CN104772115A - 一种降解砷的磁性氧化石墨烯吸附剂及制备方法 - Google Patents
一种降解砷的磁性氧化石墨烯吸附剂及制备方法 Download PDFInfo
- Publication number
- CN104772115A CN104772115A CN201510134709.5A CN201510134709A CN104772115A CN 104772115 A CN104772115 A CN 104772115A CN 201510134709 A CN201510134709 A CN 201510134709A CN 104772115 A CN104772115 A CN 104772115A
- Authority
- CN
- China
- Prior art keywords
- arsenic
- graphene oxide
- adsorbent
- preparation
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Water Treatment By Sorption (AREA)
Abstract
本发明公开一种降解砷的磁性氧化石墨烯吸附剂及制备方法,即首先配制1g/L的氧化石墨烯水溶液,超声剥离后,将三价铁盐置于氧化石墨烯水溶液中,磁力搅拌后加氨水调节pH为10.5-11,维持90min,然后控制温度60-70℃进行浓缩至粘稠状态,然后再控制温度-70--80℃进行冷冻干燥,将干燥后的固体物置于管式炉中,于N2保护作用下控制温度450℃煅烧2h,即得降解砷的磁性氧化石墨烯吸附剂。该降解砷的磁性氧化石墨烯吸附剂,通过氧化铁的负载,改性了氧化石墨烯表面的物理化学性质,不仅提高了其对类金属砷的吸附性能,同时也实现了吸附剂的快速磁性分离,提高分离效率,进而减少成本,并有效降低其纳米毒性。
Description
技术领域
本发明涉及一种有效去除水溶液中砷的磁性氧化石墨烯吸附剂的制备方法,属于纳米材料与环境科学技术领域。
背景技术
砷是目前化学试剂中毒性最大且具有致癌作用的药物之一,砷主要来源于矿石或土壤、火山爆发、生物活性、炼油、工业废水、采矿业、农业废水、除草剂、化肥等方面。长期使用含砷的地下引用水会引起膀胱、肺、皮肤、肾、肝、前列腺等方面的癌症。一般来说,砷以有机砷和无机砷的形式存在,其中无机砷比有机砷的毒性大。大多数无机砷污染物在水中以亚砷酸盐As(III)、砷酸盐As(V)形式存在,其中亚砷酸的毒性远远强于砷酸的毒性。重金属元素及有毒非金属元素(铅、汞、砷等)能使生物体中的酶失去活性,在生物体内积累,不易排出体外,即使含量很低也是有毒的,对人类的生存环境造成极大的危害。因此,针对水环境的要求,目前迫切需要一种有效的方法来高效能地去除水体中的含As(III)、As(V)的污染物。其中吸附法由于操作简便、效率高、具有再生能力且成本低等优势而成为最合理、最有效的方法。
氧化石墨烯(Graphene Oxide, GO)是石墨烯的一种氧化物。其表面含有丰富的、高活性的含氧官能团,具有良好水溶性和易改变的化学活性。GO单片上随机分布着羟基、环氧基,且单片边缘分布者羧基和羰基。大量官能团的存在为GO作为一种高性能吸附材料提供了丰富的吸附位点。通过对石墨烯表面的官能化,能提高其材料对多种重金属离子和有毒非金属离子的吸附能力。
发明内容
本发明的目的之一是提供一种降解砷的磁性氧化石墨烯吸附剂。
本发明的目的之二是提供上述一种降解砷的磁性氧化石墨烯吸附剂的制备方法。
本发明的技术方案
一种降解砷的磁性氧化石墨烯吸附剂,通过包括如下步骤的方法制备而成:
首先配制1g/L的氧化石墨烯水溶液,超声剥离13h后,将三价铁盐加入其中,磁力搅拌2.5h后,再添加过量氨水调pH为10.5-11,维持90min;
所用的三价铁盐为FeCl3·6H2O,其加入量,按FeCl3·6H2O:氧化石墨烯水溶液为0.016mol:1L的比例计算;
然后加热,控制温度为60-70℃进行浓缩至粘稠状态,然后控制温度为-80--70℃进行冷冻干燥,将干燥后的固体物置于管式炉中,于N2保护作用下,控制温度为450℃煅烧2h,即得降解砷的磁性氧化石墨烯吸附剂。
本发明的有益效果
本发明的一种降解砷的磁性氧化石墨烯吸附剂,通过氧化铁的负载,同时增加了比表面积及其表面的吸附活性位点,大大提高了其对类金属砷的吸附性能。
进一步,本发明的一种降解砷的磁性氧化石墨烯吸附剂,由于氧化铁的负载,在外加磁场的作用下,可利用本身的特性实现快速分离,进而减少成本,并有效降低其纳米毒性;有效解决了石墨烯材料吸附后不易回收的难题。
进一步,本发明的一种降解砷的磁性氧化石墨烯吸附剂的制备方法,由于制备过程中仅采用常规化学试剂氨水和三价铁盐,因此制备所用原料简单易得,生产成本低,易于规模化生产。
具体实施方式
下面的实施例是对本发明的进一步说明,而不是限制本发明的范围。
实施例1
一种降解砷的磁性氧化石墨烯吸附剂,通过包括如下步骤的方法制备而成:
首先配制500ml的浓度为1g/L的氧化石墨烯水溶液,超声剥离13h后,将2.1623g三价铁盐加入其中,磁力搅拌2.5h后,再添加过量氨水调pH为10.5-11,维持90min;
所用的三价铁盐为FeCl3·6H2O,其加入量,按FeCl3·6H2O:氧化石墨烯水溶液为0.016mol:1L的比例计算;
然后加热,控制温度为60-70℃进行浓缩至粘稠状态,然后控制温度为-80- -70℃进行冷冻干燥,将干燥后的固体物置于管式炉中,于N2保护作用下,控制温度为450℃煅烧2h,即得降解砷的磁性氧化石墨烯吸附剂。
应用实施例1
配制浓度为2mg/mL的As(III)NaAsO2水溶液和浓度为2mg/mL的As(V) Na2HAsO4水溶液,通过NaOH和HCl调节As(III) NaAsO2水溶液的pH为8,As(V) Na2HAsO4水溶液的pH为5。
分别将9mg实施例1所得的降解砷的磁性氧化石墨烯和50mL已配制的As(III) NaAsO2水溶液、9 mg实施例1所得的降解砷的磁性氧化石墨烯和50mL已配制的As(V) Na2HAsO4水溶液加入到100mL三角瓶中,放入恒温摇床中在室温条件下以160r min-1匀速振荡,每隔一段时间取样,并用微孔滤膜过滤,所得的滤液中砷离子浓度采用电感耦合等离子体光学发射光谱法ICP测定。
实验结果表明,两组的吸附平衡时间均为4h,比其他材料对As(III)/As(V)的吸附快的多。本发明制备的降解砷的磁性氧化石墨烯对As(III)/As(V)能快速达到吸附平衡。
应用实施例2
依次配制浓度为1,2,5,10,15,20,25,30mg/mL的As(III) NaAsO2水溶液,通过NaOH或HCl调节溶液pH=8。
将9 mg降解砷的磁性氧化石墨烯分别和50mL上述各浓度As(III) NaAsO2水溶液加入到100 mL三角瓶中,置于恒温摇床中在室温条件下以160 r min-1匀速振荡4h,振荡结束后,用微孔滤膜过滤,所得的滤液中As(III)浓度采用电感耦合等离子体光学发射光谱法ICP测定。
实验结果表明,本发明制备的降解砷的磁性氧化石墨烯对As(III)的最大吸附容量为54.184mg/g,而其他材料如Magnetite-reduced GO,Fe3O4-GO-MnO2,Magnetic G,Manganese-incorporated iron(III) oxide-G对As(III)的吸附容量分别为13.10,14.04,11.43,28.74 mg/g,吸附容量增加了2-5倍。
应用实施例3
依次配制浓度为1,2,5,10,15,20,25,30mg/mL的As(V) Na2HAsO4水溶液,通过NaOH或HCl调节溶液pH=5。
将实施例1所得的9 mg降解砷的磁性氧化石墨烯分别和50mL上述各浓度As(V) Na2HAsO4水溶液加入到100 mL三角瓶中,置于恒温摇床中在室温条件下以160 r min-1匀速振荡4h,振荡结束后,用微孔滤膜过滤,所得的滤液中As(V)浓度采用电感耦合等离子体光学发射光谱法ICP测定。
实验结果表明,本发明制备的降解砷的磁性氧化石墨烯对As(V)的最大吸附容量为26.76mg/g,而其他材料如Magnetite-reduced GO,Fe3O4-GO-MnO2对As(V)的吸附容量分别为5.83,12.22 mg/g,吸附容量增加了2-5倍。
综上所述,本发明充分结合了氧化石墨烯与磁性氧化铁的优异特性,经实验测试,制备的降解砷的磁性氧化石墨烯复合材料可有效去除水体中的砷离子,并且可利用自身的高强度磁性进行快速的固液分离,有效降低了其纳米毒性和在水处理中的二次污染。
以上所述仅是本发明的实施方式的举例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。
Claims (3)
1.一种降解砷的磁性氧化石墨烯吸附剂的制备方法,其特征在于包括如下步骤:
首先配制1g/L的氧化石墨烯水溶液,超声剥离13h后,将三价铁盐加入其中,磁力搅拌2.5h后,再添加过量氨水调pH为10.5-11,维持90min;
然后加热,控制温度为60-70℃进行浓缩至粘稠状态,然后控制温度为-80- -70℃进行冷冻干燥,将干燥后的固体物置于管式炉中,于N2保护作用下,控制温度为450℃煅烧2h,即得降解砷的磁性氧化石墨烯吸附剂。
2.如权利要求1所述的磁性氧化石墨烯吸附剂的制备方法,其特征在于制备所用的三 价铁盐为FeCl3·6H2O,其加入量,按FeCl3·6H2O:氧化石墨烯水溶液为0.016mol:1L的比例计算。
3.如权利要求1或2所述制备方法所得的一种降解砷的磁性氧化石墨烯吸附剂。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510134709.5A CN104772115A (zh) | 2015-03-25 | 2015-03-25 | 一种降解砷的磁性氧化石墨烯吸附剂及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510134709.5A CN104772115A (zh) | 2015-03-25 | 2015-03-25 | 一种降解砷的磁性氧化石墨烯吸附剂及制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104772115A true CN104772115A (zh) | 2015-07-15 |
Family
ID=53614065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510134709.5A Pending CN104772115A (zh) | 2015-03-25 | 2015-03-25 | 一种降解砷的磁性氧化石墨烯吸附剂及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104772115A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105381784A (zh) * | 2015-11-17 | 2016-03-09 | 苏州科技学院 | 一种磁性氧化石墨烯复合材料的制备方法和应用 |
CN106904705A (zh) * | 2017-03-03 | 2017-06-30 | 武汉理工大学 | 一种高效可循环的酸性含As(V)废水处理方法 |
CN107970886A (zh) * | 2017-11-09 | 2018-05-01 | 广东工业大学 | 一种氧化石墨烯与氯化铁复合改性沸石滤料及其制备方法 |
CN108178127A (zh) * | 2018-02-27 | 2018-06-19 | 宣城亨旺新材料有限公司 | 氢氟酸中砷的去除方法 |
-
2015
- 2015-03-25 CN CN201510134709.5A patent/CN104772115A/zh active Pending
Non-Patent Citations (1)
Title |
---|
于飞: "Enhanced removal performance of arsenate and arsenite by magnetic graphene oxide with high iron oxide loading", 《PHYS.CHEM.CHEM.PHYS》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105381784A (zh) * | 2015-11-17 | 2016-03-09 | 苏州科技学院 | 一种磁性氧化石墨烯复合材料的制备方法和应用 |
CN105381784B (zh) * | 2015-11-17 | 2018-01-02 | 苏州科技学院 | 一种磁性氧化石墨烯复合材料的制备方法和应用 |
CN106904705A (zh) * | 2017-03-03 | 2017-06-30 | 武汉理工大学 | 一种高效可循环的酸性含As(V)废水处理方法 |
CN107970886A (zh) * | 2017-11-09 | 2018-05-01 | 广东工业大学 | 一种氧化石墨烯与氯化铁复合改性沸石滤料及其制备方法 |
CN107970886B (zh) * | 2017-11-09 | 2023-10-27 | 广东工业大学 | 一种氧化石墨烯与氯化铁复合改性沸石滤料及其制备方法 |
CN108178127A (zh) * | 2018-02-27 | 2018-06-19 | 宣城亨旺新材料有限公司 | 氢氟酸中砷的去除方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gao et al. | Arsenic adsorption on layered double hydroxides biochars and their amended red and calcareous soils | |
Seshadri et al. | Rhizosphere-induced heavy metal (loid) transformation in relation to bioavailability and remediation | |
Sharma et al. | Fabrication and characterization of chitosan-crosslinked-poly (alginic acid) nanohydrogel for adsorptive removal of Cr (VI) metal ion from aqueous medium | |
Li et al. | Phosphate adsorption on metal oxides and metal hydroxides: A comparative review | |
Wan et al. | Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand | |
Ke et al. | Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water | |
Sereshti et al. | Removal of phosphate and nitrate ions aqueous using strontium magnetic graphene oxide nanocomposite: Isotherms, kinetics, and thermodynamics studies | |
Peng et al. | Removal and recovery of vanadium from waste by chemical precipitation, adsorption, solvent extraction, remediation, photo-catalyst reduction and membrane filtration. A review | |
CN111014275B (zh) | 一种重金属土壤修复剂及其应用 | |
CN104772115A (zh) | 一种降解砷的磁性氧化石墨烯吸附剂及制备方法 | |
CN104289181B (zh) | 一种磁性羟基磷灰石/氧化石墨烯吸附剂的制备及应用 | |
Younis et al. | Efficient removal of La (III) and Nd (III) from aqueous solutions using carbon nanoparticles | |
Ismail et al. | Biosorption of heavy metals | |
Malik et al. | A comprehensive review on nanobiotechnology for bioremediation of heavy metals from wastewater | |
Shahryari et al. | Enhancing cadmium removal by low-cost nanocomposite adsorbents from aqueous solutions; a continuous system | |
Hasan et al. | Nanomaterials and soil health for agricultural crop production: current status and future prospects | |
Kamal et al. | A mini review of treatment methods for lead removal from wastewater | |
Wang et al. | Reducing potential leaching of phosphorus, heavy metals, and fecal coliform from animal wastes using bauxite residues | |
Omran | Facing Lethal Impacts of Industrialization via Green and Sustainable Microbial Removal of Hazardous Pollutants and Nanobioremediation | |
Umair et al. | New insights into the environmental application of hybrid nanoparticles in metal contaminated agroecosystem: A review | |
CN104841368B (zh) | 一种淋洗液再生材料及其应用 | |
CN207699406U (zh) | 一种新型去除水中硝酸盐的处理设备 | |
New et al. | Nanoparticles in Soil Remediation: Challenges and Opportunities | |
CN109126733B (zh) | 一种用于吸附污染物的改性陶粒组合填料的制备方法 | |
Shen et al. | Removal of bismerthiazol from water using zerovalent iron: batch studies and mechanism interpretation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150715 |
|
WD01 | Invention patent application deemed withdrawn after publication |