CN104809444B - 基于张量扩展的半脊方向滤波器红外小目标识别方法 - Google Patents

基于张量扩展的半脊方向滤波器红外小目标识别方法 Download PDF

Info

Publication number
CN104809444B
CN104809444B CN201510226878.1A CN201510226878A CN104809444B CN 104809444 B CN104809444 B CN 104809444B CN 201510226878 A CN201510226878 A CN 201510226878A CN 104809444 B CN104809444 B CN 104809444B
Authority
CN
China
Prior art keywords
filtering
matrix
image
tensor
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510226878.1A
Other languages
English (en)
Other versions
CN104809444A (zh
Inventor
付小宁
任国鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201510226878.1A priority Critical patent/CN104809444B/zh
Publication of CN104809444A publication Critical patent/CN104809444A/zh
Application granted granted Critical
Publication of CN104809444B publication Critical patent/CN104809444B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

基于张量扩展的半脊方向滤波器红外小目标识别方法。本发明首先读取小目标图像;利用余弦函数来构造图像模板;按二维卷积规则将从图像模板上得到的张量矩阵大小扩展为9×9,选取中间5×5个值为滤波矩阵,得到的滤波矩阵构成滤波模板;确定4个滤波方向;设计每个方向上的加权滤波公式;待每个方向上的加权滤波公式遍历完图像后,保存子图;将保存的子图按照矩阵对应点相乘的方法融合成一幅图像,归一化处理后得到背景抑制后的小目标图像。本发明解决了天空、海天背景下的红外小目标识别问题。本发明方法简单、便于硬件并行处理,且漏检率低、信噪比高。适用于空天及海天背景下单个或多个小目标的红外预警、红外制导导弹智能寻的。

Description

基于张量扩展的半脊方向滤波器红外小目标识别方法
技术领域
本发明属于红外小目标检测技术领域,涉及基于半脊方向滤波器的选取、图像模板的建立、张量的扩展变形及滤波模板的建立和滤波方向的选取,适用于空天及海天背景下单个或多个小目标的红外预警、红外制导导弹智能寻的。
背景技术
随着军事高科技的飞速发展,以精确制导导弹为代表的各种精确制导武器在现代战场中发挥了越来越强大的威力,精确制导武器也对军事要地和飞机、军舰等高价值作战平台的安全构成严重的威胁。随着工业制造水平和隐身材料的高速发展及逐步的成熟,隐身材料在军事上的广泛应用,使得雷达越来越不容易检测到目标。并且由于雷达本身固有的对外辐射特性,使雷达探测系统存在容易暴露己方作战平台从而容易受到反辐射导弹攻击的缺点。红外探测器自身不辐射能量,仅以被动的方式接收目标辐射的热能探测目标,且标准大气环境下,地对空的探测距离能达到100公里,外太空环境下探测距离达到数百公里。因此较雷达探测系统而言,红外探测系统具有隐蔽性好、抗电磁干扰能力强的优点。因而红外小目标识别成为现代战争防御系统中一项重要的技术。当前,在红外小目标检测方面,国内外学者已经提出了多种方法,其中文献“Wang G D,Chen Ch Y,Shen X B.Facet-based in frared small target detection method[J],Electron icsLetters.Oct.2005,41(22):218-219.”采用的面模型的匹配滤波法是基于不同时间采集的多帧图像,图像序列必须配准,不适用于单帧图像目标检测;文献“LùYan,SHI Lin,SU Xin-zhu.Method for dim small target detection based on wavelet and higher-ordercumulant[J].Infrared Technology,2006,28(12):713-716.”提出的基于小波和高阶累积量的检测方法虽能大大提高图像信噪比并且保留了目标信息,但小波算法本身比较复杂;文献“SU Xiu-qin,LIANG Jin-feng,LU Tao,et al.IR target detection &trackingalgorithm based on sea-sky background[J].Acta Photonica Sinica,2009,38(5):1309-1312.”采用一种结合形态学和区域自适应滤波的检测算法,该方法实时性好,但当目标点相对弱小时,容易在目标周围产生虚警点;专利“基于线性PCA的红外点目标检测方法”将目标检测问题转化为模式分类问题,但在对目标模型的学习过程中没有考虑噪声的干扰,使得该方法对复杂背景的适应能力很弱,且检测过程十分复杂,实用性不强。
综上所述,许多计算量小的红外小目标识别方法,虽实时性比较好,但都是在特定背景条件下做了一些理想假定,如差分法等,不能有效识别出背景复杂度高的小目标图像,具有一定的使用局限性。而复杂度较高的方法,如小波变换法等,虽具有较好的识别效果,但往往实时性比较差,不能满足实际应用的实时性要求。
发明内容
本发明的目的在于针对上述已有技术的不足,提出一种基于张量扩展的半脊方向滤波器红外小目标识别方法,在以不增加检测成本的前提下,适用于更多背景下的红外小目标图像,并提高了红外小目标检测的准确性、实时性和可靠性。
本发明是一种基于张量扩展的半脊方向滤波器红外小目标识别方法,其特征在于,包括如下步骤:
(1)读取小目标原图,大小修正为256×256;
(2)由于小目标图像点旋转方向不变的特性,根据半脊滤波器构成的图像所具有的方向滤波特性,利用余弦函数来构成一个左下角灰度值达到最大,右上角灰度值最小的半脊方向滤波器的图像模板,其图像模板大小为n×n,取n=2;
(3)利用张量的定义从图像模板上获得与之相关的4个张量矩阵,并将每个张量矩阵扩展成大小为9×9的矩阵,选取每个矩阵中间的5×5个值为滤波矩阵,把得到的4个5×5大小的滤波矩阵按照从图像模板中提取张量的相应位置排列构成滤波模板;
(4)在滤波模板每个5×5大小的滤波矩阵上,分别确定4个滤波方向的角度为atan(1/2),π/2-atan(1/2),π/2+atan(1/2),π-atan(1/2);
(5)在步骤(3)中得到滤波模板的每个5×5大小的滤波矩阵上,分别以个像素距离为单位在该滤波模板上按照步骤(4)中所述4个方向分别进行取值,每个方向上取5个点,当单位距离上的点没有值时,用该点相邻最近两点和的均值代替该点的取值;
(6)设计所述4个方向上的加权滤波公式,在每个方向上分别处理小目标原图并保存,得到四副不同方向上的小目标子图,具体步骤有:
6.1)选取每个方向上5个点的值,分别设计4个方向上的加权滤波公式;
6.2)然后在4个滤波矩阵上只选用一个方向上的加权滤波公式同时处理小目标原图并保存,处理后的小目标原图称为该方向上的小目标子图;
6.3)按照6.2)所述方法,在其他三个方向上对小目标图像做同样处理,并分别保存,共得到四副小目标子图;
(7)按照矩阵对应点相乘的方法对步骤(6)中得到的四副小目标子图进行遍历相乘,融合成一幅新的图像,并对该副图像进行归一化处理,最终得到背景抑制后的小目标图像,识别结束。
本发明的技术方案是通过建立图像模板并提取图像模板的张量,将提取出的张量进行扩展、变形来重新构建滤波模板,然后确定加权滤波的方向,最终得到基于张量扩展的半脊方向滤波器来实现红外小目标识别的目的。
本发明的实现还在于:步骤(2)中,由余弦函数生成的图像模板Z(n,n)各点灰度值的表达式为:
当i<n时:Z(n-i+m,m)=y(i) (m=1,2,3,…,i)
当i=n时:Z(l,k)=y(i) (l=k=1,2,3,…,n)
当i>n时:Z(2n-i-m,n-m)=y(i) (m=0,1,2,…,2n-i-1)
其中n为图像模板的大小,y(i)为灰度值函数。
本发明的该种图像模板的表达式设计,为构造n×n大小的半脊方向滤波器的图像模板作出了解释,使其图像模板的大小不局限于实时性最好的2×2大小,为后续当图像模板的大小大于2×2时对识别效果影响的研究进行铺垫。
本发明的实现还在于:其中步骤(3)中,依据张量的定义,对步骤(2)中形成的大小为2×2的图像模板提取张量矩阵,得到4个张量矩阵,并将每个张量矩阵按照二维卷积规则扩展至3×3大小,并继续扩展该3×3的矩阵直至该矩阵大小为9×9结束,得到4个大小为9×9的扩展矩阵,选定每个扩展矩阵的中间5×5个值为滤波矩阵并按照从图像模板中提取张量的相应位置排列构成滤波模板。
本发明的对图像模板提取出的张量矩阵进行扩展,直至每个张量矩阵扩展到9×9大小,为本发明所选取的4个滤波方向提供可能,同时选取每个9×9的矩阵中间5×5个值为滤波矩阵后,降低了算法复杂度。
本发明的实现还在于:其中步骤(6)中,设计4个方向的加权滤波公式,其中设计的atan(1/2)方向上的加权滤波公式为:
pnew(i,j)=[T(-2,1)×p(i-2,j+1)+((T(-1,0)+T(-1,1))/2)×(p(i-1,j)+
p(i-1,j+1))/2+T(0,0)×p(i,j)+((T(1,0)+T(1,-1))/2)
(p(i+1,j)+p(i+1,j-1))/2+T(2,-1)×p(i+2,j-1)]/K
K=T(-2,1)+(T(-1,0)+T(-1,1))/2+T(0,0)+(T(1,0)+T(1,-1))/2+T(2,-1)
其中,p(i,j)为小目标图像中的像素点,则i,j为整数且i,j∈[1,256];pnew(i,j)为小目标图像该点处的新灰度值;T(i,j)为步骤(3)中所提到的5×5滤波矩阵,且-2≤i,j≤2;atan(1/2)方向的加权滤波公式设计完毕。
其他三个方向的加权处理公式仅需将按照相应方向变化的p(i,j)和T(i,j)点坐标分别带入atan(1/2)方向上的加权滤波公式即可。
本发明的该种加权滤波公式的设计具有明显的方向选择性,并且充分考虑做加权处理的目标点周围的像素对该点的影响,大大降低了漏检率。
与现有技术相比,本发明具有如下优点:
1)本发明中因为采用的图像模板大小仅有2×2,且提出的对从图像模板中提取张量矩阵的扩展变形算法实现方法简单,所以处理过程占用计算时间少,具有很好的实时性;
2)本发明中因为构造的半脊方向滤波器是基于对图像模板的提取的张量矩阵的扩展变形,所以不需要额外增加检测成本,且该方法操作简单便于硬件实现流水线方式处理;
3)本发明中因为采用大小为atan(1/2),π/2-atan(1/2),π/2+atan(1/2),π-atan(1/2)的角度作为4个滤波方向,不同于普通方向滤波器的滤波方向,而在每个滤波方向上选定5个以个像素距离为单位的加权滤波点后,使每次运算包含更多的原图像信息,降低漏检率;
4)实验表明,本发明可以达到良好的红外小目标识别效果。
附图说明
图1为本发明的整体流程框图;
图2为实现本发明红外小目标识别的仿真流程图;
图3为本发明中对张量矩阵扩展过程示意图;
图4为本发明在滤波矩阵上选定的4个滤波方向示意图;
图5(a)为本发明一个实施例原始红外小目标图像;
图5(b)为本发明方法应用于图5(a)的背景抑制后的图像;
图5(c)为已有的剪切波变换算法应用于图5(a)的背景抑制后的图像;
图6(a)为本发明一个实施例原始红外小目标图像;
图6(b)为本发明方法应用于图6(a)的背景抑制后的图像;
图6(c)为已有的剪切波变换算法应用于图6(a)的背景抑制后的图像;
图7(a)为本发明一个实施例原始红外小目标图像;
图7(b)为本发明方法应用于图7(a)的背景抑制后的图像;
图7(c)为已有的剪切波变换算法应用于图7(a)的背景抑制后的图像;
图8(a)为本发明一个实施例原始红外小目标图像;
图8(b)为本发明方法应用于图8(a)的背景抑制后的图像;
图8(c)为已有的剪切波变换算法应用于图8(a)的背景抑制后的图像。
具体实施方式
早期的小目标检测主要是通过雷达检测系统来实施,而因为雷达系统本身的对外辐射特性,容易受到反辐射导弹攻击。而红外检测设备凭借其隐蔽性强、抗电磁干扰能力强及被动的工作方式的特点受到越来越多的重视。从上世纪70年代红外小目标检测技术方案的提出开始,到现在红外小目标检测领域已经成为现代战争防御系统中一个重要领域。虽然红外小目标检测技术已经得到了长足的发展,但是现有的许多检测技术在使用过程中仍然存在着实时性差、可靠性差等问题。本发明针对这类问题提出一种基于张量扩展的半脊方向滤波器红外小目标识别方法。
实施例1
本发明基于张量扩展的半脊方向滤波器红外小目标识别方法,具体实现参见图1,包括有如下步骤如下:
(1)读取小目标原图,大小修正为256×256。红外小目标图像往往具有噪声高、信噪比低、背景复杂、目标所占像素个数少等特点,这些都对从红外图像小目标图像中识别出小目标带了困难。
(2)由于小目标图像点旋转方向不变的特性,根据ridge滤波器构成的图像所具有的方向滤波特性,利用余弦函数来构成一个左下角灰度值达到最大,右上角灰度值最小的半脊方向滤波器的图像模板,其图像模板大小为n×n,经过大量实验验证,单从检测效果上来看n的取值在大于1小于被检测小目标图像大小的任意值时检测效果几乎没有差别,但综合考虑实际应用中实时性的要求,取n=2。即当采用的图像模板大小为2×2时,处理过程占用计算时间少,具有很好的实时性;
(3)利用张量的定义从图像模板上获得与图像相关的4个张量矩阵,并将每个张量矩阵扩展成大小为9×9的矩阵,矩阵扩展方式参见图3。选取每个矩阵中间的5×5个值为滤波矩阵,得到的4个5×5大小的滤波矩阵,将这4个滤波矩阵按照从图像模板中提取张量的相应位置排列构成滤波模板。
(4)在滤波模板每个5×5大小的滤波矩阵上,分别确定4个滤波方向的角度,该4个滤波方向的角度分别为atan(1/2),π/2-atan(1/2),π/2+atan(1/2),π-atan(1/2),4个滤波选取方向简称4个方向,参见图4。
(5)在步骤(3)中得到滤波模板的每个5×5大小的滤波矩阵上,分别以个像素距离为单位在该滤波模板上按照步骤(4)中所述4个方向分别进行取值,每个方向上取5个点,当单位距离上的点没有值时,用该点相邻最近两点和的均值代替该点的取值。参见图4,atan(1/2)方向上应选取的5个点的值,这5个点分别为T(-2,1)、T(0.5,-1)、T(0,0)、T(0.5,-1)、T(2,-1),其中T为滤波矩阵,T(-2,1)、T(0,0)、T(2,-1)为该方向上单位距离上已经有值的点,而T(0.5,-1)、T(1,-0.5)两点的值分别用(T(-1,0)+T(-1,1))/2、(T(1,0)+T(1,-1))/2代替。
(6)在滤波矩阵上设计4个方向上的加权滤波公式,在每个方向上分别处理小目标原图并保存,得到四副不同方向上的小目标子图,具体步骤有:
6.1)选取滤波矩阵上每个方向上5个点的值,分别设计4个方向上的加权滤波公式;
6.2)然后在4个滤波矩阵上只选用一个方向上的加权滤波公式同时处理小目标原图并保存,处理后的小目标原图称为该方向上的小目标子图;
6.3)按照6.2)所述方法,在滤波矩阵上其他三个方向上对小目标图像做同样处理,并分别保存,加之6.2)中所得的小目标子图共得到四副小目标子图,也就是说在滤波模板上共得到并保存了4个不同方向的小目标子图,参见图1。
(7)按照矩阵对应点相乘的方法对步骤(6)中得到的四副小目标子图进行遍历相乘,融合成一幅新的图像,并对该副图像进行归一化处理,最终得到背景抑制后的小目标图像,识别结束。
在本发明对小目标进行检测和识别的过程中,具体是在利用滤波器的方向选择上采用了大小为atan(1/2),π/2-atan(1/2),π/2+atan(1/2),π-atan(1/2)的角度作为4个滤波方向,不同于普通方向滤波器的滤波方向。同时本发明在每个滤波方向上选定5个以个像素距离为单位的加权滤波点,其中当单位距离上的点没有值时,用该点相邻最近两点和的均值代替该点的取值,使每次加权滤波运算过程包含更多小目标图像信息,降低漏检率。
实施例2
基于张量扩展的半脊方向滤波器红外小目标识别方法同实施例1,其中步骤(2)中,由余弦函数生成的图像模板Z(n,n)各点灰度值的表达式为:
当i<n时:Z(n-i+m,m)=y(i) (m=1,2,3,…,i)
当i=n时:Z(l,k)=y(i) (l=k=1,2,3,…,n)
当i>n时:Z(2n-i-m,n-m)=y(i) (m=0,1,2,…,2n-i-1)
其中n为图像模板的大小,y(i)为灰度值函数。
实施例3
基于张量扩展的半脊方向滤波器红外小目标识别方法同实施例1-2,其中步骤(3)中,依据张量的定义,对步骤(2)中形成的大小为2×2的图像模板提取张量矩阵,得到4个张量矩阵,并将每个张量矩阵按照二维卷积规则扩展至3×3大小,并继续扩展该3×3的矩阵直至该矩阵大小为9×9结束,得到4大小为9×9的扩展矩阵,选定每个扩展矩阵的中间5×5个值为滤波矩阵,把得到的4个5×5大小的滤波矩阵按照从图像模板中提取张量的相应位置排列构成滤波模板。
其中2×2大小的张量矩阵扩展到3×3大小的矩阵公式为:
R11=r11×r22
R12=r11×r21+r12×r22
R13=r12×r21
R21=r12×r11+r21×r22
R22=r11×r11+r12×r12+r21×r21+r22×r22
R23=r12×r11+r21×r22
R31=r12×r21
R32=r21×r11+r22×r12
R33=r11×r22
其中r11,r12,r21,r22为上述大小为2×2张量矩阵中的4个元素,R11,R12,R13,R21,R22,R23,R31,R32,R33为扩展后大小为3×3的矩阵中的新元素。按照上述张量扩展算法,继续将扩展后的3×3矩阵扩展到5×5大小,并继续扩展,最终将从图像模板中提取的每个2×2大小的张量矩阵都扩展成大小为9×9的矩阵结束,得到4个9×9的矩阵,选取每个矩阵中间的5×5个值得到4个滤波矩阵。扩展方法示意图参见图3,A框内为二维卷积方法示意图;B框内为2×2矩阵卷积步骤示意图,按B框内所示卷积方法,将大小为2×2矩阵扩展到大小为3×3的矩阵;C框内大小为3×3的矩阵卷积示意图;继续扩展,最终得到大小为9×9的矩阵。
因为从图像模板的提取的张量矩阵的扩展变形所构建的该半脊方向滤波器,不需要额外增加检测成本,所以该方法便于硬件实现流水线方式处理
实施例4
基于张量扩展的半脊方向滤波器红外小目标识别方法同实施例1-3,其中步骤(6)中,设计4个方向的加权滤波公式,其中设计的atan(1/2)方向上的加权滤波公式为:
pnew(i,j)=[T(-2,1)×p(i-2,j+1)+((T(-1,0)+T(-1,1))/2)×(p(i-1,j)+
p(i-1,j+1))/2+T(0,0)×p(i,j)+((T(1,0)+T(1,-1))/2)
(p(i+1,j)+p(i+1,j-1))/2+T(2,-1)×p(i+2,j-1)]/K
K=T(-2,1)+(T(-1,0)+T(-1,1))/2+T(0,0)+(T(1,0)+T(1,-1))/2+T(2,-1)
其中,p(i,j)为小目标图像中的像素点,则i,j为整数且i,j∈[1,256];pnew(i,j)为小目标图像该点处的新灰度值;T(i,j)为步骤(3)中所提到的5×5滤波矩阵,且-2≤i,j≤2;atan(1/2)方向的加权滤波公式设计完毕。其他三个方向的加权处理公式仅需将按照相应方向变化的p(i,j)和T(i,j)点坐标分别带入atan(1/2)方向上的加权滤波公式即可获得。将得到的4个方向的加权滤波公式分别运用在滤波模板上,处理小目标原图,得到每个方向的小目标子图并保存。然后将这四副小目标子图按照矩阵对应点相乘的办法融合成一幅图像,归一化处理后,得到背景抑制后的小目标图像。
本发明的具体实施还以通过下边的例子进行说明,该例子中的步骤也是实现与仿真的过程:
实施例5
基于张量扩展的半脊方向滤波器红外小目标识别方法同实施例1-4,参见图2,具体实现与执行包括如下步骤:
(1)读取小目标图像,并将其大小修正为256×256;
(2)根据本发明生成图像模板的公式,生成图像模板,以下为本发明生成的图像模板公式:
当i<n时:Z(n-i+m,m)=y(i) (m=1,2,3,…,i)
当i=n时:Z(l,k)=y(i) (l=k=1,2,3,…,n)
当i>n时:Z(2n-i-m,n-m)=y(i) (m=0,1,2,…,2n-i-1)
其中n为图像模板的大小,y(i)为灰度值函数,Z(n,n)为图像模板点灰度值的表达式;
(3)提取图像模板的张量矩阵,并按照二维卷积规则扩展张量矩阵,使每个张量矩阵大小扩展至9×9大小,并选取每个9×9大小的扩展矩阵的中间5×5个值为滤波矩阵,把得到的每个5×5大小的滤波矩阵按照从图像模板中提取张量的相应位置排列构成滤波模板,矩阵扩展方式参见图3;
(4)在每个滤波模板的滤波矩阵上确定4个滤波方向的角度为atan(1/2),π/2-atan(1/2),π/2+atan(1/2),π-atan(1/2),并设计加权滤波公式,方向选择方式参见图4。
4.1)将得到滤波模板的每个5×5大小的滤波矩阵上,分别以个像素距离为单位在该滤波模板上按照所述4个方向分别进行取值,每个方向上取5个点,当单位距离上没有点时,用该点相邻最近两点和的均值代替该点的取值,每个方向的相邻最近两点的选择参见图4;
4.2)设计4个方向的加权滤波公式,其中设计的atan(1/2)方向上的加权滤波公式为:
pnew(i,j)=[T(-2,1)×p(i-2,j+1)+((T(-1,0)+T(-1,1))/2)×(p(i-1,j)+
p(i-1,j+1))/2+T(0,0)×p(i,j)+((T(1,0)+T(1,-1))/2)
(p(i+1,j)+p(i+1,j-1))/2+T(2,-1)×p(i+2,j-1)]/K
K=T(-2,1)+(T(-1,0)+T(-1,1))/2+T(0,0)+(T(1,0)+T(1,-1))/2+T(2,-1)
其中,p(i,j)为小目标图像中的像素点,则i,j为整数且i,j∈[1,256];pnew(i,j)为小目标图像该点处的新灰度值;T(i,j)为步骤(3)中所提到的5×5滤波矩阵,且-2≤i,j≤2,atan(1/2)方向的加权滤波公式设计完毕。其他三个方向的加权处理公式仅需将按照相应方向变化的p(i,j)和T(i,j)点坐标分别带入atan(1/2)方向上的加权滤波公式即可。每个方向滤波点的选择方式参见图4。
(5)将所述4个方向的加权滤波公式分别处理小目标图像,并保存每个方向上遍历小目标图像后的子图,参见图1。
5.1)将atan(1/2)方向的加权滤波公式作用于小目标图像;
5.2)判断atan(1/2)方向的加权滤波公式是否遍历完小目标图像,若没有,继续进行步骤5.1),若已遍历完,进行下一个步骤;
5.3)保存atan(1/2)方向上滤波完成的子图;
5.4)将π/2-atan(1/2)方向的加权滤波公式作用于小目标图像;
5.5)判断π/2-atan(1/2)方向的加权滤波公式是否遍历完小目标图像,若没有,继续进行步骤5.4),若已遍历完,进行下一个步骤;
5.6)保存π/2-atan(1/2)方向上滤波完成的子图;
5.7)将π/2+atan(1/2)方向的加权滤波公式作用于小目标图像;
5.8)判断π/2+atan(1/2)方向的加权滤波公式是否遍历完小目标图像,若没有,继续进行步骤5.7),若已遍历完,进行下一个步骤;
5.9)保存π/2+atan(1/2)方向上滤波完成的子图;
5.10)将π-atan(1/2)方向的加权滤波公式作用于小目标图像;
5.11)判断π-atan(1/2)方向的加权滤波公式是否遍历完小目标图像,若没有,继续进行步骤5.10),若已遍历完,进行下一个步骤;
5.12)保存π-atan(1/2)方向上滤波完成的子图。
(6)将上述得到的四副子图按照矩阵对应点相乘的方法融合成一副图像。
(7)归一化处理融合得到的图像,得到背景抑制后的小目标图像,其效果可参见图5(b)、图6(b)、图7(b)、图8(b),红外小目标识别结束。
本发明的技术效果还以通过仿真进一步说明:
实施例6
基于张量扩展的半脊方向滤波器红外小目标识别方法同实施例1-5,参见图5,其中图5(a)是一个海天背景条件下的红外小目标图像,图5(b)是本发明方法应用于图5(a)的处理结果图,图5(c)为剪切波变换算法处理图5(a)的处理结果图。本发明的方法应用于图5(a)的时间消耗为3.7494秒,信噪比估值为4.7034。而在相同仿真环境下,剪切波变换算法的时间消耗为4.2515秒,信噪比估值为0.0162。对比两种方法的处理结果图可以明显看出,剪切波变换算法的处理结果显示两目标点的位置时模糊不清楚,其中右边的点目标与周围的对比度过低,几乎无法识别出。而本发明的处理结果清楚的显示出两个目标所在位置,成功的进行了红外小目标的识别。所以在对图5(a)的处理效果上,本发明的方法无论是在实时性、信噪比还是视觉表现上都明显好于剪切波变换算法。
实施例7
基于张量扩展的半脊方向滤波器红外小目标识别方法同实施例1-5,参见图6,其中图6(a)是一个天空背景条件下的红外小目标图像,图6(b)是本发明方法应用于图6(a)的处理结果图,图6(c)为剪切波变换算法处理图6(a)的处理结果图。本发明的方法应用于图6(a)的时间消耗为3.7295秒,信噪比估值为3.0308。而在相同仿真环境下,剪切波变换算法的时间消耗为6.0839秒,信噪比估值为0.0082。对比两种方法的处理结果图可以明显看出,本发明的方法在处理效果上虽然背景抑制的不全面,但本发明的方法很好的突出了小目标所在的位置,视觉上要好于剪切波变换算法的处理效果。所以在对图6(a)的处理效果上,本发明的方法无论是在实时性、信噪比还是视觉表现上都明显好于剪切波变换算法。
实施例8
基于张量扩展的半脊方向滤波器红外小目标识别方法同实施例1-5,参见图7,其中图7(a)是一个天空背景条件下多目标的红外图像,图7(b)是本发明方法应用于图7(a)的处理结果图,图7(c)为剪切波变换算法处理图7(a)的处理结果图。本发明的方法应用于图7(a)的时间消耗为3.7355秒,信噪比估值为0.0084。而在相同仿真环境下,剪切波变换算法的时间消耗为5.3031秒,信噪比估值为0.0091。本发明设计的方向滤波公式,在兼顾处理效果的同时更多的采用原图像内容,这样虽然会造成背景抑制的不全面,但同时也会大大降低漏检概率,而在处理结果上也增强了小目标所在位置的灰度。虽然在对图7(a)的处理效果上,本发明的方法在信噪比估值上不如剪切波变换算法,但是对比两种方法的处理结果图可以明显看出,图7(C)的左上角的点目标与周围环境对比度低,而本发明的方法处理效果视觉上好于剪切波变换算法的处理效果。所以在对图7(a)的处理效果上,本发明的方法在实时性和处理结果的视觉表现上都明显好于剪切波变换算法。
实施例9
基于张量扩展的半脊方向滤波器红外小目标识别方法同实施例1-5,参见图8,其中图8(a)是一个天空背景条件下单目标的红外图像,图8(b)是本发明方法应用于图8(a)的处理结果图,图8(c)为剪切波变换算法处理图8(a)的处理结果图。观察图8(a)可以看出小目标所占像素个数少且与周围环境的灰度对比度低。对比图8(b)和图8(c)可以看出,虽然图8(b)的背景抑制不全面,但是由于本发明中采用大小为atan(1/2),π/2-atan(1/2),π/2+atan(1/2),π-atan(1/2)的角度作为4个滤波方向,不同于普通方向滤波器的滤波方向,而在每个滤波方向上选定5个以个像素距离为单位的加权滤波点后,使每次运算包含更多的原图像信息,降低漏检率,所以可以有效识别出图8(a)中的小目标,而剪切波变换算法不能有效识别出该图中的小目标。由此可以得出在处理图8(a)中的弱小目标,本发明的方法明显优于剪切波变换算法。
综上所述,基于张量扩展的半脊方向滤波器红外小目标识别方法。具体包括以下步骤:读取小目标图像;根据ridge滤波器构建的图像具有方向选择的特性,利用余弦函数来构造本发明的图像模板;按照二维卷积规则将从图像模板上得到的张量矩阵大小扩展为9×9,并选取该矩阵中间5×5个值为滤波矩阵;确定4个滤波方向;设计每个方向上的加权滤波公式;待每个方向上的加权滤波公式遍历完图像后,保存该方向上的子图;将保存的每个方向的子图按照矩阵对应点相乘的方法融合成一幅图像,归一化处理后得到背景抑制后的小目标图像。本发明解决了天空、海天背景下的红外小目标识别问题。本发明方法简单、便于硬件并行处理,且漏检率低、信噪比高。适用于空天及海天背景下单个或多个小目标的红外预警、红外制导导弹智能寻的。

Claims (4)

1.一种基于张量扩展的半脊方向滤波器红外小目标识别方法,其特征在于,包括如下步骤:
(1)读取小目标原图,大小修正为256×256;
(2)由于小目标图像点旋转方向不变的特性,根据半脊滤波器构成的图像所具有的方向滤波特性,利用余弦函数构成一个左下角灰度值达到最大,右上角灰度值最小的半脊方向滤波器的图像模板,其图像模板大小为n×n,取n=2;
(3)利用张量的定义从图像模板上获得与图像相关的4个张量矩阵,并将每个张量矩阵扩展成大小为9×9的矩阵,选取每个矩阵中间的5×5个值为滤波矩阵,把得到的4个5×5大小的滤波矩阵按照从图像模板中提取张量的相应位置排列构成滤波模板;
(4)在滤波模板每个5×5大小的滤波矩阵上,分别确定4个滤波方向的角度为atan(1/2),π/2-atan(1/2),π/2+atan(1/2),π-atan(1/2);
(5)在步骤(3)中得到滤波模板的每个5×5大小的滤波矩阵上,分别以个像素距离为单位在该滤波模板上按照步骤(4)中所述4个滤波方向分别取值,每个方向上取5个点,当单位距离上的点没有值时,用该点相邻最近两点和的均值代替该点的取值;
(6)设计所述4个滤波方向上的加权滤波公式,在每个方向上分别处理小目标原图并保存,得到四副不同方向上的小目标子图,具体步骤有:
6.1)选取每个滤波方向上5个点的值,分别设计4个滤波方向上的加权滤波公式;
6.2)然后在4个滤波矩阵上只选用一个方向上的加权滤波公式同时处理小目标原图并保存,处理后的小目标原图称为该方向上的小目标子图;
6.3)按照6.2)所述方法,在其他三个滤波方向上对小目标图像做同样处理,并分别保存,共得到四副小目标子图;
(7)按照矩阵对应点相乘的方法对步骤(6)中得到的四副小目标子图进行遍历相乘,融合成一幅新的图像,并对该副图像进行归一化处理,最终得到背景抑制后的小目标图像,识别结束。
2.根据权利要求1所述的基于张量扩展的半脊方向滤波器红外小目标识别方法,其特征在于:步骤(2)中,由余弦函数生成的图像模板Z(n,n)各点灰度值的表达式为:
当i<n时:Z(n-i+m,m)=y(i),m=1,2,3,…,i
当i=n时:Z(l,k)=y(i),l=k=1,2,3,…,n
当i>n时:Z(2n-i-m,n-m)=y(i),m=0,1,2,…,2n-i-1
其中n为图像模板的大小,y(i)为灰度值函数。
3.根据权利要求1所述的基于张量扩展的半脊方向滤波器红外小目标识别方法,其特征在于:步骤(3)中,依据张量的定义,对步骤(2)中形成的大小为2×2的图像模板提取张量矩阵,得到4个张量矩阵,并将每个张量矩阵按照二维卷积规则扩展至3×3大小,并继续扩展该3×3的矩阵直至该矩阵大小为9×9结束,得到4个大小为9×9的扩展矩阵,选定每个扩展矩阵的中间5×5个值为滤波矩阵,把得到的4个5×5大小的滤波矩阵按照从图像模板中提取张量的相应位置排列构成滤波模板。
4.根据权利要求1所述的基于张量扩展的半脊方向滤波器红外小目标识别方法,其特征在于:步骤(6)中,设计4个方向的加权滤波公式,其中设计的atan(1/2)方向上的加权滤波公式为:
pnew(i,j)=[T(-2,1)×p(i-2,j+1)+((T(-1,0)+T(-1,1))/2)×(p(i-1,j)+
p(i-1,j+1))/2+T(0,0)×p(i,j)+((T(1,0)+T(1,-1))/2)
(p(i+1,j)+p(i+1,j-1))/2+T(2,-1)×p(i+2,j-1)]/K
K=T(-2,1)+(T(-1,0)+T(-1,1))/2+T(0,0)+(T(1,0)+T(1,-1))/2+T(2,-1)
其中,p(i,j)为小目标图像中的像素点,则i,j为整数且i,j∈[1,256];pnew(i,j)为小目标图像该点处的新灰度值;T(i,j)为步骤(3)中所提到的5×5滤波矩阵,且-2≤i,j≤2;其他三个滤波方向的加权滤波公式仅需将按照相应方向变化的p(i,j)和T(i,j)点坐标分别带入atan(1/2)方向上的加权滤波公式即可获得。
CN201510226878.1A 2015-05-06 2015-05-06 基于张量扩展的半脊方向滤波器红外小目标识别方法 Active CN104809444B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510226878.1A CN104809444B (zh) 2015-05-06 2015-05-06 基于张量扩展的半脊方向滤波器红外小目标识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510226878.1A CN104809444B (zh) 2015-05-06 2015-05-06 基于张量扩展的半脊方向滤波器红外小目标识别方法

Publications (2)

Publication Number Publication Date
CN104809444A CN104809444A (zh) 2015-07-29
CN104809444B true CN104809444B (zh) 2018-07-31

Family

ID=53694255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510226878.1A Active CN104809444B (zh) 2015-05-06 2015-05-06 基于张量扩展的半脊方向滤波器红外小目标识别方法

Country Status (1)

Country Link
CN (1) CN104809444B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109447073B (zh) * 2018-11-08 2021-11-02 电子科技大学 一种基于张量鲁棒主成分分析的红外弱小目标检测方法
CN111783656B (zh) * 2020-06-30 2024-03-08 哈尔滨工程大学 一种基于统计特性预分割的自适应红外小目标检测方法
CN112305548B (zh) * 2020-10-28 2022-08-19 西北工业大学 一种主动声呐回波图中运动小目标的实时检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946548A (zh) * 2012-11-27 2013-02-27 西安电子科技大学 基于3维Log-Gabor变换的视频图像融合性能评价方法
CN103886329A (zh) * 2014-03-21 2014-06-25 西安电子科技大学 基于张量分解降维的极化图像分类方法
US8798339B2 (en) * 2007-05-10 2014-08-05 Koninklijke Philips N.V. Targeting method, targeting device, computer readable medium and program element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8798339B2 (en) * 2007-05-10 2014-08-05 Koninklijke Philips N.V. Targeting method, targeting device, computer readable medium and program element
CN102946548A (zh) * 2012-11-27 2013-02-27 西安电子科技大学 基于3维Log-Gabor变换的视频图像融合性能评价方法
CN103886329A (zh) * 2014-03-21 2014-06-25 西安电子科技大学 基于张量分解降维的极化图像分类方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"基于结构张量的数字图像修复技术研究";杨秀红;《中国博士学位论文全文数据库 信息科技辑》;20141015(第10期);全文 *
"红外监视告警系统中的复杂背景抑制算法研究";秦翰林;《中国博士学位论文全文数据库 信息科技辑》;20101015(第10期);全文 *

Also Published As

Publication number Publication date
CN104809444A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
Hafiane et al. Joint adaptive median binary patterns for texture classification
CN107247930A (zh) 基于cnn和选择性注意机制的sar图像目标检测方法
CN110516606A (zh) 高分辨率卫星影像任意方向舰船目标检测方法
CN104657945A (zh) 复杂背景下多尺度时空联合滤波的红外小目标检测方法
CN103761731A (zh) 一种基于非下采样轮廓波变换的红外空中小目标检测方法
CN107563433A (zh) 一种基于卷积神经网络的红外小目标检测方法
CN104834915B (zh) 一种复杂云天背景下小红外目标检测方法
CN111325748A (zh) 一种基于卷积神经网络的红外热像无损检测方法
Zhao et al. Adaptive pore model for fingerprint pore extraction
CN107403433A (zh) 一种复杂云背景下红外小目标检测方法
CN104809444B (zh) 基于张量扩展的半脊方向滤波器红外小目标识别方法
CN110988818A (zh) 基于条件生成式对抗网络的欺骗干扰模板生成方法
CN104166128A (zh) 基于广义似然比的多航过sar相干变化检测方法
CN101957993A (zh) 自适应红外小目标检测方法
Zou et al. Vehicle detection based on semantic-context enhancement for high-resolution SAR images in complex background
Ma et al. A sea-sky line detection method based on line segment detector and Hough transform
CN108257153A (zh) 一种基于方向梯度统计特征的目标跟踪方法
CN105825512B (zh) 基于稳健背景回归的高光谱遥感影像异常目标探测方法
Torrione et al. Histogram of gradient features for buried threat detection in ground penetrating radar data
Wan et al. Single frame infrared small target detection based on local gradient and directional curvature
Zhou et al. Camouflaged target separation by spectral-polarimetric imagery fusion with shearlet transform and clustering segmentation
Chen et al. Summary about detection and tracking of infrared small targets
Reichman et al. gprHOG and the popularity of histogram of oriented gradients (HOG) for buried threat detection in ground-penetrating radar
Gao et al. A Fast Detection Method for Infrared Small Targets in Complex Sea and Sky Background
Zheng et al. A new local enhancement algorithm for small target detection based on top-hat transform

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant