数据率,以确定所接收信号的强度。接着,可再次发送相同的一系列帧,使得不同对的发送/测量设备(其中之一是便携式设备)确定接收到的另一个数据率。接着,可检查和分析接收到的数据率,以确定便携式设备与AP 10和/或STA 11和/或12的接近度。
类似地,在另一个示例中,发送设备可发送(在安静间隔期间)包括目的地是测量设备的多个帧的信号。根据通信协议(例如,Wi-Fi),所发送帧可需要由测量设备发送应答作为响应。发送设备接收回的应答数量可指示测量设备接收的信号的强度。类似于上文,对于另一对发送/测量设备(其中之一是便携式设备),可利用目的地是测量设备的类似数量的帧来发送类似信号。可使用各测量设备接收的应答数量来形成便携式设备与AP 10和/或STA 11和/或12的接近度的度量。
如以上提到的,本文描述的总体原理可应用于根据除了Wi-Fi之外的通信协议(诸如,蓝牙)进行操作的设备和网络。
申请人特此以隔离方式公开了本文描述的各个特征和两个或更多个这种特征的任何组合,使得这种特征或组合能够作为整体依据本领域技术人员的一般常识基于本说明书来执行,而不顾及这种特征或特征的组合是否解决了本文公开的任何问题,并不限于权利要求书的范围。申请人表明,本发明的一些方面可由任何这种独立特征或特征的组合组成。依据以上描述,本领域的技术人员将清楚,可在本发明的范围内进行各种修改。

Claims (28)

1.一种估计包括至少第一设备和第二设备的设备的网络中所述第一设备与所述第二设备的接近度的方法,所述网络中的各设备能够根据预定无线通信协议进行通信,该方法包括:
在所述第一设备处分析第一控制消息,根据所述通信协议,所述第一控制消息被构造成致使所述第一设备在第一时段期间执行第一信道质量测量;
通过所述网络广播第二控制消息,根据所述通信协议,所述第二控制消息指示与所述网络连接的设备在所述第一时段期间不进行发送,以能够执行所述第一信道质量测量;
在所述第二设备处,忽略所述指示并且在所述第一时段的至少一部分期间发送第一信号;
在所述第一设备处,在所述第一时段期间响应于所述第一控制消息执行所述第一信道质量测量;
根据在所述第一设备处接收的所述第一信号的强度,形成所述第一设备与所述第二设备的接近度的度量。
2.根据权利要求1所述的方法,所述方法还包括以下步骤:在所述第二设备处,发送所述第一控制消息,其中,所述第二设备广播所述第二控制消息。
3.根据权利要求1所述的方法,其中,所述设备的网络包括第三设备,所述方法还包括以下步骤:在所述第三设备处,发送所述第一控制消息。
4.根据权利要求3所述的方法,所述方法还包括以下步骤:在所述第三设备处,将发送时间消息发送到所述第二设备,所述发送时间消息被构造成致使所述第二设备执行所述发送的步骤。
5.根据前述任一项权利要求所述的方法,其中以预定模式调节所述第一信号的发送功率。
6.根据权利要求5所述的方法,所述形成的步骤包括分析第一报告消息以检测所述预定模式的表示,所述第一报告消息包括指示所述第一设备处的接收功率的柱状图。
7.根据前述任一项权利要求所述的方法,所述方法还包括以下步骤:分析第一报告消息,根据所述第一通信协议,所述第一报告消息指示所述第一信道质量测量的结果。
8.根据前述任一项权利要求所述的方法,所述方法还包括以下步骤:在第三设备或所述第三设备处,在第二时段的至少一部分期间发送第二信号。
9.根据权利要求8所述的方法,其中所述形成的步骤附加地根据在所述第一设备处接收的所述第二信号的强度。
10.根据权利要求8或9所述的方法,其中所述形成的步骤包括比较所述第一信号的强度与所述第二信号的强度,以确定所述第二设备和所述第三设备中的哪个最靠近所述第一设备。
11.根据权利要求10所述的方法,所述方法还包括以下步骤:在所述第一设备处,选择媒体进行回放;选择确定的所述第二设备或所述第三设备;在所选择的所述第二设备或所述第三设备处回放所选择的所述媒体。
12.根据前述任一项权利要求所述的方法,所述方法还包括以下步骤:
广播第三控制消息,根据所述通信协议,所述第三控制消息能够致使设备在第三时段期间不进行发送;
在所述第一设备处,在所述第三时段期间执行第二信道质量测量,
其中,所述形成的步骤附加地根据所述第二信道质量测量。
13.根据前述任一项权利要求所述的方法,其中所述预定无线通信协议是IEEE802.11协议并且所述第一控制消息包括所述IEEE 802.11协议定义的测量请求元素。
14.一种估计包括至少第一设备和第二设备的设备的网络中所述第一设备与所述第二设备的接近度的无线设备,所述网络中的各设备能够根据预定无线通信协议进行通信,该无线设备包括:
控制器,其被构造成产生第一控制消息,根据所述通信协议,所述第一控制消息被构造成致使所述第二设备在第一时段期间执行第一信道质量测量;
收发器,其通过所述网络广播第二控制消息,根据所述通信协议,所述第二控制消息指示与所述网络连接的设备在所述第一时段期间不进行发送,以能够执行所述第一信道质量测量;
所述控制器被进一步构造成致使所述第一设备忽略所述指示并且在所述第一时段的至少一部分期间发送第一信号;
接近度估计器,其被构造成根据在所述第二设备处接收的所述第一信号的强度,形成所述第一设备与所述第二设备的接近度的度量。
15.根据权利要求14所述的无线设备,其中所述无线设备是所述第一设备,所述收发器被进一步构造成:
将所述第一控制消息发送到所述第二设备;
从所述第二设备接收第一报告消息。
16.根据权利要求15所述的无线设备,其中所述第一报告根据所述通信协议指示所述第一信道质量测量的结果。
17.根据权利要求14所述的无线设备,其中:
所述控制器被构造成产生发送时间消息;
所述收发器被构造成将所述发送时间消息发送到所述第一设备,以致使所述第一设备忽略所述指示并且发送所述第一信号。
18.根据权利要求17所述的无线设备,所述收发器被进一步构造成:
将所述第一控制消息发送到所述第二设备;
从所述第二设备接收第一报告消息,根据所述通信协议,所述第一报告消息指示所述第一信道质量测量的结果。
19.一种估计包括至少第一设备和第二设备的设备的网络中所述第一设备与所述第二设备的接近度的方法,所述网络中的各设备能够根据预定无线通信协议进行通信,该方法包括:
选择用于执行第一信道质量测量的第一信道,所述第一信道是没有被所述设备的网络使用的信道;
在所述第一设备处接收第一控制消息,根据所述通信协议,所述第一控制消息被构造成致使所述第一设备在第一时段期间在所述第一信道上执行第一信道质量测量;
在所述第二设备处,在所述第一时段的至少一部分期间在所述第一信道上发送第一信号;
在所述第一设备处,在所述第一时段期间响应于所述第一控制消息执行所述第一信道质量测量;
根据在所述第一设备处接收的所述第一信号的强度,形成所述第一设备与所述第二设备的接近度的度量。
20.根据权利要求19所述的方法,所述方法还包括在所述第一时段的至少一部分期间在第二信道上保持所述第一设备和所述第二设备之间的连接的步骤。
21.根据权利要求19或20所述的方法,所述方法还包括在所述第一时段的至少一部分期间在第二信道上保持所述第二设备和第三设备之间的连接的步骤。
22.根据权利要求19所述的方法,其中所述设备的网络包括第三设备,所述方法还包括以下步骤;
在所述第三设备处,发送所述第一控制消息;
在所述第三设备处,将发送时间消息发送到所述第二设备,所述发送时间消息被构造成致使所述第二设备执行所述发送的步骤。
23.根据权利要求22所述的方法,所述方法还包括以下步骤:在所述第二设备处,在所述发送的步骤之前,禁用所述第二设备和所述第一设备之间的连接,所述连接是通过第二信道进行的。
24.根据权利要求22所述的方法,其中所述设备的网络包括第四设备,所述方法还包括在所述第一时段的至少一部分期间在第二信道上保持所述第三设备和所述第四设备之间的连接的步骤。
25.一种估计包括至少第一设备和第二设备的设备的网络中所述第一设备与所述第二设备的接近度的无线设备,所述网络中的各设备被构造成根据预定无线通信协议通过通信信道进行通信,该无线设备包括:
控制器,其被构造成选择用于执行第一信道质量测量的第一信道,所述第一信道为不是所述通信信道的信道;
收发器,其被构造成将第一控制消息发送到所述第二设备,根据所述通信协议,所述第一控制消息被构造成致使所述第二设备在第一时段期间在所述第一信道上执行所述第一信道质量测量;
控制器,其被进一步构造成致使所述第一设备在所述第一时段的至少一部分期间发送第一信号;
接近度估计器,其被构造成根据在所述第二设备处接收的所述第一信号的强度,形成所述第一设备与所述第二设备的接近度的度量。
26.根据权利要求25所述的无线设备,其中所述第一设备是所述无线设备,所述收发器被进一步构造成:
将所述第一控制消息发送到所述第二设备;
从所述第二设备接收第一报告消息。
27.根据权利要求26所述的无线设备,其中所述第一报告根据所述通信协议指示所述第一信道质量测量的结果。
28.根据权利要求25所述的无线设备,其中:
所述控制器被构造成产生发送时间消息;
所述收发器被构造成将所述发送时间消息发送到所述第一设备,以致使所述第一设备忽略所述指示并且发送所述第一信号。
CN201510039962.2A 2014-01-28 2015-01-27 估计第一设备与第二设备的接近度的方法和无线设备 Active CN104811994B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911022531.XA CN110636454B (zh) 2014-01-28 2015-01-27 估计第一设备与第二设备的接近度的方法和设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1401409.6 2014-01-28
GB1401409.6A GB2516131B (en) 2014-01-28 2014-01-28 Proximity detection

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201911022531.XA Division CN110636454B (zh) 2014-01-28 2015-01-27 估计第一设备与第二设备的接近度的方法和设备

Publications (2)

Publication Number Publication Date
CN104811994A true CN104811994A (zh) 2015-07-29
CN104811994B CN104811994B (zh) 2019-11-22

Family

ID=50287670

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510039962.2A Active CN104811994B (zh) 2014-01-28 2015-01-27 估计第一设备与第二设备的接近度的方法和无线设备
CN201911022531.XA Active CN110636454B (zh) 2014-01-28 2015-01-27 估计第一设备与第二设备的接近度的方法和设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201911022531.XA Active CN110636454B (zh) 2014-01-28 2015-01-27 估计第一设备与第二设备的接近度的方法和设备

Country Status (4)

Country Link
US (3) US9300419B2 (zh)
CN (2) CN104811994B (zh)
DE (1) DE102014119082A1 (zh)
GB (2) GB2537553B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113396558A (zh) * 2019-02-15 2021-09-14 昕诺飞控股有限公司 对基于rf的存在检测和/或定位以及消息接收的时变分配

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9560449B2 (en) 2014-01-17 2017-01-31 Sony Corporation Distributed wireless speaker system
US9866986B2 (en) 2014-01-24 2018-01-09 Sony Corporation Audio speaker system with virtual music performance
US9232335B2 (en) * 2014-03-06 2016-01-05 Sony Corporation Networked speaker system with follow me
US9913208B1 (en) * 2014-03-10 2018-03-06 Marvell International Ltd. System and method for providing schedule information used to snoop ranging exchanges between wireless devices
US11304080B2 (en) * 2015-01-21 2022-04-12 Sony Corporation Methods, base station, mobile node and relay node
US10321711B2 (en) 2015-01-29 2019-06-18 Rai Strategic Holdings, Inc. Proximity detection for an aerosol delivery device
JP6398758B2 (ja) * 2015-02-03 2018-10-03 株式会社デンソー 車両用通信機
CN107432004A (zh) * 2015-03-31 2017-12-01 华为技术有限公司 传输数据的方法、装置及系统
US10624119B2 (en) * 2015-04-08 2020-04-14 Qualcomm Incorporated Transmission scheduling for contention based carrier
FR3031646A1 (fr) * 2015-06-03 2016-07-15 Orange Procede de gestion de la selection de dispositifs pour la realisation d'un service
US9564966B1 (en) * 2015-09-30 2017-02-07 Osram Sylvania Inc. Reconstructing light-based communication signals using an alias frequency
US9693168B1 (en) 2016-02-08 2017-06-27 Sony Corporation Ultrasonic speaker assembly for audio spatial effect
US9826332B2 (en) 2016-02-09 2017-11-21 Sony Corporation Centralized wireless speaker system
US9924291B2 (en) 2016-02-16 2018-03-20 Sony Corporation Distributed wireless speaker system
US9826330B2 (en) 2016-03-14 2017-11-21 Sony Corporation Gimbal-mounted linear ultrasonic speaker assembly
US9693169B1 (en) 2016-03-16 2017-06-27 Sony Corporation Ultrasonic speaker assembly with ultrasonic room mapping
EP3223538A1 (en) 2016-03-24 2017-09-27 Thomson Licensing Method adapted to be implemented in a master device of a sound system, corresponding master device, system, computer readable program product and computer readable storage medium
US9794724B1 (en) 2016-07-20 2017-10-17 Sony Corporation Ultrasonic speaker assembly using variable carrier frequency to establish third dimension sound locating
WO2019197487A1 (en) 2018-04-10 2019-10-17 Netrounds Ab Measuring metrics of a computer network
US10506622B1 (en) 2018-06-27 2019-12-10 Cypress Semiconductor Corporation Traffic coexistence for collocated transceivers including bluetooth transceivers
US10623859B1 (en) 2018-10-23 2020-04-14 Sony Corporation Networked speaker system with combined power over Ethernet and audio delivery
US11653394B2 (en) * 2019-08-21 2023-05-16 Qualcomm Incorporated Synchronized channel access coexistence
US11443737B2 (en) 2020-01-14 2022-09-13 Sony Corporation Audio video translation into multiple languages for respective listeners
CN115396969A (zh) * 2022-08-30 2022-11-25 深圳市创凌智联科技有限公司 通过wifi信号强度实现设备间无缝切换的方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1392739A (zh) * 2001-06-18 2003-01-22 日本电气株式会社 移动站位置检测方案
US20060267841A1 (en) * 2003-01-02 2006-11-30 Lee Chong U Position determination with peer-to-peer communication
CN101359045A (zh) * 2007-07-30 2009-02-04 韩国科亚电子股份有限公司 测量位置
US20110248885A1 (en) * 2010-04-08 2011-10-13 Seiko Epson Corporation Location calculating method and location calculating device
CN102811482A (zh) * 2011-06-03 2012-12-05 苹果公司 移动设备位置估计
US20130167196A1 (en) * 2007-06-06 2013-06-27 Boldstreet Inc. System and method for remote device recognition at public hotspots

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985465B2 (en) * 2000-07-07 2006-01-10 Koninklijke Philips Electronics N.V. Dynamic channel selection scheme for IEEE 802.11 WLANs
US20030228846A1 (en) * 2002-06-05 2003-12-11 Shlomo Berliner Method and system for radio-frequency proximity detection using received signal strength variance
CN1527635A (zh) * 2003-03-07 2004-09-08 皇家飞利浦电子股份有限公司 建立无线对等通信的方法及系统
EP1625711B1 (en) * 2003-05-09 2007-07-18 Koninklijke Philips Electronics N.V. Measuring medium activity patterns in wireless networks and deriving information from the activity patterns
CN1784871B (zh) * 2003-05-09 2010-11-03 皇家飞利浦电子股份有限公司 在无线网络中测量媒介活动模式并从活动模式中导出信息
KR100690608B1 (ko) * 2004-12-07 2007-03-09 엘지전자 주식회사 무선 av 기기의 채널 선택 방법
US20060193299A1 (en) * 2005-02-25 2006-08-31 Cicso Technology, Inc., A California Corporation Location-based enhancements for wireless intrusion detection
ATE452518T1 (de) * 2005-09-16 2010-01-15 Koninkl Philips Electronics Nv Spektrumverwaltung in drahtlosen zugangsnetzen mit dynamischem spektrum
US7733224B2 (en) * 2006-06-30 2010-06-08 Bao Tran Mesh network personal emergency response appliance
US20070165586A1 (en) * 2005-11-29 2007-07-19 Staccato Communications, Inc. Quiet periods for detecting wireless devices
US8155649B2 (en) * 2006-05-12 2012-04-10 Shared Spectrum Company Method and system for classifying communication signals in a dynamic spectrum access system
JP4923848B2 (ja) * 2006-08-21 2012-04-25 日本電気株式会社 通信システム及び通信方法並びにそれに用いる移動局及び基地局
KR101210335B1 (ko) * 2006-09-15 2012-12-10 삼성전자주식회사 무선 메쉬 네트워크에서 cca 기능을 수행하는 방법 및이를 이용한 이동 단말기
JP4527708B2 (ja) * 2006-12-15 2010-08-18 富士通株式会社 無線通信システム、微弱電波通信装置、移動端末装置、基地局装置及びプログラム
US7663488B2 (en) * 2007-06-25 2010-02-16 Disney Enterprises, Inc. System and method of virtually packaging multimedia
US8570972B2 (en) * 2007-07-10 2013-10-29 Qualcomm Incorporated Apparatus and method of generating and maintaining orthogonal connection identifications (CIDs) for wireless networks
US8787171B2 (en) * 2008-04-07 2014-07-22 Wavemarket, Inc. Efficient collection of wireless transmitter characteristics
US8326228B2 (en) * 2008-12-19 2012-12-04 At&T Mobility Ii Llc Headset locator device
US9178593B1 (en) * 2009-04-21 2015-11-03 Marvell International Ltd. Directional channel measurement and interference avoidance
US20100304690A1 (en) * 2009-05-29 2010-12-02 Gm Global Technology Operations, Inc. Method of passively detecting an approach to a vehicle
CA2781100C (en) * 2009-11-16 2016-10-18 Interdigital Patent Holdings, Inc. Coordination of silent periods for dynamic spectrum manager (dsm)
US8577318B2 (en) * 2010-05-19 2013-11-05 Plantronics, Inc. Communications system density and range improvement by signal-strength-directed channel class selection with weighting for minimum capacity consumption
US8983484B2 (en) * 2010-11-05 2015-03-17 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for intersystem quiet period synchronization
US10123345B2 (en) * 2010-12-22 2018-11-06 Google Technology Holdings LLC Interference mitigation in a device supporting multiple radio technologies communicating in overlapping time periods
WO2013089747A1 (en) * 2011-12-15 2013-06-20 Intel Corporation System and method for enabling low power devices
US9397522B2 (en) * 2012-03-08 2016-07-19 Ricoh Co., Ltd. Method and system to control ambient RF energy for wireless devices
CN103453615A (zh) * 2012-05-31 2013-12-18 珠海格力电器股份有限公司 射频控制处理方法及装置
GB2503508B (en) * 2012-06-29 2014-09-17 Broadcom Corp Apparatus and method for peer discovery
CN202918379U (zh) * 2012-10-30 2013-05-01 金陵科技学院 一种基于蓝牙手机的物品防丢、防盗系统
US9179331B2 (en) * 2012-10-31 2015-11-03 Soongsil University Research Consortium Techno-Park Wireless localization method and wireless localization apparatus using fingerprinting technique
US9019857B2 (en) * 2013-01-28 2015-04-28 Qualcomm Incorporated Idle measurement periods in a communication network
EP2956794B1 (en) * 2013-02-15 2017-11-08 Nokia Technologies OY Signal handling
KR102039343B1 (ko) * 2013-03-26 2019-11-01 삼성전자주식회사 무선 이동 통신 시스템에서 mcs 레벨 결정 방법 및 장치
US20170026791A1 (en) * 2013-12-27 2017-01-26 Raz Weizman Apparatus, system and method of bluetooth communication
US10162593B2 (en) * 2014-01-22 2018-12-25 Apple Inc. Coordinated hand-off of audio data transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1392739A (zh) * 2001-06-18 2003-01-22 日本电气株式会社 移动站位置检测方案
US20060267841A1 (en) * 2003-01-02 2006-11-30 Lee Chong U Position determination with peer-to-peer communication
US20130167196A1 (en) * 2007-06-06 2013-06-27 Boldstreet Inc. System and method for remote device recognition at public hotspots
CN101359045A (zh) * 2007-07-30 2009-02-04 韩国科亚电子股份有限公司 测量位置
US20110248885A1 (en) * 2010-04-08 2011-10-13 Seiko Epson Corporation Location calculating method and location calculating device
CN102811482A (zh) * 2011-06-03 2012-12-05 苹果公司 移动设备位置估计

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113396558A (zh) * 2019-02-15 2021-09-14 昕诺飞控股有限公司 对基于rf的存在检测和/或定位以及消息接收的时变分配

Also Published As

Publication number Publication date
GB2537553A (en) 2016-10-19
GB2516131A (en) 2015-01-14
CN110636454A (zh) 2019-12-31
US10638343B2 (en) 2020-04-28
US20150215057A1 (en) 2015-07-30
GB201401409D0 (en) 2014-03-12
US20160165470A1 (en) 2016-06-09
DE102014119082A1 (de) 2015-07-30
CN110636454B (zh) 2023-04-07
CN104811994B (zh) 2019-11-22
US10251077B2 (en) 2019-04-02
US9300419B2 (en) 2016-03-29
GB2537553B (en) 2018-09-12
US20180270684A1 (en) 2018-09-20
GB2516131B (en) 2017-03-01
GB201612394D0 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
CN104811994A (zh) 接近度检测
CN107003397B (zh) 用于识别重复性运动的方法、数字工具、设备和系统
CN108370492B (zh) 一种室内定位的方法和设备
US8929816B2 (en) Multiple apparatus selection via touch
EP2424281B1 (en) Wireless communication apparatus, program, wireless communication method, and wireless communication system
CN101419276B (zh) 一种认知无线电网络中定位主用户的方法
US10298461B2 (en) System and method for determining a master device in a neighborhood aware network
CN101855569B (zh) 无线电通信装置和音频数据再现方法
US9674720B2 (en) Wireless communication link debugging
CN1980081A (zh) 射频变化的检测和估计
JP5128323B2 (ja) 無線通信装置、情報処理装置、プログラム、無線通信方法、処理方法、および無線通信システム
KR20190050485A (ko) Ui 관리 서버 및 ui 관리 서버의 제어 방법
CN105636149A (zh) 用于中继的方法、装置及系统
CN107396173A (zh) 一种hdmi数据无线发射方法、装置、传输系统和存储介质
CN105101347B (zh) 一种无线局域网络的通信方法和设备
JP7405863B2 (ja) モバイルデバイス、システム及び方法
US11323845B2 (en) Reverse-beacon indoor positioning system using existing detection fields
CN114842634A (zh) 一种设备控制方法、主控设备、电子设备及存储介质
JP2007243652A (ja) 受信強度測定システム
TW201616906A (zh) 物聯網系統及物聯網服務方法
CN109076482A (zh) 用于在通信网络中执行至少一个定位功能的通信装置和方法
WO2024047528A1 (en) Wi-fi sensing taking into consideration received noise power information
EP3542178A1 (en) Reverse-beacon indoor positioning system using existing detection fields
EP3249854A1 (en) Method, device and system for generating events associated with wireless devices
WO2011044950A1 (en) Identifying a device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant