CN104766895B - 一种基于稀铋磷化物材料的多结太阳能电池结构 - Google Patents

一种基于稀铋磷化物材料的多结太阳能电池结构 Download PDF

Info

Publication number
CN104766895B
CN104766895B CN201510151566.9A CN201510151566A CN104766895B CN 104766895 B CN104766895 B CN 104766895B CN 201510151566 A CN201510151566 A CN 201510151566A CN 104766895 B CN104766895 B CN 104766895B
Authority
CN
China
Prior art keywords
solar cell
bismuth
phosphide
energy
dilute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510151566.9A
Other languages
English (en)
Other versions
CN104766895A (zh
Inventor
王庶民
李耀耀
张立瑶
王凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201510151566.9A priority Critical patent/CN104766895B/zh
Publication of CN104766895A publication Critical patent/CN104766895A/zh
Application granted granted Critical
Publication of CN104766895B publication Critical patent/CN104766895B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种基于稀铋磷化物材料多结太阳能电池结构,采用基于稀铋磷化物材料取代常规锗材料作为红外波段0.46‑1.0eV结太阳能电池。在磷化物中掺入少量铋原子,会在禁带内产生新的杂质能带,其室温发光波长随铋的掺入浓度改变在1.2‑2.7微米内可调,通过改变铋的浓度和相应厚度,可以吸收和转换相应波段的太阳光。与常规的采用锗作为0.67eV结太阳能电池技术方案相比,本发明可以有效减小多结太阳能电池中低能段光子能量的透射损耗和热损耗,提高太阳能转换效率。

Description

一种基于稀铋磷化物材料的多结太阳能电池结构
技术领域
本发明属于半导体光电材料制备领域,特别涉及一种采用稀铋磷化物作为0.46-1.0eV结的新型高效多结太阳能电池结构。
背景技术
能源问题当今世界各国面临的重要问题。目前,人类主要依靠石油和煤炭获得能源,但是上述两种能源在使用过程中不可避免会产生温室气体,对环境产生影响,更为重要的是,以目前报道的石油、煤炭勘探总量而言,地球上石油和煤炭储备将于200年后消耗殆尽。如何获得可再生、环境友好型的能量是目前世界各国亟需解决的问题。
太阳能电池是可以将太阳光的能量储存起来的装置。且在电量储存过程不会产生二氧化碳等温室气体,对环境不会造成污染,同时,太阳能对人类可谓用之不竭的一种自然界能量,因此太阳能电池是极其好的下一代能源解决方法。对于太阳能电池而言,最重要的参数是转换效率。受肖克利-奎伊瑟极限的限制,单节型太阳能电池的转换效率最高仅能达到33%(一个太阳)或者40.7%(聚光条件下),远小于太阳能电池能量转换的热力学极限。造成能量损失的原因主要有3个方面:(1)太阳光谱中能量小于电池材料禁带宽度的光子不能被吸收,直接从电池中透过;(2)在能量大于电池材料禁带宽度的光子被吸收后,激发出电子空穴对,同时以热能形式释放出超过禁带宽度的部分能量;(3)光生载流子的辐射复合和非辐射复合作用降低电池的转换效率。为克服肖克利-奎伊瑟极限的限制,提高电池效率,各国科研人员开发了多种新颖的太阳能电池结构。其中,通过在半导体的带隙内加入一个或多个中间带,从而形成中间带结构的太阳能电池,以其理论上63.1%的转换效率以及较简单的结构获得了广泛关注(A.Luque&A.Marti,Phys.Rev.Lett.78,5014(1997)),是一种非常有用的提高转换效率的方法。
多结太阳能电池通常是将带隙不同的两个或多个子电池按带隙大小依次串联。太阳光入射时,各子电池吸收能量与其带隙最接近的光子,高能量的光子被带隙大的子电池吸收,低能量光子被带隙较窄的子电池吸收,从而拓宽了电池对太阳光谱的响应范围,从而有效地提高了转换效率。
目前多结太阳能电池领域研究和生产的主流是基于InGaP/GaAs/Ge的3结III-V族太阳能电池,Ge作为电池衬底,同时吸收0.74eV低能量光子的子电池。该多结太阳能电池已获得41.6%的效率,但依然低于多结太阳能电池的理论极限效率。当能实现最佳电流匹配时,在全聚光照射下,子电池数目为2、3、4对应的电池理论极限效率分别为55%、63%和68%,当结数无限增大时,理论极限值可望达到86%,子电池数目越多,转换效率越高。
稀铋磷化物作为一类新型磷化物材料,通过在磷化物中掺入少量铋原子,会在禁带内产生新的杂质能带,获得不同的带隙材料。图1是太阳光谱以及包含稀铋磷化物InPBi在内的部分半导体材料能带吸收范围。AM0指大气圈外的太阳光谱。AM1.5是指地表上的太阳光谱,即是太阳光入射角偏离头顶46.8度达到地表的太阳光谱。当太阳光照射到地球表面时,由于大气层与地表景物的散射与折射的因素,会多增加百分之二十的太阳光入射能量,增加的能量称之为扩散部分,AM1.5G表示包含扩散部分的太阳光谱,而AM1.5D则表示不包含扩散部分的太阳光谱。图2是稀铋磷化物材料中的InPBi薄膜室温光致发光谱,从图中可以看出,InPBi材料的能带吸收范围为1.2-2.7微米,占太阳光谱能量的比重很大,并远远超过Ge材料的吸收能量,同时其室温发光波长也随铋的掺入浓度改变在该波段内可调。图2中的Xbi表示Bi元素在InPBi材料中的原子数百分比(下文中如无特别指明,所有Bi组分均表示Bi在材料中的原子数百分比);为了便于观察,对不同Bi组分材料的光致发光谱强度进行了归一化处理,归一化所使用的系数以乘积的形式放在了图中Bi材料原子百分比的后面。通过改变铋的浓度和相应厚度,可以吸收和转换0.46eV-1.0eV对应波段的太阳光。除InPBi材料外,其他稀铋磷化物材料也具有类似的光学性质,因此使用稀铋磷化物材料替代InGaP/GaAs/Ge结构中的Ge材料,可以大大提高多结太阳能电池的转换效率。从而形成本发明的新构思,有利于提高现有多结太阳能电池的效率。
发明内容
鉴于以上所述技术背景,本发明的目的在于提供一种采用稀铋磷化物材料作为吸收层的高效多结太阳能电池结构,结构图见图3。
本发明公开一种基于稀铋磷化物材料的多结太阳能电池结构,所述太阳能电池结构中低于1.0电子伏特能量结为稀铋磷化物吸收层。
优选地,所述的稀铋磷化物吸收层材料为含有多层稀铋磷化物薄膜,每层厚度及铋浓度可以分别调控,厚度范围介于10纳米到2微米。
优选地,所述的多层稀铋磷化物薄膜按发光谱峰值能量由高到低顺序排列,具有最小能量的稀铋磷化物层紧邻载体。
优选地,所述的多层稀铋磷化物为AlP、GaP、InP或它们的三元和四元组合;薄膜中铋的含量(Bi组分在材料中的原子数百分比)在0.5-1.2%之间。
优选地,所述的含有稀铋磷化物材料的高效多结太阳能电池可以用分子束外延和金属有机物化学沉积等外延生长方法制备。
本发明提供一种采用稀铋磷化物材料作为吸收层的高效多结太阳能电池,虽然本发明专利中仅给出了InPBi这种稀铋磷化物材料的光谱性质,但是其他稀铋材料也应当具有与InPBi材料的相似特点,因此对于采用其他稀铋材料作为吸收层的多结太阳能电池结构,也应当在本专利保护的范围内。
图3采用稀铋磷化物材料作为吸收层的高效多结太阳能电池结构示意图。
综上所述,稀铋磷化物吸收层材料具有0.46-1.0eV宽范围连续可调的发光谱,通过独立调控铋的浓度和对应的材料厚度,可以吸收相应波段的太阳光能量。用此材料作为多结太阳能电池中的低能段子电池,与含锗的多结太阳电池中锗子电池相比,可以大幅度减小热载流子弛豫以及0.46-1.0eV能量范围光子透射产生的能量损耗,提高多结太阳能电池的转换效率。
总之,本发明公开了一种基于稀铋磷化物材料多结太阳能电池结构,采用基于稀铋磷化物材料取代常规锗材料作为红外波段0.46-1.0eV结太阳能电池。在磷化物中掺入少量铋原子,会在禁带内产生新的杂质能带,其室温发光波长随铋的掺入浓度改变在1.2-2.7微米内可调,通过改变铋的浓度和相应厚度,可以吸收和转换相应波段的太阳光。与常规的采用锗作为0.67eV结太阳能电池技术方案相比,本发明可以有效减小多结太阳能电池中低能段光子能量的透射损耗和热损耗,提高太阳能转换效率。
附图说明
图1是太阳光谱以及包含稀铋磷化物材料InPBi在内的部分半导体材料能带吸收范围。AM0指大气圈外的太阳光谱。AM1.5是指地表上的太阳光谱,即是太阳光入射角偏离头顶46.8度达到地表的太阳光谱,AM1.5G表示包含扩散部分的太阳光谱,AM1.5D则表示不包含扩散部分的太阳光谱。
图2是稀铋磷化物材料InPBi薄膜室温光致发光谱,其中光谱强度进行了归一化处理。
图3是采用稀铋磷化物材料作为吸收层的高效多结太阳能电池结构示意图。
元件标号说明
第一结电池 10
第二结电池 20
渐变缓冲层 30
dilute bismide phosphide0.80~1.00eV层 40
(稀铋磷化物)
dilute bismide phosphide0.6~0.8eV层 50
(稀铋磷化物)
dilute bismide phosphide 0.4~0.6eV层 60
(稀铋磷化物)
载体 70
图4为常规GaAs基3结太阳能电池结构,包括与GaAs基晶格匹配的能量为1.9eV的InGaP结,1.42eV的GaAs结和0.67eV的Ge结。
元件标号说明
InGaP结1.9eV 100
GaAs结1.42eV 90
Ge结0.67eV 80
载体 70
图5为常规GaAs基3结太阳能电池结构,包括与GaAs基晶格匹配的能量为1.9eV的InGaP结和1.42eV的GaAs结,以及采用异变生长的1eV的InGaAs结;
元件标号说明
InGaP结1.9eV 100
GaAs结1.42eV 90
渐变缓冲层 130
InGaAs结1.00eV 110
载体 70
图6为一种基于InPBi材料的多结太阳能电池结构图;
元件标号说明
InGaP结1.9eV 100
GaAs结1.42eV 90
渐变缓冲层 30
InPBi 1.00eV层 40’
InPBi 0.70eV层 50’
InPBi 0.46eV层 60’
载体 70
具体实施方式
以下通过特定的实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同设备和不同实际状态,在没有背离本发明的精神下进行各种修饰或改变。
实施例1:GaAs基3结高效太阳能电池
常规GaAs基3结太阳能电池包括与GaAs基晶格匹配的能量为1.9eV的InGaP结,1.42eV的GaAs结和0.67eV的Ge结,如图4所示,或者采用与GaAs基晶格匹配的能量为1.9eV的InGaP结和1.42eV的GaAs结以及异变生长的1eV的InGaAs结,如图5所示。在图4所示的第一种结构中,能量介于0.67-1.42eV之间的每个光子最多只能产生一对电子空穴对,剩余能量通过热载流子弛豫转换成热能。在图5所述的第二种结构中,能量低于1eV的光子无法被吸收。因此,第一种结构中Ge电池对应波段光子能量损耗大,而第二种结构中电池的吸收光谱不够宽,光电转换效率仍有改善的空间。如采用如图6所示的能量位于0.46-1eV之间的多层InPBi薄膜,可以将能量低于1.42eV的光谱分段吸收转换吸收转换在拓宽吸收光谱的同时减小光子能量的热损失,从而大幅度提高太阳能光电转换效率。本发明提供的基于InPBi材料的多结太阳能电池结构的制备可采用分子束外延或有机金属化学气相沉积等技术,本实施例采用分子束外延技术作为优先实施工艺。具体结构阐述如下,
(1)在GaAs衬底上生长1.9eV的In0.49Ga0.51P单结电池结构,其有源区厚度为70纳米,N型掺杂,掺杂浓度为1×1018cm-3
(2)在1.9eV的InGaP单结电池结构上生长1.42eV的GaAs单结电池结构,有源区厚度为100纳米,N型掺杂,掺杂浓度为1×1018cm-3
(3)在1.42eV的GaAs单结电池结构上生,2.5微米的InxAl1-xAs缓冲弛豫层,Al组分有1.00渐变到0.48,末端平面内晶格常数与InP体材料晶格常数相等;
(4)在缓冲弛豫层上生长InPBi单节电池结构,有源区包括发光能量为1eV、0.7eV和0.46eV的InPBi薄膜。
(5)InPBi单节电池结构有源区第一层为1eV的InPBi层,N型掺杂,掺杂浓度为1×1018cm-3
(6)InPBi单节电池结构有源区第二层为0.7eV的InPBi层,N型掺杂,掺杂浓度为1×1018cm-3
(7)InPBi单节电池结构有源区第三层为0.46eV的InPBi层,N型掺杂,掺杂浓度为1×1018cm-3
(8)调控上述InPBi电池结构有源区中各层InPBi有源区厚度比例使得多结电池中各子电池的电流相同
(9)将生长的材料键合在载体上,并将GaAs衬底腐蚀,便得到如图5所示的含有InPBi的高效多结太阳能电池结构。
实施例2
所述的光吸收层材料除InP外为GaP、AlP或它们的三元或四元组合,铋的原子百分含量为0.5-1.2%,其余同实施例1。

Claims (8)

1.一种基于稀铋磷化物材料的多结太阳能电池结构,依次包括与GaAs基晶格匹配的能量1.9eV的InGaP结、能量为1.42eV的GaAs结、光吸收层以及载体;其特征在于结构中1.0电子伏特及以下的光吸收层材料为稀铋磷化物,所述的稀铋磷化物吸收层材料为含有多层稀铋磷化物薄膜,每层厚度及铋的浓度根据多结太阳电池电流匹配原则分别调控。
2.根据权利要求1所述的结构,其特征在于所述的多层稀铋磷化物薄膜按发光谱峰值能量由高到低顺序排列,具有最小能量的稀铋磷化物层位紧邻载体。
3.根据权利要求1所述的结构,其特征在于每层厚度范围介于10纳米到2微米之间。
4.根据权利要求1-3中任一项所述的结构,其特征在于所述的稀铋磷化物为AlP、GaP、InP或它们的三元或四元组合,铋的原子百分比含量为0.5-1.2%之间。
5.根据权利要求4所述的结构,其特征在于所述的多层稀铋磷化铟薄膜为三层,每层对应的吸收能量依次为1.0-0.8eV、0.6-0.8eV和0.4-0.6eV。
6.根据权利要求1-3中任一项所述的结构,其特征在于所述的含有稀铋磷化物的高效多结太阳能电池是用分子束外延或金属有机物化学沉积外延生长方法制备的。
7.根据权利要求1-3中任一项所述的结构,其特征在于磷化物中掺入Bi原子,在禁带产生新的杂质能带,室温发光波长随Bi的掺入浓度改变在1.2~2.7微米内可调,通过改变铋的浓度和相应厚度,吸收和转换相应波段的太阳光。
8.根据权利要求1所述的结构,其特征在于采用基于稀铋磷化物材料取代常规锗材料,作为红外波段的0.46-1.0eV结太阳能电池。
CN201510151566.9A 2015-04-01 2015-04-01 一种基于稀铋磷化物材料的多结太阳能电池结构 Expired - Fee Related CN104766895B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510151566.9A CN104766895B (zh) 2015-04-01 2015-04-01 一种基于稀铋磷化物材料的多结太阳能电池结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510151566.9A CN104766895B (zh) 2015-04-01 2015-04-01 一种基于稀铋磷化物材料的多结太阳能电池结构

Publications (2)

Publication Number Publication Date
CN104766895A CN104766895A (zh) 2015-07-08
CN104766895B true CN104766895B (zh) 2017-01-25

Family

ID=53648621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510151566.9A Expired - Fee Related CN104766895B (zh) 2015-04-01 2015-04-01 一种基于稀铋磷化物材料的多结太阳能电池结构

Country Status (1)

Country Link
CN (1) CN104766895B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112466975B (zh) * 2020-11-19 2023-05-05 隆基绿能科技股份有限公司 光伏器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071669A (ja) * 2002-08-02 2004-03-04 Sony Corp 半導体装置
EP2650930A1 (de) * 2012-04-12 2013-10-16 AZURSPACE Solar Power GmbH Solarzellenstapel
LT6044B (lt) * 2013-07-22 2014-06-25 Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras Didelės spartos fotodiodas

Also Published As

Publication number Publication date
CN104766895A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
Nozik et al. Advanced concepts in photovoltaics
CN101533863B (zh) 一种高效单片式四结太阳电池
US20090255576A1 (en) Window solar cell
CN103210497A (zh) 包含具有分级掺杂的稀释氮化物子电池的多结太阳能电池
CN104465843B (zh) 一种双面生长的GaAs四结太阳电池
CN106024924B (zh) 一种含新型隧穿结的晶格失配太阳能电池及其制备方法
CN105355680B (zh) 一种晶格匹配的六结太阳能电池
US20140090700A1 (en) High-concentration multi-junction solar cell and method for fabricating same
Ren et al. The GaAs/GaAs/Si solar cell–Towards current matching in an integrated two terminal tandem
CN101752444B (zh) p-i-n型InGaN量子点太阳能电池结构及其制作方法
CN109301006A (zh) 一种应用于晶格失配多结太阳能电池的新型dbr结构
CN105355670B (zh) 一种含dbr结构的五结太阳能电池
CN110491957A (zh) 应用于晶格失配太阳能电池外延生长的晶格渐变缓冲层
CN102983203A (zh) 三结级联太阳能电池及其制作方法
CN105576068B (zh) 一种双面生长的InP五结太阳电池
TW201140875A (en) A semiconductor epitaxial structure and apparatus comprising the same
CN109524492A (zh) 一种提高多结太阳能电池少数载流子收集的方法
CN104851932A (zh) 一种基于稀铋磷化物的中间带太阳能电池结构
CN108172638A (zh) 一种三结太阳电池
CN104766895B (zh) 一种基于稀铋磷化物材料的多结太阳能电池结构
CN104241416B (zh) 一种含量子阱结构的三结太阳能电池
CN209045576U (zh) 一种应用于晶格失配多结太阳能电池的新型dbr结构
Lantratov et al. AlGaAs/GaAs photovoltaic cells with InGaAs quantum dots
Myong Recent progress in inorganic solar cells using quantum structures
CN105810760A (zh) 一种晶格匹配的五结太阳能电池及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170125