CN104811313B - 基于无线能量传输的最佳能量波束和时间分配设计方法 - Google Patents

基于无线能量传输的最佳能量波束和时间分配设计方法 Download PDF

Info

Publication number
CN104811313B
CN104811313B CN201510157351.8A CN201510157351A CN104811313B CN 104811313 B CN104811313 B CN 104811313B CN 201510157351 A CN201510157351 A CN 201510157351A CN 104811313 B CN104811313 B CN 104811313B
Authority
CN
China
Prior art keywords
mrow
msup
msubsup
mfrac
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510157351.8A
Other languages
English (en)
Other versions
CN104811313A (zh
Inventor
钟财军
梁晗
孔垂丽
张朝阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201510157351.8A priority Critical patent/CN104811313B/zh
Publication of CN104811313A publication Critical patent/CN104811313A/zh
Application granted granted Critical
Publication of CN104811313B publication Critical patent/CN104811313B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于无线能量传输的最佳能量波束和时间分配设计方法,该系统中包含一个发送节点,一个接收节点,一个中继节点和一个采用波束赋形的能量站,除了能量站配置有多根天线,其余节点都只配置单根天线,其中能量站,发送节点、接收节点构成一个无线能量传输子系统;发送节点、接收节点和中继节点构成一个无线信号传输子系统;在一个时隙T中这两个子系统按照时间分配比例τ分别进行能量传输和信息传输,即,在前τT时间内,能量站对发送节点和中继节点传输能量,在后(1‑τ)T时间内,发送节点通过中继节点给接收节点传输信息。在此系统下,能量站基于系统容量最大化对时间分配比例以及发射波束进行调整,获得最佳时间分配比例τ和波束赋形器w。

Description

基于无线能量传输的最佳能量波束和时间分配设计方法
技术领域
本发明涉及通信领域,特别涉及一种基于无线能量传输的最佳能量波束和时间分配设计方法。
背景技术
移动通信系统从第二代到第四代的发展过程中,数据流量的需求呈现爆炸式增长,并且在未来十年中还将增长一千倍,与此同时伴随而来的便是智能手机、平板电脑等无线终端设备的迅速普及和数量急剧增加,在这个背景下,最亟待解决解决的问题之一便是由于电池容量限制而导致的设备使用时间有限的困扰。随着用户对设备使用时间需求的提高,射频无线能量捕获技术(RF-EH)应运而生。作为理论上能提供中远距离无线能量供应实现无线充电与无线信号同时传输的技术,RF-EH提供了让无线设备终端免去有线充电的解决方案。并且随着RF-EH技术的兴起,无线信号和能量同时传输(SWIPT)系统也引起了广泛的关注。
目前,业界已对SWIPT系统展开广泛讨论与深入研究。现有文献中关于SWIPT系统的分析大多是基于无线设备终端从周围环境中捕获能量进行设计的,并没有考虑专门提供能量的节点。值得指出的是,在这种条件下,终端只能捕获极少的能量,但这些能量仅能满足诸如传感器等小功耗设备的运行而远不能满足智能手机、平板电脑、便携式电脑等常用无线设备的能耗。由于这个原因,这些技术并不适用于更加普遍的场景。
因此提出了一种由多天线能量站专门供电的无线通信系统,能量站作为一个专门提供射频无线能量的设备,不需要任何回程链路,由此大大降低了设备实现的开销,使得大规模布置能量站用以覆盖大范围无线终端成为了可能。并且发明人从时间分配比例τ和波束赋形器w出发,根据实际信道状态,进行基于最大化系统容量的参数设计,得到了比一般情况下更为突出的效果。
发明内容
本发明的目的是针对目前现状中存在的不足,提供一种基于无线能量传输的最佳能量波束和时间分配设计方法。
基于无线能量传输的最佳能量波束和时间分配设计方法:该系统中包含一个发送节点,一个接收节点,一个解码转发的中继节点和一个采用波束赋形的能量站,除了能量站配置有多根天线,其余节点都只配置单根天线,其中能量站,发送节点、中继节点构成一个无线能量传输子系统;发送节点、接收节点和中继节点构成一个无线信号传输子系统,在一个时隙T中这两个子系统按照时间分配比例τ分别进行能量传输和信息传输,即,在前τT时间内,能量站对发送节点和中继节点传输能量,在后(1-τ)T时间内,发送节点通过中继节点给接收节点传输信息,对时间比例和波束赋形器进行联合优化,使系统容量达到最大,具体的方法包括如下步骤:
(1)能量站获取信道状态信息;
(2)能量站在获取信道状态信息后基于系统容量最大化计算最佳波束向量和最佳能量分配时间。
所述的能量站获取信道状态信息包括:
(1)能量站通过侦听发射节点和中继节点的导频,估计出能量站与相应的节点之间的信道响应;
(2)能量站通过中继反馈获得发射节点与中继节点,中继节点与接收节点之间的信道响应。
所述的计算最佳波束向量和最佳能量分配时间为:在获得信道状态信息的条件下,建立波束向量w和时间分配比例τ的联合优化问题,其目标函数与约束条件分别为:
s.t.0<τ<1,||w||2<1
其中,η表示能量利用效率,P表示能量站的发射功率,N0表示噪声功率,w表示波束赋形器,h1、h2、f1和f2分别表示能量站与发射节点、能量站与中继节点、发射节点与中继节点以及中继节点与接收节点之间的信道响应,d1、d2、d3、d4分别表示表示能量站与发射节点、能量站与中继节点、发射节点与中继节点以及中继节点与接收节点之间的距离,α表示路径衰落指数。
所述建立波束向量w和时间分配比例τ的联合优化问题可以分解为两个单变量的优化问题,包括:
(1)对波束赋形器w单独进行优化问题;
(2)对时间分配比例τ单独进行优化问题;
化简后的目标函数具体为:
s.t.0<τ<1
其中
所述的对波束赋形器w单独进行优化问题为:
s.t.||w||2<1,。
所得的最优波束赋形器w为:
其中ΠX代表X在其列空间的正交投影,⊥代表垂直空间,*代表复共轭,代表共轭转置。
所述的对时间分配比例τ单独进行优化问题为:在对波束赋形器w完成优化使zm达到最大以后的基础上,再基于系统容量达到最大对时间分配比例τ进行单独优化,通过一定的优化算法,所得的最佳时间分配比例τ为:
其中W为Lambert函数。
本发明的有益效果为:
(1)本发明考虑了能量站作为专门提供无线射频能量的节点,建立了一种应用范围更广、更为实际的模型,避免了传统模型只能够适用于小功耗无线设备终端的约束。
(2)本发明针对不同的信道状态,采用了巧妙的优化算法,得到了非常简洁的时间分配比例τ、波束赋形器w这两个重要参数的闭式解形式。通过优化设计,使得系统的容量达到了最大,使得整个系统能量效率得到了最大化的提升,符合绿色通信的理念。
附图说明
图1是本发明应用场景示意图;
图2是本发明在给定不同能量站天线数目的情况下,优化过的系统容量随信噪比变化并与一般情况下系统容量对比的曲线;
具体实施方式
基于无线能量传输的最佳能量波束和时间分配设计方法:该系统中包含一个发送节点,一个接收节点,一个解码转发的中继节点和一个采用波束赋形的能量站,除了能量站配置有多根天线,其余节点都只配置单根天线,其中能量站,发送节点、中继节点构成一个无线能量传输子系统;发送节点、接收节点和中继节点构成一个无线信号传输子系统,在一个时隙T中这两个子系统按照时间分配比例τ分别进行能量传输和信息传输,即,在前τT时间内,能量站对发送节点和中继节点传输能量,在后(1-τ)T时间内,发送节点通过中继节点给接收节点传输信息,对时间比例和波束赋形器进行联合优化,使系统容量达到最大,具体的方法包括如下步骤:
(1)能量站获取信道状态信息;
(2)能量站在获取信道状态信息后基于系统容量最大化计算最佳波束向量和最佳能量分配时间。
所述的能量站获取信道状态信息包括:
(1)能量站通过侦听发射节点和中继节点的导频,估计出能量站与相应的节点之间的信道响应;
(2)能量站通过中继反馈获得发射节点与中继节点,中继节点与接收节点之间的信道响应。
所述的计算最佳波束向量和最佳能量分配时间为:在获得信道状态信息的条件下,建立波束向量w和时间分配比例τ的联合优化问题,其目标函数与约束条件分别为:
s.t.0<τ<1,||w||2<1
其中,η表示能量利用效率,P表示能量站的发射功率,N0表示噪声功率,w表示波束赋形器,h1、h2、f1和f2分别表示能量站与发射节点、能量站与中继节点、发射节点与中继节点以及中继节点与接收节点之间的信道响应,d1、d2、d3、d4分别表示表示能量站与发射节点、能量站与中继节点、发射节点与中继节点以及中继节点与接收节点之间的距离,α表示路径衰落指数。
所述建立波束向量w和时间分配比例τ的联合优化问题可以分解为两个单变量的优化问题,包括:
(1)对波束赋形器w单独进行优化问题;
(2)对时间分配比例τ单独进行优化问题;
化简后的目标函数具体为:
s.t.0<τ<1
其中
所述的对波束赋形器w单独进行优化问题为:
s.t.||w||2<1,。
所得的最优波束赋形器w为:
其中ΠX代表X在其列空间的正交投影,⊥代表垂直空间,*代表复共轭,代表共轭转置。
所述的对时间分配比例τ单独进行优化问题为:在对波束赋形器w完成优化使zm达到最大以后的基础上,再基于系统容量达到最大对时间分配比例τ进行单独优化,通过一定的优化算法,所得的最佳时间分配比例τ为:
其中W为Lambert函数。
下面将结合附图和具体实施例对本发明做进一步说明。
在本实施例中,技术场景如下:系统中包含一个发送节点,一个接收节点,一个解码转发的中继节点和一个采用波束赋形的能量站,除了能量站配置有多根天线,其余节点都只配置单根天线,其中能量站,发送节点、中继节点构成一个无线能量传输子系统;发送节点、接收节点和中继节点构成一个无线信号传输子系统,在一个时隙T中这两个子系统按照时间分配比例τ分别进行能量传输和信息传输,即,在前τT时间内,能量站对发送节点和中继节点传输能量,在后(1-τ)T时间内,发送节点通过中继节点给接收节点传输信息。在本实施例中,发送节点和中继节点的能量利用效率为40%,路径损耗指数为3,能量站与发射节点之间的距离为3米,能量站与中继节点之间的距离为3米,发射节点与中继节点之间的距离为4米,中继节点与接收节点之间的距离为4米。为证明本发明中的最佳波束赋形器性能确实优于普通设计,本实施例用了以下对比:大规模天线条件下的一般波束赋形器设计方法,即
其中,h1、h2、f1和f2分别表示能量站与发射节点、能量站与中继节点、发射节点与中继节点以及中继节点与接收节点之间的信道响应,d1、d2、d3、d4分别表示表示能量站与发射节点、能量站与中继节点、发射节点与中继节点以及中继节点与接收节点之间的距离,α表示路径衰落指数,*代表复共轭,该波束赋形器的基本设计思路是源自天线数目趋于无穷情况下的正交特性。
图2为本实施例中最佳波束赋形器与一般的波束赋形器分别在能量站天线数目N分别为10,100和1000根的情况下,系统容量随信噪比变化的关系图。从图中可以看出,随着信噪比和天线数目的增加,使用两种不同波束赋形器的两个系统的容量也随之增加。通过对比发现,最佳波束赋形器的性能要远远优于一般的波束赋形器,并且随着信噪比的增加性能的差距会变得愈加明显。特别需要指出的是,能量站天线数目越少的情况下,该最佳波束赋形器的效果比起一般波束赋形器会更优,这是由于一般的波束赋形器是基于大规模天线的假设下设计的,而该最佳波束赋形器则考虑了任意天线的情况,所以当天线数目减小时,两者之间的差距会增大。
以上所述仅为本发明的优选实施方式,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种基于无线能量传输的最佳能量波束和时间分配设计方法,其特征在于该方法采用的系统中包含一个发送节点,一个接收节点,一个解码转发的中继节点和一个采用波束赋形的能量站,除了能量站配置有多根天线,其余节点都只配置单根天线,其中能量站,发送节点、中继节点构成一个无线能量传输子系统;发送节点、接收节点和中继节点构成一个无线信号传输子系统,在一个时隙T中这两个子系统按照时间分配比例τ分别进行能量传输和信息传输,即,在前τT时间内,能量站对发送节点和中继节点传输能量,在后(1-τ)T时间内,发送节点通过中继节点给接收节点传输信息,对时间比例和波束赋形器进行联合优化,使系统容量达到最大,具体的方法包括如下步骤:
(1)能量站获取信道状态信息;
(2)能量站在获取信道状态信息后基于系统容量最大化计算最佳波束向量和最佳能量分配时间。
2.根据权利要求1所述的基于无线能量传输的最佳能量波束和时间分配设计方法,其特征在于:所述的能量站获取信道状态信息包括:
(1)能量站通过侦听发射节点和中继节点的导频,估计出能量站与相应的节点之间的信道响应;
(2)能量站通过中继反馈获得发射节点与中继节点,中继节点与接收节点之间的信道响应。
3.根据权利要求1所述的基于无线能量传输的最佳能量波束和时间分配设计方法,其特征在于:所述的计算最佳波束向量和最佳能量分配时间为:在获得信道状态信息的条件下,建立波束向量w和时间分配比例τ的联合优化问题,其目标函数与约束条件分别为:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mi>&amp;tau;</mi> <mo>,</mo> <mi>w</mi> </mrow> </munder> </mtd> <mtd> <mrow> <mi>R</mi> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mn>2</mn> </mfrac> <mo>&amp;times;</mo> <msub> <mi>log</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;tau;</mi> <mi>&amp;eta;</mi> <mi>P</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;tau;</mi> <mo>)</mo> <msub> <mi>N</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>{</mo> <mfrac> <mrow> <mo>|</mo> <msup> <mi>w</mi> <mi>T</mi> </msup> <msub> <mi>h</mi> <mn>1</mn> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <msubsup> <mi>d</mi> <mn>1</mn> <mi>&amp;alpha;</mi> </msubsup> <msubsup> <mi>d</mi> <mn>3</mn> <mi>&amp;alpha;</mi> </msubsup> </mrow> </mfrac> <mo>,</mo> <mfrac> <mrow> <mo>|</mo> <msup> <mi>w</mi> <mi>T</mi> </msup> <msub> <mi>h</mi> <mn>2</mn> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <msubsup> <mi>d</mi> <mn>2</mn> <mi>&amp;alpha;</mi> </msubsup> <msubsup> <mi>d</mi> <mn>4</mn> <mi>&amp;alpha;</mi> </msubsup> </mrow> </mfrac> <mo>}</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
s.t.0<τ<1,||w||2<1
其中,η表示能量利用效率,P表示能量站的发射功率,N0表示噪声功率,w表示波束赋形器,h1、h2、f1和f2分别表示能量站与发射节点、能量站与中继节点、发射节点与中继节点以及中继节点与接收节点之间的信道响应,d1、d2、d3、d4分别表示表示能量站与发射节点、能量站与中继节点、发射节点与中继节点以及中继节点与接收节点之间的距离,α表示路径衰落指数。
4.根据权利要求3所述的基于无线能量传输的最佳能量波束和时间分配设计方法,其特征在于:所述建立波束向量w和时间分配比例τ的联合优化问题可以分解为两个单变量的优化问题,包括:
(1)对波束赋形器w单独进行优化问题;
(2)对时间分配比例τ单独进行优化问题;
化简后的目标函数具体为:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>&amp;tau;</mi> </munder> </mtd> <mtd> <mrow> <mi>R</mi> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mn>2</mn> </mfrac> <mo>&amp;times;</mo> <msub> <mi>log</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;tau;</mi> <mi>&amp;eta;</mi> <mi>P</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;tau;</mi> <mo>)</mo> <msub> <mi>N</mi> <mn>0</mn> </msub> </mrow> </mfrac> <msub> <mi>z</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
s.t.0<τ<1
其中
5.根据权利要求4所述的基于无线能量传输的最佳能量波束和时间分配设计方法,其特征在于:所述的对波束赋形器w单独进行优化问题为:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>w</mi> </munder> </mtd> <mtd> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>{</mo> <mfrac> <mrow> <mo>|</mo> <msup> <mi>w</mi> <mi>T</mi> </msup> <msub> <mi>h</mi> <mn>1</mn> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <msubsup> <mi>d</mi> <mn>1</mn> <mi>&amp;alpha;</mi> </msubsup> <msubsup> <mi>d</mi> <mn>3</mn> <mi>&amp;alpha;</mi> </msubsup> </mrow> </mfrac> <mo>,</mo> <mfrac> <mrow> <mo>|</mo> <msup> <mi>w</mi> <mi>T</mi> </msup> <msub> <mi>h</mi> <mn>2</mn> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <msubsup> <mi>d</mi> <mn>2</mn> <mi>&amp;alpha;</mi> </msubsup> <msubsup> <mi>d</mi> <mn>4</mn> <mi>&amp;alpha;</mi> </msubsup> </mrow> </mfrac> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
s.t.||w||2<1,
所得的最优波束赋形器w为:
<mrow> <mover> <mi>w</mi> <mo>^</mo> </mover> <mo>=</mo> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mfrac> <mrow> <msub> <mi>&amp;Pi;</mi> <msubsup> <mover> <mi>h</mi> <mo>^</mo> </mover> <mn>2</mn> <mo>*</mo> </msubsup> </msub> <msubsup> <mover> <mi>h</mi> <mo>^</mo> </mover> <mn>1</mn> <mo>*</mo> </msubsup> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>&amp;Pi;</mi> <msubsup> <mover> <mi>h</mi> <mo>^</mo> </mover> <mn>2</mn> <mo>*</mo> </msubsup> </msub> <msubsup> <mover> <mi>h</mi> <mo>^</mo> </mover> <mn>1</mn> <mo>*</mo> </msubsup> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> <mo>+</mo> <msqrt> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mn>2</mn> </msup> </mrow> </msqrt> <mfrac> <mrow> <msubsup> <mi>&amp;Pi;</mi> <msubsup> <mover> <mi>h</mi> <mo>^</mo> </mover> <mn>2</mn> <mo>*</mo> </msubsup> <mo>&amp;perp;</mo> </msubsup> <msubsup> <mover> <mi>h</mi> <mo>^</mo> </mover> <mn>1</mn> <mo>*</mo> </msubsup> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <msubsup> <mi>&amp;Pi;</mi> <msubsup> <mover> <mi>h</mi> <mo>^</mo> </mover> <mn>2</mn> <mo>*</mo> </msubsup> <mo>&amp;perp;</mo> </msubsup> <msubsup> <mover> <mi>h</mi> <mo>^</mo> </mover> <mn>1</mn> <mo>*</mo> </msubsup> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> </mrow>
<mrow> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mi>a</mi> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> <mi>a</mi> </mfrac> <mo>&amp;le;</mo> <mi>c</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mi>b</mi> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>-</mo> <mi>c</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>a</mi> <mo>&amp;le;</mo> <mi>c</mi> <mo>&lt;</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> <mi>a</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>c</mi> <mo>&lt;</mo> <mi>a</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
其中ΠX代表X在其列空间的正交投影,⊥代表垂直空间,*代表复共轭,代表共轭转置。
6.根据权利要求4所述的基于无线能量传输的最佳能量波束和时间分配设计方法,其特征在于:所述的对时间分配比例τ单独进行优化问题为:在对波束赋形器w完成优化使zm达到最大以后的基础上,再基于系统容量达到最大对时间分配比例τ进行单独优化,通过一定的优化算法,所得的最佳时间分配比例τ为:
<mrow> <mover> <mi>&amp;tau;</mi> <mo>^</mo> </mover> <mo>=</mo> <mfrac> <mrow> <msup> <mi>e</mi> <mrow> <mi>W</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;beta;</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>e</mi> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>&amp;beta;</mi> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mi>W</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;beta;</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>e</mi> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> </mrow>
其中W为Lambert函数。
CN201510157351.8A 2015-04-03 2015-04-03 基于无线能量传输的最佳能量波束和时间分配设计方法 Expired - Fee Related CN104811313B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510157351.8A CN104811313B (zh) 2015-04-03 2015-04-03 基于无线能量传输的最佳能量波束和时间分配设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510157351.8A CN104811313B (zh) 2015-04-03 2015-04-03 基于无线能量传输的最佳能量波束和时间分配设计方法

Publications (2)

Publication Number Publication Date
CN104811313A CN104811313A (zh) 2015-07-29
CN104811313B true CN104811313B (zh) 2017-12-29

Family

ID=53695830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510157351.8A Expired - Fee Related CN104811313B (zh) 2015-04-03 2015-04-03 基于无线能量传输的最佳能量波束和时间分配设计方法

Country Status (1)

Country Link
CN (1) CN104811313B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105338609B (zh) * 2015-09-29 2019-04-19 北京工业大学 多天线系统高能效动态功率分配方法
CN105610485B (zh) * 2015-12-21 2019-01-08 东南大学 一种无线中继通信系统携能传输方法
CN105722179B (zh) * 2016-03-23 2019-04-16 西安交通大学 一种协作中继系统信息吞吐量最大化的无线能量传输方法
CN105744516B (zh) * 2016-04-07 2018-10-26 浙江大学 一种利用能量站提升物理层安全性能的通信系统和方法
CN106332290B (zh) * 2016-08-29 2020-01-24 东南大学 基于可持续充电水声多跳通信系统的资源分配方法
CN106506055B (zh) * 2016-10-18 2019-03-29 浙江大学 基于无线能量传输的双向中继系统的最大化和速率方法
CN106549698B (zh) * 2016-10-18 2019-04-16 浙江大学 基于无线能量传输的双向中继系统的最大化最小用户速率方法
CN106302545B (zh) * 2016-10-19 2019-04-16 浙江大学 一种最大化系统监听非中断概率的方法
CN106656405B (zh) * 2016-10-19 2018-11-06 浙江大学 一种利用能量站最小化系统保密中断概率的方法
CN106850008B (zh) * 2017-02-09 2020-07-28 国网能源研究院有限公司 一种无线能量驱动传输方法及装置
CN107332595B (zh) * 2017-05-22 2020-09-22 华南理工大学 一种mimo无线能量通信网络最大化吞吐量方法
CN107896125B (zh) * 2017-12-04 2020-11-24 华北电力大学(保定) 一种全维度多天线swipt系统的物理层安全传输方法
CN108880640A (zh) * 2018-06-14 2018-11-23 中国科学技术大学 无线供能通信系统的自适应功率分配方法
CN111342877B (zh) * 2018-12-18 2022-02-22 深圳先进技术研究院 多中继无线数据传输控制方法、通信系统及终端设备
CN111416650B (zh) * 2018-12-18 2022-03-08 深圳先进技术研究院 一种基于射频信号供能的多中继无线数据传输控制方法
CN110689196B (zh) * 2019-11-21 2022-08-02 华侨大学 一种基于图着色的节点间能量再分配调度方法
CN111245941B (zh) * 2020-01-13 2022-09-30 暨南大学 一种面向大规模可充电物联网的监测系统及分布式协议
CN113395732B (zh) * 2021-05-19 2022-07-08 武汉工程大学 一种优化能量传输与通信的方法、系统和电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882569A (zh) * 2012-09-26 2013-01-16 清华大学 一种基于译码转发策略的多天线中继波束成形方法
CN103716082A (zh) * 2014-01-24 2014-04-09 戴建新 用于多节点数据与能量同时无线传输的下行波束赋形方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882569A (zh) * 2012-09-26 2013-01-16 清华大学 一种基于译码转发策略的多天线中继波束成形方法
CN103716082A (zh) * 2014-01-24 2014-04-09 戴建新 用于多节点数据与能量同时无线传输的下行波束赋形方法

Also Published As

Publication number Publication date
CN104811313A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
CN104811313B (zh) 基于无线能量传输的最佳能量波束和时间分配设计方法
Perera et al. Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges
Han et al. Performance analysis for NOMA energy harvesting relaying networks with transmit antenna selection and maximal‐ratio combining over Nakagami‐m fading
Lu et al. Resource allocation in wireless networks with RF energy harvesting and transfer
Deng et al. Modeling and analysis of wireless power transfer in heterogeneous cellular networks
Altinel et al. Energy harvesting from multiple RF sources in wireless fading channels
Nauryzbayev et al. Outage probability of the EH-Based Full-Duplex AF and DF relaying systems in $\alpha-\mu $ environment
CN101895911B (zh) 多基站协作传输系统中利用信道统计信息的自适应传输方法
Zhang et al. Energy-efficient transmission for wireless powerec D2D communication networks
CN106656379B (zh) 中继携能通信系统的传输速率优化方法及装置
Diamanti et al. The joint power of NOMA and reconfigurable intelligent surfaces in SWIPT networks
Zhang et al. Impact of primary networks on the performance of energy harvesting cognitive radio networks
Tran et al. RF energy harvesting: an analysis of wireless sensor networks for reliable communication
Zhang et al. Energy efficiency maximisation in wireless powered networks with cooperative non‐orthogonal multiple access
CN104219766B (zh) 柔性转发卫星系统非均匀信道链路增益确定方法
Xiao et al. Dynamic energy trading for wireless powered communication networks
Shaikh et al. On the performance of dual RIS-assisted V2I communication under Nakagami-m fading
Morsi et al. Multi-user scheduling schemes for simultaneous wireless information and power transfer
Zheng et al. Create your own data and energy integrated communication network: A brief tutorial and a prototype system
CN109151946B (zh) 基于能量收集的协作中继传输方法、系统及多天线发送端
Majid Butt et al. Relay selection schemes to minimise outage in wireless powered communication networks
CN103117773B (zh) 采用终端协作的混沌超宽带交通流量采集系统及采集方法
CN103607256B (zh) 一种多天线预编码方法
Hu et al. Energy efficiency in energy harvesting cooperative networks with self-energy recycling
Ariffin et al. Sparse beamforming for real-time energy trading in CoMP-SWIPT networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171229