CN104769537B - 用于使用触摸集成显示器操作的触摸控制器和显示驱动器之间的接口和同步方法 - Google Patents

用于使用触摸集成显示器操作的触摸控制器和显示驱动器之间的接口和同步方法 Download PDF

Info

Publication number
CN104769537B
CN104769537B CN201380031746.2A CN201380031746A CN104769537B CN 104769537 B CN104769537 B CN 104769537B CN 201380031746 A CN201380031746 A CN 201380031746A CN 104769537 B CN104769537 B CN 104769537B
Authority
CN
China
Prior art keywords
ddi
tsc
signal
signals
touch panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380031746.2A
Other languages
English (en)
Other versions
CN104769537A (zh
Inventor
米尔顿·里贝罗
巴特·黛卡奈
简-威廉·范德瓦尔德特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Parade Technologies, Ltd.
Original Assignee
Parade Technologies Ltd USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parade Technologies Ltd USA filed Critical Parade Technologies Ltd USA
Publication of CN104769537A publication Critical patent/CN104769537A/zh
Application granted granted Critical
Publication of CN104769537B publication Critical patent/CN104769537B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

将显示驱动器集成电路(DDI)和触摸屏控制器(TSC)集成电路进行同步的装置和方法,该显示驱动器集成电路(DDI)和触摸屏控制器(TSC)集成电路耦合到显示集成触摸面板,诸如内嵌式面板,并且允许内嵌式触摸面板的多相发射(TX)扫描。一个装置包括DDI,其配置为在视频接口上接收来自主机处理器的视频接口上的信号且驱动触摸面板的电极。该DDI配置为在控制接口上接收来自TSC的控制信号以在触摸面板的电极上以不同感测间隔驱动TX信号的不同发射(TX)相位序列。

Description

用于使用触摸集成显示器操作的触摸控制器和显示驱动器之 间的接口和同步方法
相关申请
本申请还要求于2012年7月19日提交的第61/673,680号美国临时申请的权益,该美国临时申请的全部内容通过引用并入本文。
技术领域
本公开大体涉及电容传感系统,且更具体地涉及用于使用具有集成的触摸层(例如,内嵌式(in-cell)面板)的显示器的操作的触摸控制器和显示驱动器。
背景
电容传感系统可以感测产生在电极上的反映电容变化的电信号。这种电容变化可以表明触摸事件(即,物体邻近特定的电极)。电容传感元件可以用来取代机械按钮、旋钮和其它类似的机械的用户界面控件。电容传感元件的使用允许消除复杂的机械开关和按钮,在恶劣的条件下提供可靠的操作。此外,电容传感元件被广泛应用于现代的客户应用程序,在现有的产品中提供新的用户界面选项。电容传感元件的范围可以覆盖从单一的按钮变化到布置为用于触摸感应表面的电容传感阵列的形式的大量传感元件。
利用电容传感阵列的透明触摸屏在当今的工业市场和消费者市场普遍存在。可以在手机、GPS设备、机顶盒、摄像机、计算机屏幕、MP3播放器、数字平板等上发现它们。电容传感阵列通过测量电容传感元件的电容并寻找指示导电物体的触摸或存在的电容增量来工作。当导电物体(例如,手指、手、或其他物体)接触或邻近电容传感元件时,电容变化和导电物体被检测到。电容触摸传感元件的电容变化可以通过电路进行测量。电路将测量的电容传感元件的电容转换成数字值。
电容有两种典型类型:1)互电容,其中电容传感电路使用(access)电容器的两个电极;2)自电容,其中电容传感电路只使用电容器的一个电极,其中第二电极被连接至直流电压电平。触摸面板有(1)和(2)两种类型的电容的分布载荷,Cypress的触摸解决方案唯一地使用其不同的感测模式或以混合形式使用其不同的感测模式来感测两种电容。
内嵌式液晶显示(LCD)面板是同时包括通过在滤色玻璃下方定位至少一个接触层(通常是发射(TX)层)的触摸屏功能的LCD面板。此外,典型地,TX层被显示器的公共电极(VCOM参考层)共享。触摸屏控制器(TSC)可能是用来测量电极阵列(如包括多个发射(TX)电极和多个接收(RX)电极的阵列)上的电容的电容式触摸屏控制器。显示驱动器集成电路(DDI)典型地是位于LCD的玻璃基板上的集成电路(IC),其驱动LCD的定时和视频信号。虽然以上的描述针对内嵌式LCD,但是对于其他显示器类型存在类似的叠层,如有源矩阵有机发光二极管(AMOLED)。
内嵌式面板通常在触摸功能和显示功能之间使用共享层来最小化模块厚度和成本。在实践中,LCD厂商在同一层上实现LCD VCOM和触摸TX。这可能有两个影响。1)由于VCOM仅在动态视频部分期间被驱动,其结果是电容触摸扫描仅在静态视频时间(即,视频消隐时间)期间发生。因此,在TSC集成电路和DDI之间需要定时同步。2)DDI现在不仅需要驱动VCOM信号,还需要驱动TX信号。因此,TSC需要告知DDI待在层上发送的TX信号的TX模式序列。
发明内容
本申请主要包括以下方面:
1)一种电子系统,包括:
显示驱动器集成电路DDI,所述显示驱动器集成电路DDI被配置为通过视频接口接收来自主机处理器的视频接口上的信号,并且配置为驱动触摸面板的电极,其中,所述DDI配置为在控制接口上接收来自触摸屏控制器TSC的控制信号以便在所述触摸面板的所述电极上驱动不同感测间隔的TX信号的不同发射TX信号序列。
2)根据1)所述的电子系统,还包括耦合至所述DDI的所述TSC,所述TSC配置为在所述控制接口上将所述控制信号发送至所述DDI。
3)根据1)所述的电子系统,其中,所述DDI包括存储器以存储所述TX信号的不同TX信号序列的TX模式,并且其中所述控制信号配置为控制所述触摸面板的电极上的所述TX模式的输出。
4)根据1)所述的电子系统,其中,所述触摸面板为内嵌式触摸面板,其中公共电极在所述内嵌式触摸面板的触摸传感模态期间配置作为TX层以及在所述内嵌式触摸面板的显示模态期间配置作为公共电压参考层。
5)根据1)所述的电子系统,其中,在所述视频接口上的信号包括数字的红、绿、蓝RGB信号、水平同步信号HSync、以及垂直同步信号VSync。
6)根据1)所述的电子系统,其中,所述视频接口包括高速分组化视频链路。
7)根据6)所述的电子系统,其中,所述TX信号的不同TX信号序列为不同的TX相位序列。
8)根据6)所述的电子系统,其中,所述高速分组化视频链路根据移动行业处理器接口MIPI规范来定义,并且其中所述DDI配置为将撕裂效应TE信号输出到所述主机处理器和所述TSC。
9)根据8)所述的电子系统,其中,所述TSC配置为将所述TE信号分为垂直同步信号和水平同步信号。
10)根据2)所述的电子系统,其中所述TSC包括定序器以控制被发送至所述DDI的所述控制信号。
11)根据2)所述的电子系统,其中所述TSC包括多个多路复用器,以便基于所述TSC的操作模态将所述触摸面板的电极中的一个或多个电极配置为TX电极或RX电极。
12)一种集成电路,包括:
多个引脚,所述多个引脚可配置成耦合为接收来自第二集成电路的输入/输出I/O信号以及将输入/输出I/O信号发送至第二集成电路,所述第二集成电路包括触摸屏控制器TSC;
第二组多引脚,所述第二组多引脚可配置成耦合至内嵌式触摸面板;
存储器设备,所述存储器设备存储具有表示TX信号的不同发射TX信号序列的每个元件的激励矩阵;以及
多个寄存器,所述多个寄存器耦合到所述多个引脚,其中所述多个寄存器配置为根据所述激励矩阵利用所述第二组多引脚上的触摸信号驱动所述内嵌式触摸面板的多个TX电极。
13)根据12)所述的集成电路,其中,所述TX信号的TX信号序列在所述激励矩阵中表示为零度相移信号、180度相移信号或接地电位中的至少一个。
14)根据12)所述的集成电路,其中,所述TX信号的TX信号序列在所述激励矩阵中表示为零度相移信号或180度相移信号中的至少一个。
15)根据12)所述的集成电路,其中,寄存器接口配置为三态所述第二组多引脚以允许所述内嵌式触摸面板的多个TX电极通过所述TSC驱动。
16)根据12)所述的集成电路,其中,所述多个寄存器能够通过显示驱动器编程,所述显示驱动器在耦合至所述集成电路的主机处理器上执行。
17)一种方法,包括:
在显示驱动器电路DDI处在视频接口上接收来自主机处理器的信号;
在显示模态期间通过所述DDI驱动内嵌式触摸面板的显示器上的信号,其中所述内嵌式触摸面板包括发射TX层,所述发射TX层包括共享所述显示器的参考层的多个公共电极;
在控制接口上接收来自触摸屏控制器TSC的同步的控制信号;以及
响应于所述同步的控制信号,在传感模态期间根据不同的发射TX信号序列控制所述多个公共电极上的发射TX信号的输出。
18)根据17)所述的方法,其中,控制所述TX信号的输出包括执行存储在所述DDI的存储器中的TX模式表中的查找操作,其中所述TX模式表存储不同的TX信号序列。
19)根据17)所述的方法,还包括:
测量所述内嵌式触摸面板的多个RX电极上的接收RX信号;以及
基于所测量的RX信号确定物体是否邻近所述内嵌式触摸面板。
20)根据17)所述的方法,其中,控制所述TX信号的输出包括根据多相发射MPTX模式序列控制所述TX信号的输出。
附图简要说明
本发明通过举例而不是限制的方式以附图的图示进行说明。
图1是示出具有内嵌式触摸面板、用于传统的视频接口的显示驱动器集成电路(DDI)和触摸屏控制器(TSC)的电子系统的一个实施例的框图。
图2是示出具有内嵌式触摸面板、用于视频接口的DDI和TSC的电子系统的另一个实施例的框图。
图3是示出根据一个实施例的传统的扫描技术的示意性流程图。
图4是示出根据一个实施例的多相扫描技术的示意性流程图。
图5是示出具有内嵌式触摸面板、TSC、以及具有TX模式表的DDI的电子系统的一个实施例的框图。
图6是根据一个实施例的对于利用内嵌式触摸面板的操作的同步TSC和DDI的方法的流程图。
图7是示出具有用于检测触摸物体和触笔的存在的处理设备的电子系统的一个实施例的框图。
具体描述
在下面的描述中,为了解释的目的,阐述了许多具体细节以提供对本发明的深入理解。然而,对本领域的其中一名技术人员将显而易见的是,本发明可以在没有这些具体细节的情况下实施。在其他情况下,公知的电路、结构和技术没有详细示出,而是示出在框图中,以避免不必要地模糊对本描述的理解。
在描述中对“一个实施例”或“实施例”的引用是指结合该实施例描述的特定的特征、结构或特性包含在本发明的至少一个实施例中。位于本描述的不同地方的短语“在一个实施例中”不一定指相同的实施例。
内嵌式触摸面板可能是包括通过至少利用在滤色玻璃下方定位触摸层中的一个(通常是TX层)的触摸屏功能的LCD面板。此外,典型地,TX层被显示器的VCOM参考层共享。如上所述,内嵌式触摸面板一般使用触摸功能和显示功能之间的共享层来最小化模块厚度和成本,如通过在同一层上实现LCD VCOM和触摸TX。因此,在TSC和DDI之间需要定时同步来将触摸控制器扫描窗口同步到显示驱动器操作。然而,目前的解决方案只允许TSC一次发送激发一个TX电极的信号模式(本文称为单相扫描或单相模态)。这可能会排除使用在使用多行或多相TX扫描(本文又称为多相模态)时可用的各种特征。本文所描述的实施例允许使用多相TX扫描来提高信噪比(SNR),以及提供不同的传感模式,如水检测扫描、邻近感测等。虽然本文描述的实施例针对内嵌式触摸面板,但这些实施例也可以应用于其他技术,如具有集成的触摸层的显示器、内嵌式显示器或将由本领域其中一名普通技术人员理解的那些显示器等。
此外,一些传感模式使用TX电极作为TSC的输入。当前的内嵌式触摸面板允许从DDI进行TX输出且不将TX电极线连接到TSC。本文描述的实施例提供可用作输出及作为至TSC的输入的TX电极。为了允许使用一些提高用于触笔、手套和邻近度的性能的传感模式,实施例可以被配置为不仅将TX信号发送到TSC,也能够在TX电极用作TSC的输入时控制TX输出从DDI断开。
此外,为了允许DDI和TSC之间灵活的定时同步,提出的接口的实施例可用于将TX模式激发(playout)同步到显示时钟,并将RX传感窗口同步到该相同的显示时钟。另外,实施例可关于显示定时信号灵活地控制扫描定时,该显示定时信号可使用下文参照图1描述的离散信号(水平同步信号(Hsync)、垂直同步信号(Vsync)),或使用下文参照图2描述的高速视频链路中的嵌入式信号,如来自DDI的撕裂效应(TE)信号。在传统的数字视频接口的情况下,HSync和VSync是主机(应用处理器)和DDI IC之间的水平和垂直同步信号,如关于图1示出和描述的。对于现代的串行接口(例如,MIPI接口),这些信号不可作为离散信号获得。在这些串行接口中,来自DDI的TE信号可用于将TSC同步到显示器。TE信号是来自DDI的仅识别V消隐或识别V消隐和H消隐定时二者的定时信号。TE信号是到主机(应用处理器)的输入,这样完成视频数据写入DDI,使得DDI中的视频帧存储器的写入数据和读出数据指针不重叠。在具有MIPI接口的内嵌式触摸LCD的情况下,则这个信号也需要被发送到TSC以同步其扫描定时。
图1是示出具有内嵌式触摸面板125、用于传统的视频接口102的DDI 120和TSC110的电子系统100的一个实施例。电子系统100还包括主机处理器150(也被称为应用处理器)。主机处理器150可以是微处理器、中央处理单元(CPU)、控制器、专用处理器、数字信号处理器(“DSP”)、专用集成电路(“ASIC”)、现场可编程门阵列(“FPGA”)等等。电子系统100在主机处理器150与DDI 120之间具有视频接口102。视频接口102包括来自主机处理器150的视频信号(通常为RGB)、Hsync信号和Vsync信号。另外,视频信号可以是除RGB以外的其他颜色空间。Hsync信号和Vsync信号也可以输入到TSC 110中。电子系统100还包括在TSC 110、DDI 120和主机处理器150之间的控制接口104和数据链路106。控制接口104包括TXS信号、TXPAT_CTL信号和TXOE_N信号,如在下面详细描述的。控制接口104也可包括如本文中描述的其他信号,如TXPAT_INC、TXPAT_RST。数据链路106可以是串行外设接口总线,其是可以在全双工模态下操作的同步串行数据链路。可选地,数据链路106可能是内部集成电路(I2C)接口,其是多主串行单端计算机总线。内嵌式触摸面板125包括多个电极(也被称为传感元件或传感器元件)。多个电极可以被布置为多个TX电极(例如,TX[0……N_TX-1])和多个RX电极(例如,RX[0……N_RX-1])。DDI 120耦合到内嵌式触摸面板125的TX电极且TSC 110耦合到内嵌式触摸面板125的RX电极。另外,如本文所述,内嵌式触摸面板125的TX电极可以耦合成为TSC 110的输入。
DDI 120包括控制接口104和寄存器122以实现到内嵌式触摸面板125的显示接口(称为CyDI)。显示接口包括DDI 120和TSC 110以及寄存器122之间的控制接口104的接口信号(TXS、TXPAT_CTL、TXOE_N),这些将由DDI 120的供应商包括以使它们与TSC 110兼容。接口信号可以是输入/输出(I/O)信号。寄存器122接口在DDI 120上实现,且假定主机处理器通过现有的控制接口对DDI 120和TSC 110寄存器映射编程。在这个实施例中,没有通过TSC110对DDI寄存器进行直接编程,因此在TSC 110和DDI 120之间不需要主I2C接口。应该指出的是,在某些情况下,在DDI和TSC之间,来自主机的控制接口可以不同。例如,TSC的主机可以是SPI或者I2C接口,而DDI的主机可以是SPI、I2C或MIPI控制总线,其中MIPI可以携带视频和控制数据,如图2中描述的。
在一个实施例中,在主机处理器150上运行的设备驱动器使用到每个部分的现有控制接口提供对TSC和DDI寄存器的编程,TSC和DDI寄存器在下面被指定为该显示接口定义的一部分。显示接口定义允许TX模式可以在每个单独的TX线109(耦合到内嵌式触摸面板125的TX电极)上产生0度相移(“+”)、180度相移(“-”)、地电位(“0”)输出或高阻抗输出。TSC110测量RX线113(耦合到内嵌式触摸面板125的RX电极)上的RX信号。在另一个实施例中,规定将高阻抗输出施加在来自DDI 120的所有TX信号上以允许TX线109被触摸屏控制器110在线111上驱动。应该指出,VCOM上的高阻抗输出的最大允许持续时间可以被指定以防止LCD图像恶化。
图2是示出具有内嵌式触摸面板125、用于视频接口202的DDI 120和TSC的电子系统200的另一个实施例的框图。除了视频接口外,电子系统200类似于由相似的参考数字标示的电子系统100。接口202可以是高速分组视频链路,如根据移动行业处理器接口联盟规范开发的视频链路。可选地,接口202可以是将由本领域其中一名普通技术人员理解的其他视频接口。接口202可携带命令数据且可以用来代替主机处理器150和DDI 120之间的单独的命令SPI/I2C接口,如图1的数据链路106所示。如图2所示,数据链路206可以在主机处理器150与TSC 110之间。在所描述的实施例中,H和V视频同步信号嵌入(没有离散的HSync、VSync信号存在)在MIPI视频链路中。DDI 120然后产生标识消隐时间的输出TE信号207,所以主机处理器150可以将其写入同步到DDI帧缓存。该同一输出TE信号207然后也由TSC 110使用以同步其扫描定时。在图1和图2中所描述的显示接口的操作在下文关于图3解释单相位扫描和关于图4解释多相位扫描后更详细地描述。
图3是示出根据一个实施例的传统的扫描技术的示意性流程图。在具有M行和N列的电容传感器阵列中,传统的传感器矩阵扫描方法包括将发射(TX)信号303施加到一行(例如,从DDI 120施加到TX线109上)并检测来自RX列的响应(例如,通过TSC 110在RX线113上检测)。因此,TX信号303在不同的面板扫描间隔(本文又称为阶段)之间被连续地施加到TX电极301,如图3所示。非通电的TX电极301接地。在图3中,当TX信号被施加到TX行时,该行被标示为+1。当TX电极301接地时,它们被标示为0。因此,整个面板扫描序列对应于在不同的扫描间隔期间在不同的TX电极之间的移动“+1”。在图3中,TX信号303是方波。可选地,TX信号303可具有其他的波形,如正弦波,如图4所示。
一个接收器列可被表示为经由面板传递的TX激励信号的电容加法器。由于传统的顺序扫描方案同时仅施加一个TX信号303到一行电极301,接收信号仅与受激发的行301与接收器列303之间的互电容成正比。该信号经过整流和模数转换器(ADC)304的转换(在TSC110中)可以表示为某个NADC值。
j行和i列之间的增益因子可以表示为kji,其中k与行和列之间的互电容成正比。
由于TX信号被连续施加到所有面板行,该矩阵的元素逐行获得,与将TX信号施加到相应的行同步。这可在以下等式中解释:
其中Vkj是用于k扫描阶段的j行的TX信号。对于整个面板扫描程序,TX信号可以通过以下具有M*M维的对角矩阵表示:
每个接收器表示来自多个TX电极的信号,对于i列接收器输出信号和j扫描阶段,它可以写成以下形式:
作为矩阵,它可以表示为
NADC=K·S (5)
考虑到S是对角矩阵,线性方程组(5)可简化为以下形式
因此,计算增益直接与ADC读数成正比,且不需要任何额外的计算。如果有N个接收器,则所有列在同一时间被感测。如果一行的扫描时间是τ,则总的面板扫描时间TP为:
TP=τM (7)
对于具有大量的TX电极的面板,单行的扫描时间是总的面板扫描时间的一小部分。因此,行电容在很短的时间间隔期间被测量,由于对于一行扫描的有限数量的TX循环处理,导致信噪比恶化。使用短的转换时间的另一个缺点是接收器的带宽增加,导致外部噪声免疫力下降。
现在将描述对于TX多相位扫描方法的一个实施例的细节。需要在整个面板扫描时间TP期间接收行信号。这可以通过将TX信号(例如,图4的TX信号403)同时施加到多于一行而实现。如果同样的TX信号被施加到所有的TX电极,则仅在一个坐标中可以实现触摸检测。为了恢复每个行列相交点的互电容值(或全矩阵K),单独的TX信号的特性可以在不同的扫描阶段变化以区分在不同的扫描阶段的信号和解析多点触摸。以下的TX信号特性可能会改变:振幅、相位和频率。
在数字域实现这个的简单且容易的方法是二进制相位调制。在这种情况下,每个TX电极可以与解调信号同相地被驱动、或与解调信号反相地被驱动。
一般情况下,该方法包括针对不同的感测间隔施加不同的TX相位序列和收集对于每个间隔的通道读数。在其它实施例中,该方法可包括施加不同的TX信号,如不同频率的TX信号、伪随机序列、相移信号、正交序列等等。图4示出了根据一个实施例的扫描序列。如果多个TX信号403同时被驱动,则接收信号是从不同的TX电极401接收的信号的代数和。
如果对于j扫描阶段的第i个TX电极的相位等于Fij,则Fij可只接受两个值:对于同相激励的Fij=1,对于反相激励信号的Fij=-1,这是因为所有TX电极401同时被激励。矩阵形式的F可用下列方式表示:
容易找到对于相位调制的TX信号的扫描序列的增益矩阵K。通过将F矩阵代入方程5而代替矩阵S,得到以下的线性方程组:
NADC=K·F (9)
通过求解方程组(8)得到增益矩阵K:
K=NADC·F-1 (10)
其中F-1是矩阵F的逆矩阵,它可以在装置设计时通过任何已知的方法确定,这是因为矩阵系数是常数且在系统运行过程中不发生变化。
等式10的计算量要求可以很容易地估计:NADC是N*M矩阵且F-1是M*M矩阵。因此,矩阵乘法需要N*M2次MAC运算。对于M=16且N=11的面板,对于每个扫描周期需要2816次MAC运算。应该指出的是,相位调制函数选择的细节没有包括在本文中以免模糊所提出的实施例的描述。
以上描述引入单相扫描和多相扫描的概念。如上所述,显示接口的实施例(如关于图1和图2描述的那些)可以提供DDI 120和TSC 110之间的同步,以及提供执行单相扫描和多相扫描的能力。此外,显示接口允许内嵌式触摸面板125的TX电极被配置为TSC 110的输入。在图1和图2中所描述的显示接口的操作在下面被更详细地描述。
在图1和2描绘的显示接口可以提供多个同步的TX输出和多个等同的模式(例如,激励矩阵的那些模式)。这可能是只包括0度和180度相移的方波信号的模式的典型情况(传统情况:只有+、-模式和特征为循环移位模式的方波矩阵)。显示接口还可以提供高于TX输出的数量的许多模式。这可在模式还可另外具有零输出时使用。例如,象征性地,在TX线109上的TX信号的模式序列可以被定义为激励矩阵。下表是用于TX激励模式矩阵的DDI寄存器格式。
TXPAT[i][j], (11)
其中:
i=0…(MP_TOTAL-1),其中由于对于一些TX模式的可逆模式(reversiblepattern)可能由TSC驱动,因此MP_TOTAL=可以被同时激活的电极(X+Y)输出的总数量;并且j=0…(MP_PAT-1),其中MP_PAT=模式序列中的模式的数量。下表(表3)提供了可用于DDI 120的一组寄存器和位字段定义。在这个实例中,DDI中的TX模式矩阵的大小是位宽为2的符号的64×64个符号,比特的位数是128×64。比特的总数等于8192或1024字节。
表3–DDI寄存器定义
表4提供了1024字节阵列中的位字段的格式和模式。
表4–对于TX模式矩阵的DDI寄存器格式
TX模式 地址 TX输出位字段格式
TX模式0 0x0000 [7:6]TX3,[5:4]TX2,[3:2]TX1,[1:0]TX0
0x001F [7:6]TX63,[5:4]TX62,[3:2]TX61,[1:0]TX60
TX模式1 0x0020 [7:6]TX3,[5:4]TX2,[3:2]TX1,[1:0]TX0
0x003F [7:6]TX63,[5:4]TX62,[3:2]TX61,[1:0]TX60
TX模式63 0x01E0 [7:6]TX3,[5:4]TX2,[3:2]TX1,[1:0]TX0
0x01FF [7:6]TX63,[5:4]TX62,[3:2]TX61,[1:0]TX60
TX激励模式是指被驱动的TX电极之间的相位关系。例如,电极Y[0]和Y[1]能够为以下的模式:Y[0]=+、以及Y[1]=-。在这个实例中,Y[0]相对于Y[1]为180°相位。在TX扫描中排序的有多个TX模式。TX模式矩阵可以为在DDI芯片中的可编程存储器,该DDI芯片控制对于每个TX输出的TX波形的相位。
TX激励模式能够存储在DDI 120的存储器中。考虑到MP_PAT=1.5xMP_TOTAL,所定义的模式可以比X+Y个电极的数量多出50%。另外,由于每个矩阵位置必须识别4种可能性(+、-、0、高阻抗)中的一个,因此每个矩阵位置使用两比特;因此,TXPAT存储器尺寸为(MP_TOTAL*2)*(1.5*MP_TOTAL)比特。
在每个TX线109上的DDI激发通过TXPAT矩阵的一列在任一次唯一地限定。DDI激发是根据激励模式(例如,TXPAT矩阵)的TX线109的激励。DDI 120还需要得知何时前进至下一列(根据来自TSC 110的TXPAT_INC信号,被上升边缘触发)以及何时将列指针复位为第一模式的激发(根据来自TSC 110的TXPAT_RST信号,被上升边缘触发),例如,在新的视频帧的起始处(但是,如果我们生成比显示速率更高的触摸汇报速率,则也可在别处)。
以上显示接口定义允许生成包括等于同步TX输出的数量的模式数量(MP_PAT=N_TX)的模式序列或生成大于同步TX输出的数量的模式数量(MP_PAT>N_TX)的模式序列的灵活性。另外,显示接口定义能够允许模式序列的长度小于同步输出的数量的情况(例如,以减小去卷积的阶数(order))。例如,这种情况能够通过在M个模式之后发出TX_PAT_RST信号而进行调节,其中M=N_TX/k,k为整数,使得该模式序列对于单个MPTX扫描序列重复k次。
此外,通过将TXPAT编程到DDI存储器中能够调节一些TX输出,这些TX输出在一个、一些或全部模式期间仅通过将那些输出编程为“0”到矩阵中来保持在GND电位。因此,“1-TX”输出的情况当TXPAT仅在矩阵对角线上具有非零元素时的特殊情况。在这种情景中,面板短边(X电极)可以为高阻抗输出。
在一个实施例中,DDI 120在易失性存储器中存储TXPAT。因此,TXPAT能够在每一次上电时通过在主机处理器150上运行的设备驱动器被编程到DDI存储器中。
视频帧同步
对于生成被同步到视频帧的信号(TXPAT_INC、TXPAT_RST和TX_OE_N)的TSC 110,其必须知道H和V显示定时参考。基于该情况,图1的视频接口102的HSync、VSync信号可以直接从主机处理器150获得,或者可以获得通过DDI 120生成的TE(撕裂效应)信号(在图1中未示出,但在图2中示出为TE 207)形式的复合同步信号(CSync)。
TSC 110需要将其扫描同步至DDI输出的消隐时间。这能够通过在TSC 110上相对于输入V以及还可能是H(定时参考)适当地编程扫描时间的起始和结束。最低要求是需要获得V参考(来自VSync、或者可选地来自带有VSync的TE信号),这是由于每个视频帧通常至少发出一次TXPAT_RST信号以保持DDI 120和TSC 110同步。当仅有V参考可用时,DDI 120和TSC 110在V消隐期间可以同步。另外地,如果H定时参考可用(来自HSync、或者来自带有CSync的TE信号),那么TSC 110能够被编程以便在H消隐或V消隐期间扫描。
TX激发同步
两种模态可以作为这个接口的部分存在以同步DDI 120和TSC 110之间的TX激发频率。基于这些设备提供主时钟。
1)模态“TxMode_TSC”:TSC 110对于TX输出为主。在这种情况中,TSC 110提供0度方波输出信号(TX源(TXS))至DDI 120。DDI 120将进行以下任一状态:a)将这个信号输出到对于在TXPAT矩阵中那些被定义为“+”的TX输出的指定输出中,b)将这个信号经过内部反相器之后输出到那些在TXPAT矩阵中被定义为“-”的TX输出,c)将GND输出到那些在TXPAT矩阵中被定义为“0”的TX输出,或者d)将Hi-Z(高阻抗)输出到定义为“z”的TX输出上。
通过DDI 120的这个信号的接口被假定为组合的(没有时钟恢复为DDI时钟),使得TSC 110的TX输出的时钟同步被保持。由于时钟源来自TSC 110,将不需要其他的时钟同步。
2)模态“TxMode_DDI”:DDI 120对于TX输出为主。在这种情况中,DDI 120生成作为其自身的时钟频率约数的TX输出频率。这种模态可以具有的优势在于,TX输出同步至显示时钟,并且因此能够在每一个扫描上同步显示噪声事件。DDI存储器中的主可编程寄存器(例如,TX_CLKDIV)能够用于将DDI时钟分频以得到所需的TX频率。0度相移时钟从DDI 120输出到TSC 110(信号TXS),使得TSC 110能够将其RX扫描在被编程的扫描窗口期间同步至这个时钟。
因此,在任一模态中,不论TSC 110->DDI 120或是DDI 120->TSC 110,都存在1个信号TXS,基于该信号IC提供主时钟,并且这个信号用于在其二者间进行同步。TXS的信号方向取决于模态。
以下描述控制接口104的寄存器映射以及I/O信号的实例。
寄存器映射
规定:ARR[0…m-1](n-1:0)->m个元件阵列,其中每个元件为n比特。MAT[0…m-1][0…n-1](p-1..0)->m行x n列的2D矩阵,其中每个矩阵元件为p比特。
I/O信号
图5为示出具有内嵌式面板525、TSC 510以及带有TX模式表522的DDI 520的电子系统的一个实施例的框图。触摸面板525包括多个电极8X4,包括在面板长边上的Y[0]-Y[7]以及X[0]-X[3]。TSC 510包括生成和发送在用户接口504上的接口信号(例如,TXS、TXPAT_CTL、TX_OE_N)的定序器512。应当注意的是,图5显示了在控制接口504上的三个接口信号。在另一个实施例中,复位信号(TXPAT_RST)和增量信号(TXPAT_INC)可以是单独的信号。在一个实施例中,定序器512使用状态机、计数器和事件表以生成对应的接口信号。DDI 520接收接口信号以控制TX模式表522。DDI 520还将TE信号507(或Hsync/Vsync)发回到TSC 510。TSC 510能够包括逻辑电路和其他电路以根据需要将TE信号分为Hsync/Vsync。返回参考DDI 520,TX模式表522可以包括各种激励信号,诸如在图5中提供的三个实例。例如,TX模式表522可以为单相TX矩阵(8模式)532、多相TX矩阵(8模式)534或者单相TX的双向扫描矩阵(12模式)536。TX矩阵在GND输出(“0”)、Hi-Z(高阻抗或悬空)输出(“Z”)之间、以及同相信号(“+”)和异相信号(“-”)之间进行区别。当TX线连接回TSC 110时,则在一些传感模态中TSC110驱动TX线,因此当TSC 110驱动TX线时DDI 120需要具有Hi-Z输出。这通过图5中的Z符号显示。可选地,由于本领域其中一名普通技术人员将认识到本公开具有的优点,其他矩阵可以被使用。TX模式表522的激励模式被配置为驱动触摸面板525。TSC 510还包括TX/RX多路复用器516(N_X+N_Y)以及在RX信道520上的TX/RX多路复用器的多路复用器518。TX/RX多路复用器516配置成在作为RX电极的电极或作为TX电极的电极之间切换电极,并且多路复用器518切换TX/RX多路复用器516和多个RX信道520。
下面描述图1、图2和图5的显示接口的不同特征的各个选择性实施例。
TX模式的选择性定义
代替将TX模式存储在DDI存储器中作为矩阵,一些其他方法可以被用来定义DDI520的模式。例如,通过使用在TSC 510和DDI 520之间的多个模式定义信号,其确定从DDI520激发的同步TX信号的每一个或组。这是一个更加简单的实现方式,但对于更大的屏幕尺寸可能具有较少的可扩展性。
在DDI和TSC之间仅寄存器同步
利用在两个IC上读出/写入寄存器的控制接口,而不是利用物理信号,定时同步和TX模式定义能够在DDI 520和TSC 510之间直接交换。
在DDI和TSC之间的直接通信
在上述的显示接口定义中,主机/AP编程DDI 520和TSC 510二者。这避免了对于在TSC 510上的主I2C接口的需求。可选地,主I2C可以在其中一个部分上实现以直接控制其他设备而无需主机/AP介入。
通过TSC而不是DDI驱动的VCOM/TX层
上述的显示接口定义具有将TX信号输出到共享Vcom/TX层的DDI 520。可选地,TSC510可以输出那些信号。可能地是,时间复用可以在消隐期间利用驱动TX的TSC 510进行,而在活动视频期间利用驱动VCOM电平的DDI 520进行。
将TX模式传达至触摸控制器(TSC)和DDI的主机驱动器
不是利用来自两个部分中的一个的源信号(在以上定义中的信号TXS)并且之后在全部TX输出上利用定义激发的模式矩阵,而是主机驱动器能够选择性地将用于激发的模式传达至两个IC。
读出来自TSC的TX模式并且将它们发送至DDI的主驱动器
不是利用来自两个部分中的一个的源信号(在以上定义中的信号TXS)并且之后在全部TX输出上利用定义激发的模式矩阵,而是主机驱动器能够选择性地将用于激发的模式传达至TSC且该TSC将它们发送至DDI。
能够用作TX/RX传感引脚或者与DDI交互的通信引脚的双功能引脚
以上的显示接口定义假定用于DDI 520和TSC 510接口的指定引脚。可能已经存在于DDI 520上的一些引脚可以用于与TSC 510通信。
利用用于定时控制的相同引脚串行发送TX模式至DDI的TSC
在共享现有引脚的相同思想中,DDI 520和TSC 510之间的定时同步以及TX模式能够经由共享的引脚发送。
控制TX定时和解调的DDI(TX定时为DDI的输出)
这在以上被描述为“TXMode_DDI”。
控制TX定时和解调的TSC(TX定时为DDI的输入)
这在以上被描述为“TXMode_TSC”。
悬空嵌入式TX电极以允许自身电容测量、以及多路复用器以允许TX电极被选择且 被连接至TSC 110用于自身电容感测的能力
这在显示接口定义中经由TX_OE_N控制信号进行调节;但是同样可以使用实现相同结果的替代实施例,诸如寄存器控制而不是物理I/O。应当注意的是,在模式矩阵中增加Hi-Z可能是以模式为基础在当前模式上实现该目的的另一种方法。
在DDI 120 TX模式缓存中(通过地址)选择特定TX模式的能力
替代矩阵方法,模式可以是用户在特定存储器位置处编程或预定义的,并且可以通过更新存储器指针或写入模式ID而被选择。
在DDI TX模式缓存中(通过地址)选择特定起始TX模式的能力
替代矩阵方法,模式可以是用户在特定存储器位置处编程或预定义的,并且同时模式激发的顺序是固定的,在每个TX输出上可以改变起始模式,使得周期性变换的模式在每个TX输出上被激发,无需在存储器中存储全部模式。
相对于来自DDI 120(V-sync、H-sync或TE)的时间参考信号开始感测的能力
应当注意的是,本文描述的实施例能够基于TE信号而不是传统的HSync、VSync来同步DDI和TSC。
延迟相对于来自DDI的时间参考信号的感测的开始的能力
相对于以上所列出的定时信号中的任一个延迟用户可编程扫描的起始的能力。
将状态编码到控制信号中的能力
如果通过例如将“状态”编码到提出的接口信号中而使它们的语义更加复杂,那么有可能地是这些信号能够被减少。
开始/复位TX模式序列的能力,每帧一次(即,当帧速率为60Hz时以60Hz扫描)、每 帧多于一次(例如,以60、120、180Hz扫描)、或者与帧速率异步(例如,当帧速率为60Hz时以 100Hz扫描)
以上描述的显示接口定义还可以使用TXPAT_RST和TXPAT_INC信号以控制利用其TX模式改变的频率,以及还有在其处模式序列被复位的频率。这允许使得模式序列频率等于显示刷新率、为显示刷新率的倍数(约数)或者与显示刷新率不同步的完全灵活性。在其他实施例中,TX模式可以被开始或复位每帧多于一次。在其他实施例中,TX模式可以与帧速率异步。
相对于输出TX信号或者相对于输入TX信号相位延迟解调器的能力
由于TSC 510作为源将TXS信号发送至DDI 520(模态“TXMode_TSC”)或者接收来自DDI 520的TXS信号(模态“XMode_DDI”),因此TSC 510已知TX脉冲的定时参考。TSC 510将其接收窗口与TX同步并且将需要可编程性以相位延迟其解调,从而导致在TXS信号和在RX传感器线上接收的相应脉冲之间的吞吐延迟中的变化。类似地,解调器的相位延迟相对于输入TX信号可以延迟。
本文描述的实施例能够提供一种同步输出(TX)和输入(RX)信号的集合的方式,其中信号的两个集合由不同IC生成,并且其中RX IC需要具有控制在来自其他IC的TX线上激发的模式序列的灵活性。这可以具有在双向通信接收器中实现为例如芯片组的应用。通信接收器与发射的信号的正确同步可能是在数字通信中的较低误码率(BER)所要求的,例如,对于码分多址(CDMA)的相关序列的使用。
图6是根据一个实施例的对于利用内嵌式触摸面板的操作的同步TSC和DDI的方法600的流程图。方法600可以通过处理逻辑来执行,该处理逻辑可以包括硬件(电路、专用逻辑等等)、软件(诸如在通用计算系统或专用机器上运行)、固件(嵌入式软件)或者其任意组合。在一个实施例中,图1和图2的DDI 120执行方法600。在另一个实施例中,图5的DDI 520执行方法600。可选地,电子系统100、200、500的其他组件执行方法600的一些或全部操作。
参考图6,方法600开始于在视频接口上接收来自主机处理器的显示驱动器集成电路(DDI)处的信号(框602)。DDI的处理逻辑在显示模态期间在内嵌式触摸面板的显示器上驱动信号(框604)。内嵌式触摸面板包括具有多个公共电极的TX层,该多个公共电极共享显示器的参考层(reference layer)。该处理逻辑在控制接口上接收来自触摸屏控制器(TSC)的同步的控制信号(框606)。响应于同步的控制信号,处理逻辑在传感模态期间根据多相发射(MPTX)模式序列控制在公共电极上的TX信号的输出(框608),并且该方法返回框602并重复。
在其他实施例中,处理逻辑通过在存储于DDI的存储器中的TX模式表中执行查找操作来控制TX信号的输出。TX模式表存储MPTX模式序列。
在其他实施例中,处理逻辑测量在内嵌式触摸面板的TX电极上的RX信号,并且基于测量的RX信号确定物体是否邻近电容传感阵列。
在一个实施例中,同步的控制信号基于从DDI输出的撕裂效应(TE)信号。在另一个实施例中,同步的控制信号基于Vsync、Hsync或二者。
图6的流程图显示了DDI和TSC的同步如何执行。在一个实施例中,TSC为电容式TSC,诸如的电容式触摸屏控制器,诸如由加利福尼亚州的圣何塞的Cypress半导体公司开发的的CY8CTMA3xx系列的全点多触摸(Multi-Touch All-Points)触摸屏控制器。电容式触摸屏控制器传感技术能够用于解决在触摸屏上的触笔和多个手指的触摸定位,支持主要的操作系统,并且对于低功率多触摸手势和全点触摸屏功能进行优化。可选地,同步特征可以在其他触摸屏控制器中或者触摸传感设备的其他触摸控制器中实现。
本文所述的实施例可以用于电容传感系统的互电容传感阵列的各种设计中、或者用于自电容传感阵列中。在一个实施例中,电容传感系统检测在阵列中激活的多个传感元件,并且能够分析在相邻传感元件上的信号模式以从实际信号中分离噪声。由于本领域其中一名普通技术人员将认识到本公开具有的有点,本文描述的实施例不依赖于特定电容式传感解决方案,并且也能够与其他传感解决方案一起使用,包括光学传感解决方案。
图7是示出具有用于检测触摸物体和触笔的存在的处理设备710的电子系统700的一个实施例的框图。处理设备710可以为本文描述的TSC中的任意一个。处理设备710配置为检测在触摸传感设备(诸如,电容式传感阵列725,其为如本文描述的内嵌式触摸面板的一部分)上的一个或多个触摸。处理设备能够检测导电物体,诸如触摸物体740(手指或无源触笔)、有源触笔730或其任意组合。
电子系统700包括处理设备710、电容传感阵列725、触笔730、主机处理器750、嵌入式控制器760以及非电容传感元件770。电容传感元件为导电材料(诸如,铜)的电极。传感元件还可以是ITO面板的一部分。电容传感元件配置为允许电容传感电路701测量自电容、互电容或其任意组合。在所描述的实施例中,电子系统700包括电容传感阵列725,其经由总线722耦合至处理设备710。电容传感阵列725可以包括多维电容传感阵列。多维传感阵列包括以行和列组织的多个传感元件。在另一个实施例中,电容传感阵列725操作为全点可寻址(“APA”)互电容传感阵列。在另一个实施例中,电容传感阵列725操作为耦合电荷接收器。在另一个实施例中,电容传感阵列725为不透明电容传感阵列(例如,PC触摸板)。电容传感阵列725可以布置为具有平坦的表面轮廓。可选地,电容传感阵列725可以具有不平坦的表面轮廓。可选地,可以使用其他配置的电容传感阵列。例如,由于本领域其中一名技术人员将认识到本公开具有的优点,因此电容传感阵列725可以具有六边形布置等,以代替垂直列和水平行。在一个实施例中,电容传感阵列725可以包括在ITO面板或触摸屏面板中。
本文描述了用于检测和追踪触摸物体740和触笔730的电容传感阵列725以及处理设备710的操作和配置。简言之,处理设备710配置为在电容传感阵列725上检测触摸物体740的存在、检测触笔730的存在或者其任意组合。处理设备710在电容传感阵列725上可以分别地检测和追踪触笔730以及触摸物体740。在一个实施例中,处理设备710在电容传感阵列725上可以同时检测和追踪触笔730和触摸物体740二者。在一个实施例中,如果触摸物体为活动触笔(active stylus),则活动触笔730配置为操作为定时“主”,并且处理设备710调节电容传感阵列725的定时以便在使用活动触笔730时匹配活动触笔730的定时。在一个实施例中,电容传感阵列725电容耦合活动触笔730,这与传统的电感触笔的应用相反。还应当注意的是,用于电容传感阵列725的相同组件(其配置为检测触摸物体740)同样用于检测和追踪触笔730,而无需用于以电感方式地追踪活动触笔730的另外的PCB层。
在所描述的实施例中,处理设备710包括模拟和/或数字通用输入/输出(“GPIO”)端707。GPIO端707可以被编程。GPIO端707可以耦合到“可编程互连和逻辑”(“PIL”),其作为GPIO端707和处理设备701的数字块阵列(未示出)之间的互连。在一个实施例中,数字块阵列可以配置为利用可配置用户模块(UM)来实现多个数字逻辑电路(例如,DAC、数字滤波器或者数字控制系统)。数字块阵列可以耦合到系统总线。处理设备710还可以包括存储器,诸如随机存取存储器(“RAM”)705以及程序闪存704。RAM 705可以为静态RAM(“SRAM”),而程序闪存704可以为非易失性储存器,其可以用于存储固件(例如,控制可通过处理内核702执行的算法以实现本文描述的操作)。处理设备710还可以包括耦合到存储器的存储控制器单元(“MCU”)703以及处理内核702。
处理设备710还可以包括模拟块阵列(未示出)。模拟块阵列也耦合到系统总线。在一个实施例中,模拟块阵列还可以配置为利用可配置UM来实现多个模拟电路(例如,ADC或模拟滤波器)。模拟块阵列还可以耦合到GPIO 707。
如所示,电容传感电路701可以集成到处理设备710中。电容传感电路701可以包括模拟I/O,其用于耦合到外部组件,诸如触摸传感器板(未示出)、电容传感阵列725、触摸传感器滑块(未示出)、触摸传感器按钮(未示出)和/或其他设备。电容传感电路701可以配置为利用互电容传感技术、自电容传感技术、电荷耦合技术等测量电容。在一个实施例中,电容传感电路701利用电荷积累电路、电容调制电路或本领域普通技术人员已知的其他电容传感方法来操作。在一个实施例中,电容传感电路701为Cypress TMA-3xx系列的触摸屏控制器。可选地,可以使用其他电容传感电路。如本文所述,互电容传感阵列或触摸屏可以包括透明导电的传感阵列,其设置在视觉显示器本身(例如,LCD显示器)之上、之中或之下,或者可以包括在显示器前面的透明基板。在一个实施例中,TX和RX电极分别配置在行和列中。应当注意的是,电极的行和列能够通过电容传感电路701以任何选择的组合形式配置为TX或RX电极。在一个实施例中,传感阵列200的TX和RX电极配置成在第一模态中操作为互电容传感阵列的TX和RX电极,并且在第二模态中操作为耦合电荷接收器的电极以检测传感阵列的相同电极上的触笔。在激活时生成触笔TX信号的触笔用于将电荷耦合到电容传感阵列,而不是如在互电容感测期间完成的测量在RX电极和TX电极(传感元件)的交叉点处的互电容。在两个传感元件之间的交叉点可以被理解为一个位置,在该位置处一个传感电极与另一个电极交叉或重叠,同时保持彼此之间的电流隔离。在执行触笔感测时,电容传感电路701不使用互电容或自电容感测来测量传感元件的电容。相反,电容传感电路701测量电荷,如上所述,该电荷电容耦合在传感阵列200和触笔之间。与TX电极和RX电极之间的交叉点关联的电容能够通过选择TX电极和RX电极的每个可用组合来进行感测。当触摸物体(诸如手指或触笔)达到电容感测阵列725时,物体使得一些TX/RX电极之间的互电容减少。在另一个实施例中,手指的存在增加了电极的耦合电容。因此。手指在电容传感阵列725上的位置能够通过识别在RX电极和TX电极之间具有减少的耦合电容的RX电极来确定,其中在减少的电容在RX电极上被测量到的时刻TX信号被施加到该TX电极上。因此,通过顺序地确定与电极的交叉点关联的电容,可以确定一个或多个输入的位置。应当注意的是,该过程可以通过确定对于传感元件的基准来校准传感元件(RX和TX电极的交叉点。还应当注意的是,由于本领域其中一个普通技术人员将认识到本公开具有的优点,因此可以利用插值法以优于行/列间距的分辨率检测手指位置。此外,由于本领域其中一个普通技术人员将认识到本公开具有的优点,因此可以使用各种类型的形心算法来检测触摸的中心。
在一个实施例中,电子系统700还可以包括经由总线771和GPIO端707耦合到处理设备710的非电容传感元件770。非电容传感元件770可以包括按钮、发光二极管(“LED”)以及其他用户接口设备,诸如鼠标、键盘或不使用电容传感的其他功能键。在一个实施例中,总线721、722和771实例化为单总线。可选地,这些总线可以配置为一个或多个单独的总线的任意组合。
处理设备710可以包括内部振荡器/时钟706以及通信块(“COM”)708。在另一个实施例中,处理器设备710包括扩谱时钟(未示出)。振荡器/时钟块706向处理设备710的一个或多个组件提供时钟信号。通信块708可以用于经由主机接口(“I/F”)线751与外部组件(诸如,主机处理器750)通信。可选地,处理设备710还可以耦合到嵌入式控制器760以与外部组件(诸如主机处理器750)通信。在一个实施例中,处理设备710被配置为与嵌入式控制器760或主机处理器750通信以发送和/或接收数据。
处理设备710可以位于公共载体基板上,诸如,例如集成电路(“IC”)晶片基板、多芯片模块基板等等。可选地,处理装置710的组件可以为一个或多个单独的集成电路和/或分立组件。在一个示例性实施例中,处理设备710是由加利福尼亚的圣何塞的Cypress半导体公司开发的芯片上可编程系统处理设备。可选地,处理设备710可以是本领域普通技术人员已知的一个或多个其他处理设备,诸如微处理器或中央处理单元、控制器、专用处理器、数字信号处理器(“DSP”)、专用集成电路(“ASIC”)、现场可编程门阵列(“FPGA”)等等。
还应当注意的是,本文描述的实施例不限于具有耦合到主机的处理设备的配置,而是可以包括在传感设备上测量电容且将原始数据发送至主计算机的系统,在该主计算机中通过应用程序分析原始数据。实际上,由处理设备710完成的处理也可以在主机中完成。
电容传感电路701可以集成到处理设备710的IC中,或者可选地集成到单独的IC中。可选地,电容传感电路701的描述可以被生成和编译以用于并入到其他集成电路中。例如,描述电容传感电路701或其部分的行为级代码可以利用硬件描述语言(诸如,VHDL或Verilog)生成并且存储在机器存取介质(例如,CD-ROM、硬盘、软盘等)中。此外,行为级代码能够编译成寄存器传输级(“RTL”)代码、网表或者甚至是电路布局中,并且存储到机器存取介质中。行为级代码、RTL代码、网表和电路布局可以代表描述电容传感电路701的不同抽象级别。
应当注意的是,电子系统700的组件可以包括以上描述的全部组件。可选地,电子系统700可以包括以上描述的一些组件。
在一个实施例中,电子系统700用于平板电脑中。可选地,电子设备可以用于其他应用中,诸如,笔记本电脑、移动手机、个人数据助理(“PDA”)、键盘、电视、远程控制、显示器、手持多媒体设备、手持媒体(音频和/或视频)播放器、手持游戏设备、用于销售点交易的签名输入设备、以及电子书阅读器、全球定位系统(“GPS”)或控制面板。本文描述的实施例不限于用于笔记本实现的触摸屏或触摸传感器板,而是可以用于其他电容传感实现方式,例如,传感设备可以为触摸传感器滑块(未示出)或触摸传感器按钮(例如,电容传感按钮)。在一个实施例中,这些传感包括一个或多个电容传感器。本文描述的操作不限于笔记本指向操作,而是可以包括其他操作,诸如光线控制(调光器)、音量控制、图形均衡器控制、速度控制或者其他需要逐渐调整或不连续调整的控制操作。还应当理解的是,电容传感实现方式的这些实施例可以与非电容传感元件结合使用,该非电容传感元件包括但不限于拾取键、滑块(例如,显示器亮度和对比度)、滚轮、多媒体控制(例如,音量、轨迹超前等)、手写识别以及数字小键盘操作。
本文描述的实施例能够结合现有TSC来使用,如果DDI 120(或520)提供作为本文描述的显示接口定义的部分的寄存器和I/O,则不用为内嵌触摸面板专门开发现有TSC。另外,如上所述,本申请的受让人已经开发了各种多TX相位扫描传感模态,其能够与提出的接口一起使用。该实施例还可以提供由使用MPTX、高电压驱动、与LCD消隐时间同步的TSC扫描、以及使用特定传感模态(诸如拒水传感模态)造成的改进的触摸系统。这些改进还可以导致高SNR、更高的LCD抗噪性、以及对于由特定传感模态使用的触笔、悬空和手套触摸的改进的性能。在TSC具有显示消隐定时的信息的情况下,同步能够在DDI和TSC之间执行。这可以通过将HSync/VSync信号或者替代的TE信号发送至TSC并且相对于这些显示定时参考信号将TSC正确地编程以偏置扫描定时窗口而实现。DDI存储器中TX模式序列定义的信息允许系统超越每时隙激活1个TX。此外,该实施例允许通过TSC控制TX输出信号(在来自DDI 120的TX线上提供Hi-Z输出的能力),使得TSC能够驱动TX线。此外,本文描述的实施例对于TSC可以具有控制由DDI激发的TX模式序列的能力。TSC还可以包括用于处理来自DDI的TE信号的硬件或软件,其能够带有V显示参考或H和V显示参考的复合。在复合参考的情况中,如果TSC仅在垂直消隐期间执行TSC扫描,则TSC仅需要提取V参考的处理。在替代实施例中,由于本领域其中一名普通技术人员将认识到本公开具有的优点,因此在DDI和TSC之间可以进行同步,而无需使用离散接口信号或通过使用单芯片集成从单主机到多IC的寄存器控制。
在以上描述中,阐述了多个细节。但是,对于了解本公开的优点的本领域的其中一名普通技术人员而言将明显地是,本发明的实施例可以在不具有这些特定细节的情况下被实现。在一些例子中,众所周知的结构和设备以框图形式显示,而没有具体说明,以免对描述产生干扰。
根据在计算机存储器内的数据位上的操作的算法和符号表示,呈现了具体描述的一些部分。这些算法描述和表示是数据处理领域的那些技术人员使用的手段,以便最有效地将它们的工作实质传达给本领域其他技术人员。此处的算法通常被设想为导致期望结果的自相容序列的步骤。这些步骤是那些需要物理量的物理操纵的那些步骤。通常而言,虽然不是必须的,但是这些量选取能够被存储、传递、组合、比较和其他操纵的电或磁信号的形式。主要出于普遍使用的原因,其已被证明有时将这些信号称为位、值、元素、符号、特性、项、数字等等是方便的。
但是,应当考虑到的是,全部这些或类似的术语与适合的物理量关联,并且仅仅是应用于这些量的方便标记。将明白的是,除非明显从上面讨论中另外具体说明,否则整个说明书中利用诸如“加密”、“解密”、“存储”、“提供”、“导出”、“得到”、“接收”、“验证”、“删除”、“执行”、“请求”、“传达”等词语的讨论指的是计算系统或类似的电子计算设备的动作或处理,其将在计算系统的寄存器和存储器中被描绘为物理(例如,电)量的数据操纵且转换为被类似地表示为在计算系统存储器或寄存器或其他这种信息储存装置、传输设备或显示设备内的物理量的其他数据。
本文中使用的词语“实例”或“示例性”意味着作为实例、例子或说明。本文描述为“实例”或“示例性”的任何方面或设计相对于其他方面和设计不是必须被视为优选或有利地。相反,词语“实例”或“示例性”的使用旨在呈现具体方式的概念。如本申请中所使用的,术语“或”旨在表明包含的“或”而不是排除的“或”。也就是说,除非特别另有说明或者根据前后文明显得出,“X包括A或B”旨在意味着自然包含排列的任意一个。也就是说,如果X包括A;X包括B;或者X包括A和B二者,那么在前述任何情况中都满足“X包括A或B”。另外,在本申请以及所附权利要求中使用的冠词“一个(a)”和“一个(an)”通常应当被视为意为“一个或多个”,除非具体另有说明或者从上下文中明显可见是针对单数形式。此外,贯穿全文的术语“实施例”或“一个实施例”或“实施方式”或“一个实施方式”不旨在意为同一实施例或实施方式,除非如此描述。
本文描述的实施例还可以涉及用于执行本文的操作的装置。该装置可以具体构建为用于所需的目的,或者其可以包括通过存储在计算机中的计算机程序选择性激活或重新配置的通用计算机。这种计算机程序可以存储在非易失性计算机可读储存介质中,诸如但不限于,包括软盘、光盘、CD-ROM和磁光盘的任意类型的盘、只读存储器(ROM)、随机存取存储器(RAM)、EPROM、EEPROM、磁卡或光卡、闪存或任意类型的适于存储电子指令的介质。术语“计算机可读储存介质”应该被选取为包括存储指令的一个或多个集合的单个介质或多个介质(例如,集中式或分布式数据库和/或关联的缓存或服务器)。术语“计算机可读介质”还应该被选取为包括任意介质,其能够存储、编码或携带由机器执行的一组指令,并且其使得机器实现本实施例的方法中的任意一个或多个。术语“计算机可读储存介质”应相应地被选取为包括但不限于固态存储器、光学介质、磁介质、能够存储由机器执行的一组指令且使得机器实现本实施例的方法中的任意一个或多个的任意介质。
本文提出的算法和显示器并不是固有地与特定计算机或其他装置关联。各种通用系统可以利用根据本文教导的程序来使用,或者其可能证明构造更专门化的机器以实现所需要的方法步骤是方便的。对于大量的这些系统所需的结构将由以下描述显示。此外,并没有参考任意特定编程语言来描述本实施例。将认识到,各种编程语言可以用于实现如本文所描述的实施例的教导。
以上描述阐述了大量特定细节,诸如特定系统、组件、方法等的实例,以便提供对于本发明的若干实施例的良好理解。但是,对于本领域一名技术人员明显的是,本发明的至少一些实施例可以被实施而无需这些特定细节。在其他实例中,众所周知的组件或方法没有被具体描述或者以简单框图的形式被呈现,以避免不必要的模糊本发明。因此,以上阐述的具体细节仅仅是示例性的。特定实施方式可以根据这些示例性细节变化并且仍然预期在本发明的范围之内。
将理解的是,以上描述意为说明性而不是限制性的。通过对以上描述的阅读和理解,对于本领域技术人员而言许多其他实施例将是明显的。因此,本发明的范围应该根据所附权利要求连同与这些权利要求所具有的资格等同的全部范围而确定。

Claims (15)

1.一种电子系统,包括:
显示驱动器集成电路DDI,其中所述DDI包括:
视频接口,其用于接收来自主机处理器的显示信号;
控制接口,其用于接收来自触摸屏控制器TSC的控制信号;以及
显示接口,其中,所述DDI被配置为根据在所述控制接口上接收的来自所述TSC的所述控制信号在显示模态下通过所述显示信号驱动触摸面板的电极并且在触摸传感模态下针对互电容感测通过发射TX信号来驱动所述触摸面板的所述电极,其中,所述DDI被配置为针对多相扫描在所述触摸面板的所述电极上驱动不同感测间隔的TX信号的不同TX信号序列。
2.根据权利要求1所述的电子系统,还包括耦合至所述DDI的所述TSC,所述TSC配置为在所述控制接口上将所述控制信号发送至所述DDI。
3.根据权利要求1所述的电子系统,其中,所述DDI包括存储器以存储所述TX信号的不同TX信号序列的TX模式,并且其中所述控制信号配置为控制所述触摸面板的电极上的所述TX模式的输出。
4.根据权利要求1所述的电子系统,其中,所述触摸面板为内嵌式触摸面板,其中公共电极在所述内嵌式触摸面板的触摸传感模态期间配置作为TX层以及在所述内嵌式触摸面板的显示模态期间配置作为公共电压参考层。
5.根据权利要求1所述的电子系统,其中,在所述视频接口上的信号包括数字的红、绿、蓝RGB信号、水平同步信号HSync、以及垂直同步信号VSync。
6.根据权利要求1所述的电子系统,其中,所述视频接口包括高速分组化视频链路。
7.根据权利要求6所述的电子系统,其中,所述TX信号的不同TX信号序列为不同的TX相位序列。
8.根据权利要求6所述的电子系统,其中,所述高速分组化视频链路根据移动行业处理器接口MIPI规范来定义,并且其中所述DDI配置为将撕裂效应TE信号输出到所述主机处理器和所述TSC。
9.根据权利要求8所述的电子系统,其中,所述TSC配置为将所述TE信号分为垂直同步信号和水平同步信号。
10.根据权利要求2所述的电子系统,其中所述TSC包括定序器以控制被发送至所述DDI的所述控制信号。
11.根据权利要求2所述的电子系统,其中所述TSC包括多个多路复用器,以便基于所述TSC的操作模态将所述触摸面板的电极中的一个或多个电极配置为TX电极或RX电极。
12.一种用于同步显示驱动器集成电路DDI和触摸屏控制器TSC的方法,包括:
在所述显示驱动器集成电路DDI处在视频接口上接收来自主机处理器的信号;
在显示模态期间通过所述DDI驱动内嵌式触摸面板的显示器上的信号,其中所述内嵌式触摸面板包括发射TX层,所述TX层包括共享所述显示器的公共电压参考层的多个公共电极,其中所述多个公共电极在触摸传感模态期间被配置为所述TX层并且在所述显示模态期间被配置为所述公共电压参考层;
在所述DDI处在控制接口上接收来自所述触摸屏控制器TSC的同步的控制信号;以及
响应于所述同步的控制信号,在触摸传感模态期间针对互电容感测根据不同的发射TX信号序列控制所述多个公共电极上的发射TX信号的输出。
13.根据权利要求12所述的方法,其中,控制所述TX信号的输出包括执行存储在所述DDI的存储器中的TX模式表中的查找操作,其中所述TX模式表存储不同的TX信号序列。
14.根据权利要求12所述的方法,还包括:
测量所述内嵌式触摸面板的多个RX电极上的接收RX信号;以及
基于所测量的RX信号确定物体是否邻近所述内嵌式触摸面板。
15.根据权利要求12所述的方法,其中,控制所述TX信号的输出包括根据多相发射MPTX模式序列控制所述TX信号的输出。
CN201380031746.2A 2012-07-19 2013-01-03 用于使用触摸集成显示器操作的触摸控制器和显示驱动器之间的接口和同步方法 Active CN104769537B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261673680P 2012-07-19 2012-07-19
US61/673,680 2012-07-19
US13/678,146 US8780065B2 (en) 2012-07-19 2012-11-15 Interface and synchronization method between touch controller and display driver for operation with touch integrated displays
US13/678,146 2012-11-15
PCT/US2013/020027 WO2014014493A1 (en) 2012-07-19 2013-01-03 Interface and synchronization method between touch controller and display driver for operation with touch integrated displays

Publications (2)

Publication Number Publication Date
CN104769537A CN104769537A (zh) 2015-07-08
CN104769537B true CN104769537B (zh) 2018-01-02

Family

ID=49946124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380031746.2A Active CN104769537B (zh) 2012-07-19 2013-01-03 用于使用触摸集成显示器操作的触摸控制器和显示驱动器之间的接口和同步方法

Country Status (4)

Country Link
US (2) US8780065B2 (zh)
EP (1) EP2875421A4 (zh)
CN (1) CN104769537B (zh)
WO (1) WO2014014493A1 (zh)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9285902B1 (en) * 2010-08-25 2016-03-15 Parade Technologies, Ltd. Multi-phase scanning
CN103279237B (zh) * 2012-11-23 2016-12-21 上海天马微电子有限公司 一种内嵌式触摸屏及触摸显示装置
KR102007817B1 (ko) * 2012-12-21 2019-08-07 엘지디스플레이 주식회사 기준 데이터 보정방법과 이를 이용한 터치 스크린 장치
KR101295537B1 (ko) * 2012-12-31 2013-08-12 엘지디스플레이 주식회사 터치 스크린 일체형 표시장치
TWI493401B (zh) * 2013-01-07 2015-07-21 Quanta Comp Inc 電腦系統及其觸控及顯示資料傳輸裝置與方法
US9766734B2 (en) * 2013-02-20 2017-09-19 Nvidia Corporation Synchronized touch input recognition
JP5856995B2 (ja) * 2013-03-29 2016-02-10 株式会社ジャパンディスプレイ 電子機器および電子機器の制御方法
JP5845204B2 (ja) * 2013-03-29 2016-01-20 株式会社ジャパンディスプレイ 電子機器および電子機器の制御方法
JP6196456B2 (ja) * 2013-04-01 2017-09-13 シナプティクス・ジャパン合同会社 表示装置及びソースドライバic
US9823758B2 (en) * 2013-04-10 2017-11-21 Nvidia Corporation Automatic performance of touch screen related functionality in response to detected stylus position
US9182867B2 (en) * 2013-04-25 2015-11-10 Anapass Inc. Apparatus and method for detecting adjacent object and method of driving electronic device
US20140368446A1 (en) * 2013-06-17 2014-12-18 Himax Technologies Limited In-cell touch screen and apparatus of driving the same
TWI507957B (zh) * 2013-07-22 2015-11-11 Chunghwa Picture Tubes Ltd 驅動觸控顯示器的方法及提升訊雜比的觸控顯示器
CN104346001B (zh) * 2013-07-24 2017-05-17 晶门科技(深圳)有限公司 用于识别触摸板上的手指触摸并确定其位置的方法
KR102087370B1 (ko) * 2013-08-30 2020-03-10 엘지디스플레이 주식회사 터치 스크린 구동 장치
US10025412B2 (en) * 2013-10-16 2018-07-17 Synaptics Incorporated In-cell low power modes
US9910529B2 (en) * 2013-11-08 2018-03-06 Egalax_Empia Technology Inc. Method, device, and system for detecting transmitter approaching or touching touch sensitive display
KR20150057404A (ko) * 2013-11-19 2015-05-28 삼성전자주식회사 디스플레이 드라이버 ic와 이를 포함하는 시스템의 동작 방법
US9690397B2 (en) * 2014-05-20 2017-06-27 Synaptics Incorporated System and method for detecting an active pen with a matrix sensor
US9164641B1 (en) 2014-05-29 2015-10-20 Parade Technologies, Ltd. In-cell touch scanning modes for simultaneous touch and display
JP2016004280A (ja) * 2014-06-13 2016-01-12 株式会社ジャパンディスプレイ タッチ検出装置及びタッチ検出機能付き表示装置
JP2016004476A (ja) * 2014-06-18 2016-01-12 株式会社ジャパンディスプレイ 駆動装置、タッチ検出機能付き表示装置及び情報処理装置
KR101648571B1 (ko) * 2014-07-16 2016-08-18 엘지디스플레이 주식회사 인 셀 터치 타입의 표시장치
CN104199577B (zh) * 2014-09-25 2017-02-15 深圳市华星光电技术有限公司 显示面板向触控面板提供同步信号的方法及电路
US9880649B2 (en) 2014-09-29 2018-01-30 Apple Inc. Touch, pen and force sensor operation with variable refresh displays
US10209834B2 (en) 2014-10-01 2019-02-19 Microsoft Technology Licensing, Llc Integrated self-capacitive touch display
FI127170B (en) * 2014-10-03 2017-12-29 Pulseon Oy Portable biometric device and method of making it
CN105988618A (zh) * 2015-02-12 2016-10-05 鸿富锦精密工业(武汉)有限公司 触摸型显示装置及双向数据传输方法
TWI573058B (zh) * 2015-02-19 2017-03-01 奇景光電股份有限公司 觸控感測裝置、內嵌式觸控螢幕與並行式感測電路
US20160246411A1 (en) * 2015-02-19 2016-08-25 Himax Technologies Limited In-cell touch screen and a concurrent sensing circuit
CN104699307B (zh) * 2015-03-31 2017-10-17 京东方科技集团股份有限公司 一种触控显示驱动方法、驱动装置及触控显示器
CN113238669B (zh) * 2015-04-09 2023-08-08 株式会社和冠 主动式触控笔
US9671913B2 (en) 2015-05-11 2017-06-06 Microsoft Technology Licensing, Llc Capacitive display device
EP3276456A4 (en) * 2015-05-11 2018-05-09 Huawei Technologies Co. Ltd. Touch control system, active matrix light-emitting diode panel and display driving method
TWI545482B (zh) * 2015-06-03 2016-08-11 敦泰電子股份有限公司 避免顯示雜訊的觸控偵測系統及方法
KR102343990B1 (ko) * 2015-06-15 2021-12-28 삼성전자주식회사 디스플레이의 서로 다른 영역을 독립적으로 제어하는 전자 장치 및 방법
US9910533B2 (en) 2015-06-19 2018-03-06 Apple Inc. Timing scheme for touch screen supporting variable refresh rate
CN106406589B (zh) * 2015-07-29 2020-05-22 矽统科技股份有限公司 双模触控方法与适用此方法的触控笔与触控面板
US9720542B2 (en) 2015-08-04 2017-08-01 Microsoft Technology Licensing, Llc Active stylus differential synchronization
CN105119376B (zh) * 2015-09-09 2017-08-22 许继集团有限公司 一种基于常规采样goose跳闸模式的采样实现方法及装置
CN105335009B (zh) * 2015-12-03 2023-08-08 敦泰科技(深圳)有限公司 触摸显示装置和电子设备
US11262865B2 (en) 2015-12-09 2022-03-01 Novatek Microelectronics Corp. Sensor device and system and related controller, multiplexer and panel apparatus
US10678369B2 (en) * 2015-12-09 2020-06-09 Novatek Microelectronics Corp. Touch sensor system and multiplexer thereof
KR101798947B1 (ko) 2016-06-01 2017-11-20 주식회사 리딩유아이 터치 감지 장치
US20170371487A1 (en) * 2016-06-28 2017-12-28 Tactual Labs Co. Frame-phase synchronization in frequency division modulated touch systems
US9857911B1 (en) * 2016-07-29 2018-01-02 Parade Technologies, Ltd. Bi-directional scalable intra-panel interface
KR102555827B1 (ko) * 2016-08-31 2023-07-17 엘지디스플레이 주식회사 터치형 표시장치
CN106656143B (zh) * 2016-10-31 2020-04-24 中颖电子股份有限公司 一种触摸按键与led共用时消除led对触摸按键影响的触摸和显示驱动模块和方法
US10234965B2 (en) 2017-02-02 2019-03-19 Microsoft Technology Licensing, Llc Active stylus differential synchronization
CN111164555A (zh) * 2017-08-02 2020-05-15 触觉实验室股份有限公司 用于频域传感器的噪声减轻
CN109039978B (zh) 2017-08-11 2020-03-20 华为技术有限公司 基于序列的信号处理方法、通信设备及通信系统
KR102383831B1 (ko) * 2017-09-29 2022-04-06 주식회사 엘엑스세미콘 패널구동장치, 표시장치 및 집적회로
US11972078B2 (en) * 2017-12-13 2024-04-30 Cypress Semiconductor Corporation Hover sensing with multi-phase self-capacitance method
TWI735831B (zh) * 2017-12-14 2021-08-11 矽創電子股份有限公司 觸控顯示驅動電路
JP2019139422A (ja) * 2018-02-08 2019-08-22 株式会社ジャパンディスプレイ 検出装置及び検出機能付き表示装置
US10983553B2 (en) * 2018-08-24 2021-04-20 Synaptics Incorporated System and method for synchronizing sensing signals of integrated circuit chips
US11094296B2 (en) * 2018-12-05 2021-08-17 Google Llc Varying display refresh rate
US11067884B2 (en) * 2018-12-26 2021-07-20 Apple Inc. Through-display optical transmission, reception, or sensing through micro-optic elements
US10838556B2 (en) 2019-04-05 2020-11-17 Apple Inc. Sensing system for detection of light incident to a light emitting layer of an electronic device display
US11611058B2 (en) 2019-09-24 2023-03-21 Apple Inc. Devices and systems for under display image sensor
US11527582B1 (en) 2019-09-24 2022-12-13 Apple Inc. Display stack with integrated photodetectors
US11592873B2 (en) 2020-02-14 2023-02-28 Apple Inc. Display stack topologies for under-display optical transceivers
US11295664B2 (en) 2020-03-11 2022-04-05 Apple Inc. Display-synchronized optical emitters and transceivers
GB2594486B (en) * 2020-04-29 2023-04-12 Touchnetix Ltd Circuitry for touch-sensitive apparatus and method
US11327237B2 (en) 2020-06-18 2022-05-10 Apple Inc. Display-adjacent optical emission or reception using optical fibers
US11487859B2 (en) 2020-07-31 2022-11-01 Apple Inc. Behind display polarized optical transceiver
KR20220032143A (ko) * 2020-09-07 2022-03-15 주식회사 엘엑스세미콘 터치 센싱 장치 및 이를 구동하는 방법
US11435859B2 (en) 2020-11-02 2022-09-06 Microsoft Technology Licensing, Llc Driving signals for capacitive touch-sensitive surface
US11839133B2 (en) 2021-03-12 2023-12-05 Apple Inc. Organic photodetectors for in-cell optical sensing
CN114299891B (zh) * 2021-12-23 2023-04-25 长沙惠科光电有限公司 显示面板驱动方法、驱动器及显示装置
CN114281216B (zh) * 2021-12-28 2023-10-24 厦门天马微电子有限公司 一种显示装置及其驱动方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634080A (en) * 1992-06-29 1997-05-27 Elonex Ip Holdings, Ltd. Hand-held portable computer having an electroluminescent flat-panel display with pixel elements at right angles to the plane of the display and an excitation direction parallel to the plane of the display
US7324114B2 (en) * 2003-04-30 2008-01-29 Nokia Corporation Synchronization of image frame update
CN101960415A (zh) * 2008-02-25 2011-01-26 苹果公司 用于多点触摸控制器的电荷再循环
CN102445780A (zh) * 2010-10-08 2012-05-09 乐金显示有限公司 具有内嵌触摸屏的液晶显示器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040222987A1 (en) * 2003-05-08 2004-11-11 Chang Nelson Liang An Multiframe image processing
RU2372741C2 (ru) * 2006-05-16 2009-11-10 Сони Корпорейшн Система передачи данных, устройство передачи, устройство приема, способ передачи данных и программа
US8352793B2 (en) 2008-08-15 2013-01-08 Apple Inc. Device testing method and architecture
US8363031B2 (en) * 2008-09-24 2013-01-29 3M Innovative Properties Company Mutual capacitance measuring circuits and methods
JP2010108501A (ja) * 2008-10-30 2010-05-13 Samsung Electronics Co Ltd センシング感度を向上させたタッチスクリーンコントローラ、タッチスクリーンコントローラを備えるディスプレイ駆動回路、ディスプレイ装置及びシステム
TWI408578B (zh) * 2009-01-22 2013-09-11 Wintek Corp 電阻式觸控裝置及其驅動方法及驅動控制器
US8760412B2 (en) * 2009-02-02 2014-06-24 Apple Inc. Dual configuration for display data lines
KR20100104804A (ko) 2009-03-19 2010-09-29 삼성전자주식회사 Ddi, ddi 제공방법 및 상기 ddi를 포함하는 데이터 처리 장치
US20110157068A1 (en) 2009-12-31 2011-06-30 Silicon Laboratories Inc. Touch screen power-saving screen scanning algorithm
US8363021B2 (en) * 2009-09-11 2013-01-29 Apple Inc. Method to compensate for the frequency dependence of sense signal preprocessing
WO2011035485A1 (zh) * 2009-09-27 2011-03-31 智点科技有限公司 一种可排除触控影响显示的触控显示器
US8519970B2 (en) * 2010-07-16 2013-08-27 Perceptive Pixel Inc. Capacitive touch sensor having correlation with a receiver
KR101323390B1 (ko) * 2010-09-20 2013-10-29 엘지디스플레이 주식회사 유기발광다이오드 표시소자와 그 저전력 구동방법
KR101503103B1 (ko) * 2011-03-25 2015-03-17 엘지디스플레이 주식회사 터치 센서 내장형 표시장치와 그 구동 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634080A (en) * 1992-06-29 1997-05-27 Elonex Ip Holdings, Ltd. Hand-held portable computer having an electroluminescent flat-panel display with pixel elements at right angles to the plane of the display and an excitation direction parallel to the plane of the display
US7324114B2 (en) * 2003-04-30 2008-01-29 Nokia Corporation Synchronization of image frame update
CN101960415A (zh) * 2008-02-25 2011-01-26 苹果公司 用于多点触摸控制器的电荷再循环
CN102445780A (zh) * 2010-10-08 2012-05-09 乐金显示有限公司 具有内嵌触摸屏的液晶显示器

Also Published As

Publication number Publication date
WO2014014493A1 (en) 2014-01-23
US8780065B2 (en) 2014-07-15
EP2875421A1 (en) 2015-05-27
US20140022185A1 (en) 2014-01-23
CN104769537A (zh) 2015-07-08
EP2875421A4 (en) 2016-04-27
US9104284B2 (en) 2015-08-11
US20140347320A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
CN104769537B (zh) 用于使用触摸集成显示器操作的触摸控制器和显示驱动器之间的接口和同步方法
US20210373677A1 (en) Stylus to host synchronization using a magnetic field
CN106095171B (zh) 具有集成触摸屏的显示设备及其驱动方法
CN105425999B (zh) 用于具有集成触摸屏的显示装置的触摸感测单元
US8258986B2 (en) Capacitive-matrix keyboard with multiple touch detection
US9377493B2 (en) Hardware de-convolution block for multi-phase scanning
CN105278778B (zh) 集成有触摸屏的显示装置
CN102929422B (zh) 力感测电容式混合触摸传感器
CN103809824B (zh) 触摸感测系统和控制其功耗的方法
CN106095177A (zh) 触摸感测设备及其驱动方法
CN107407988A (zh) 显示和感测数据的时间共享
CN108628491A (zh) 使用显示设备的公共电极进行触摸检测的方法和系统
US9360972B1 (en) Touch sensor conductor routing
CN104699368A (zh) 显示装置及其驱动方法
CN106030476B (zh) 用于改善投射式电容触摸屏及面板的信噪比性能的设备
CN104076979B (zh) 电子设备、应用执行器件、电子设备的控制方法
US11269448B2 (en) Touch sensor, display device, and method of driving a touch sensor
CN107885371B (zh) 触摸显示装置和电子设备
CN107885366B (zh) 触摸显示装置和电子设备
CN107291292A (zh) 串接式电路结构及触控装置
CN106325552A (zh) 用于电子装置的rf发射波谱随机化和靶向零位

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20151224

Address after: American California

Applicant after: Parade Technologies, Ltd.

Address before: American California

Applicant before: Cypress Semiconductor Corp.

GR01 Patent grant
GR01 Patent grant