Summary of the invention
In view of above-mentioned the deficiencies in the prior art part, the object of the present invention is to provide a kind of temperature measuring equipment and the method that shorten the thermometric time, by improving the speed of testee transferring heat, shortening the thermometric time, improve the accuracy of thermometric.
In order to achieve the above object, this invention takes following technical scheme:
Shorten the temperature measuring equipment of thermometric time, described device comprises:
Metallic sheath, for conducting testee heat;
Infrared thermopile sensor;
Parameter acquisition module, the voltage that environment temperature and infrared thermopile sensor for obtaining infrared thermopile sensor produce;
Calibration module, for according to described environment temperature and voltage, calibrates temperature measuring parameter;
Computing module, for according to the temperature measuring parameter after described environment temperature, voltage and calibration, calculates the actual temperature of testee.
In described temperature measuring equipment, described metallic sheath is horn-like, and the topside area of metallic sheath is greater than bottom area.
In described temperature measuring equipment, described computing module specifically for:
The systematic parameter S of whole thermometric process is calculated according to the environment temperature of infrared thermopile sensor and the voltage of infrared thermopile sensor generation:
S=S
0×[1+a
1×(T
DIE-T
REF)+a
2×(T
DIE-T
REF)
2];
According to the heat radiation V of the voltage calculating thermoelectric pile self that environment temperature and the infrared thermopile sensor of infrared thermopile sensor produce
oS:
V
OS=b
0+b
1×(T
DIE-T
REF)+b
2×(T
DIE-T
REF)
2];
According to the value f (V that the environment temperature of infrared thermopile sensor and the voltage calculating thermal infrared radiation of infrared thermopile sensor generation are come
oBJ):
f(V
OBJ)=(V
OBJ-V
OS)+c
2×(V
OBJ-V
OS)
2;
The value of coming according to the environment temperature of infrared thermopile sensor, thermal infrared radiation and systematic parameter, calculate the actual temperature T of testee
oBJ:
Wherein, described a
1, a
2and c
2for constant, described b
0, b
1, b
2and S
0for temperature measuring parameter, described V
oBJfor the voltage that infrared thermopile sensor produces, T
dIEfor the environment temperature of infrared thermopile sensor, described T
rEFfor normal temperature, in formula, the unit of temperature is Kelvin.
In described temperature measuring equipment, described constant a
1, a
2and c
2occurrence be: a
1=1.75 × e-3, a
2=-1.68 × e-5, c
2=13.4.
In described temperature measuring equipment, described calibration module specifically for:
The initial value of the temperature measuring parameter of infrared thermopile sensor is set to:
b
0=-2.94×e-5,b
1=-5.7×e-7,b
2=4.78×e-9,s
0=6×e-14;
According to the voltage V that infrared thermopile sensor produces
oBJ, the environment temperature T of infrared thermopile sensor
dIE, and formula
Calculate f (V
oBJ) value;
According to the f (V calculated
oBJ) value and formula
F (V
oBJ)=(V
oBJ-V
oS)+c
2× (V
oBJ-V
oS)
2, calculate the heat radiation V of thermoelectric pile self
oS;
According to formula V
oS=b
0+ b
1× (T
dIE-T
rEF)+b
2× (T
dIE-T
rEF)
2], to V
oS(T
dIE-T
rEF) carry out binomial fitting, draw temperature measuring parameter b
0, b
1, b
2value;
According to the temperature measuring parameter b calculated
0, b
1, b
2value, by formula V
oS=b
0+ b
1× (T
dIE-T
rEF)+b
2× (T
dIE-T
rEF)
2] recalculate V
oSvalue;
According to formula f (V
oBJ)=(V
oBJ-V
oS)+c
2× (V
oBJ-V
oS)
2, recalculate f (V
oBJ) value;
According to formula f (V
oBJ)=(T
oBJ 4-T
dIE 4) × S and formula S=S
0× [1+a
1× (T
dIE-T
rEF)+a
2× (T
dIE-T
rEF)
2], draw formula (T
oBJ 4-T
dIE 4) × S
0=f (V
oBJ)/[1+a
1× (T
dIE-T
rEF)+a
2× (T
dIE-T
rEF)
2], to (T
oBJ 4-T
dIE 4) and f (V
oBJ)/[1+a
1× (T
dIE-T
rEF)+a
2× (T
dIE-T
rEF)
2] carry out once linear matching, the temperature measuring parameter S that must make new advances
0;
To temperature measuring parameter b
0, b
1, b
2and S
0carry out iterative computation 40 times, draw final temperature measuring parameter.
Shorten the temp measuring method of thermometric time, described method comprises step:
A, between testee and infrared thermopile sensor, arrange one for conducting the metallic sheath of testee heat;
The voltage that B, the environment temperature obtaining infrared thermopile sensor and infrared thermopile sensor produce;
C, according to described environment temperature and voltage, calibration temperature measuring parameter;
D, according to the temperature measuring parameter after described environment temperature, voltage and calibration, calculate the actual temperature of testee.
In the temp measuring method of described shortened thermometric time, described metallic sheath is horn-like, and the topside area of metallic sheath is greater than bottom area.
In the temp measuring method of described shortened thermometric time, described step C specifically comprises:
C1, to produce according to the environment temperature of infrared thermopile sensor and infrared thermopile sensor
Voltage calculates the systematic parameter S of whole thermometric process:
S=S
0×[1+a
1×(T
DIE-T
REF)+a
2×(T
DIE-T
REF)
2];
C2, the voltage produced according to the environment temperature of infrared thermopile sensor and infrared thermopile sensor calculate the heat radiation V of thermoelectric pile self
oS:
V
OS=b
0+b
1×(T
DIE-T
REF)+b
2×(T
DIE-T
REF)
2];
C3, the value f (V come according to the environment temperature of infrared thermopile sensor and the voltage calculating thermal infrared radiation of infrared thermopile sensor generation
oBJ):
f(V
OBJ)=(V
OBJ-V
OS)+c
2×(V
OBJ-V
OS)
2;
C4, the value of coming according to the environment temperature of infrared thermopile sensor, thermal infrared radiation and systematic parameter, calculate the actual temperature T of testee
oBJ:
Wherein, described a
1, a
2and c
2for constant, described b
0, b
1, b
2and S
0for temperature measuring parameter, described V
oBJfor the voltage that infrared thermopile sensor produces, T
dIEfor the environment temperature of infrared thermopile sensor, described T
rEFfor normal temperature, in formula, the unit of temperature is Kelvin.
In the temp measuring method of described shortened thermometric time, described constant a
1, a
2and c
2occurrence be: a
1=1.75 × e-3, a
2=-1.68 × e-5, c
2=13.4.
In the temp measuring method of described shortened thermometric time, described step B specifically comprises:
B1, the initial value of the temperature measuring parameter of infrared thermopile sensor to be set to:
b
0=-2.94×e-5,b
1=-5.7×e-7,b
2=4.78×e-9,s
0=6×e-14;
B2, the voltage V produced according to infrared thermopile sensor
oBJ, the environment temperature T of infrared thermopile sensor
dIE, and formula
Calculate f (V
oBJ) value;
B3, according to the f (V calculated
oBJ) value and formula
F (V
oBJ)=(V
oBJ-V
oS)+c
2× (V
oBJ-V
oS)
2, calculate the heat radiation V of thermoelectric pile self
oS;
B4, according to formula V
oS=b
0+ b
1× (T
dIE-T
rEF)+b
2× (T
dIE-T
rEF)
2], to V
oS(T
dIE-T
rEF) carry out binomial fitting, draw temperature measuring parameter b
0, b
1, b
2value;
The temperature measuring parameter b that B5, basis calculate
0, b
1, b
2value, by formula V
oS=b
0+ b
1× (T
dIE-T
rEF)+b
2× (T
dIE-T
rEF)
2] recalculate V
oSvalue;
B6, according to formula f (V
oBJ)=(V
oBJ-V
oS)+c
2× (V
oBJ-V
oS)
2, recalculate f (V
oBJ) value;
B7, according to formula f (V
oBJ)=(T
oBJ 4-T
dIE 4) × S and formula S=S
0× [1+a
1× (T
dIE-T
rEF)+a
2× (T
dIE-T
rEF)
2], draw formula (T
oBJ 4-T
dIE 4) × S
0=f (V
oBJ)/[1+a
1× (T
dIE-T
rEF)+a
2× (T
dIE-T
rEF)
2], to (T
oBJ 4-T
dIE 4) and f (V
oBJ)/[1+a
1× (T
dIE-T
rEF)+a
2× (T
dIE-T
rEF)
2] carry out once linear matching, the temperature measuring parameter S that must make new advances
0;
B8, circulation step B2-B7 carry out iterative computation 40 times, and Step wise approximation calculates optimized temperature measuring parameter b
0, b
1, b
2and S
0.
Compared to prior art, temperature measuring equipment and the method shortening the thermometric time provided by the invention, by arranging a metallic sheath, make the heat of testee can be transmitted on infrared thermopile sensor rapidly by this metallic sheath, shorten the thermometric time, interference and the impact of external environment condition (other infrared rays) are also completely cut off, simultaneously, because the thermometric time is short, also reduce self heat radiation of infrared thermopile sensor and external environment to the impact of thermometric, improve the accuracy of thermometric.
Embodiment
The invention provides a kind of temperature measuring equipment and the method that shorten the thermometric time, one is arranged for conducting the metallic sheath of testee heat between testee and infrared thermopile sensor, improve the speed that infrared thermopile sensor obtains testee heat, shorten the thermometric time, improve the accuracy of thermometric.
For making object of the present invention, technical scheme and effect clearly, clearly, developing simultaneously referring to accompanying drawing, the present invention is described in more detail for embodiment.Should be appreciated that specific embodiment described herein only in order to explain the present invention, be not intended to limit the present invention.
Refer to Fig. 1, the temperature measuring equipment shortening the thermometric time provided by the invention, comprise pcb board 10, infrared thermopile sensor 20 and the metallic sheath 30 for conducting testee heat, described infrared thermopile sensor 20 and metallic sheath 30 are all arranged on described pcb board 10, and described infrared thermopile sensor 20 is arranged on the central authorities bottom described metallic sheath 30.Top and the bottom of described metallic sheath 30 all have round mouth, open round mouth bottom described metallic sheath 30 for placing infrared thermopile sensor 20, described metallic sheath 30 top is opened round mouth and is conducive to the infrared ray of testee radiation to import on infrared thermopile sensor 20.The setting of described metallic sheath 30, make the heat of testee can be transmitted on infrared thermopile sensor 20 rapidly by this metallic sheath 30, shorten the thermometric time, interference and the impact of external environment condition (other infrared rays) are also completely cut off, simultaneously, because the thermometric time is short, also reduce self heat radiation of infrared thermopile sensor 20 and external environment to the impact of thermometric, improve the accuracy of thermometric.
Further, described metallic sheath 30 is copper sheathing, and described copper sheathing is horn-like, and the topside area of copper sheathing is greater than bottom area.Described metallic sheath 30 adopts brass material, and himself, due to material reason, does not produce infrared ray, avoids metallic sheath 30 self interference infrared thermopile sensor 20, improves the accuracy of infrared thermopile sensor 20 thermometric.Preferably, the internal diameter at the top of described copper sheathing is 11.5mm, and the internal diameter of the bottom of described copper sheathing is 5.5mm, and the wall thickness of described copper sheathing is 0.5mm.
Refer to Fig. 2, temperature measuring equipment provided by the invention also comprises the muff 40 for preventing described metallic sheath 30 heat loss, and described muff 40 is located on described metallic sheath 30.Described muff 40 can avoid the heat loss of metallic sheath 30 in thermometric process, make the temperature in described metallic sheath 30 close to the temperature of testee, reduce the impact of external environment on infrared thermopile sensor 20 to greatest extent, improve the accuracy of thermometric.Further, described muff 40 top has the hole identical with described metallic sheath 30 top size, so that the infrared ray of testee is directly delivered on infrared thermopile sensor 20.
Based on a upper embodiment, the present invention is a kind of Intelligent milk bottle cover also, comprises base and can shorten the temperature measuring equipment of thermometric time as above.Because the temperature measuring equipment of Intelligent milk bottle cover and feature elaborate in a upper embodiment, do not repeat them here.
Refer to Fig. 3, the temperature measuring equipment shortening the thermometric time provided by the invention, also comprises: parameter acquisition module 50, calibration module 60 and computing module 70.When thermometric, described testee is placed on directly over infrared thermopile sensor 20.
Described infrared thermopile sensor 20 has the features such as high precision, high sensitivity, low reaction time, can be used in the thermometric of various environment.In described infrared thermopile sensor 20, thermoelectric pile is absorbed in the infrared energy (heat) that testee in sensing range sends, and the voltage that thermoelectric pile produces represents infrared energy.Therefore the voltage that can be produced by thermoelectric pile is after series of computation, draws the temperature of testee.
Parameter acquisition module 50, the voltage that environment temperature and infrared thermopile sensor 20 for obtaining infrared thermopile sensor 20 produce.The environment temperature of described infrared thermopile sensor 20 is the temperature of infrared thermopile sensor 20 self, is specially the temperature of thermoelectric pile in infrared thermopile sensor 20.The voltage that infrared thermopile sensor 20 produces is that testee is placed on after directly over infrared thermopile sensor 20, the voltage that thermoelectric pile produces after receiving the energy of testee radiation.
Calibration module 60, for according to described environment temperature and voltage, calibrates temperature measuring parameter.
Computing module 70, for according to the temperature measuring parameter after described environment temperature, voltage and calibration, calculates the actual temperature of testee.
Further, describedly provided by the inventionly shorten in the temperature measuring equipment of thermometric time, described computing module 70 specifically for:
The systematic parameter S of whole thermometric process is calculated according to the environment temperature of infrared thermopile sensor 20 and the voltage of infrared thermopile sensor generation:
S=S
0×[1+a
1×(T
DIE-T
REF)+a
2×(T
DIE-T
REF)
2];
According to the heat radiation V of the voltage calculating thermoelectric pile self that environment temperature and the infrared thermopile sensor 20 of infrared thermopile sensor 20 produce
oS:
V
OS=b
0+b
1×(T
DIE-T
REF)+b
2×(T
DIE-T
REF)
2];
According to the value f (V that the environment temperature of infrared thermopile sensor 20 and the voltage calculating thermal infrared radiation of infrared thermopile sensor 20 generation are come
oBJ):
f(V
OBJ)=(V
OBJ-V
OS)+c
2×(V
OBJ-V
OS)
2;
The value of coming according to the environment temperature of infrared thermopile sensor 20, thermal infrared radiation and systematic parameter, calculate the actual temperature T of testee
oBJ:
Wherein, described a
1, a
2and c
2for constant, described b
0, b
1, b
2and S
0for temperature measuring parameter; Described V
oBJfor the voltage that infrared thermopile sensor 20 produces; T
dIEfor the environment temperature of infrared thermopile sensor 20; Described T
rEFfor normal temperature, be specially 298.15K (25 DEG C); In formula, the unit of temperature is Kelvin.
The theoretical foundation of the computing formula that described computing module 70 uses is: this special fence-Boltzmann law (Stefan-Boltzmann law): the gross energy (being called radiancy or the energy flux density of object) that black-body surface unit area gives off within the unit interval is directly proportional to the biquadratic of the thermodynamic temperature T (also known as absolute temperature) of black matrix itself.If the gross energy that testee surface unit area gives off within the unit interval is E
red, then have according to this special fence-Boltzmann law:
wherein, σ is this special fence-Boltzmann constant, σ=5.7 × 10
-12w/cm
2/ K
4.ε is the emissivity of testee, refers to the radianting capacity of testee and the ratio of the radianting capacity of black matrix at identical temperature, is also called blackness.
Described V
oBJfor the voltage that infrared thermopile sensor 20 thermoelectric pile produces, V
oBJthe net quantity of heat being approximately equal to the absorption of infrared thermopile sensor thermoelectric pile deducts the heat of self radiation, and it should be noted that, the net quantity of heat that thermoelectric pile absorbs is the gross energy E that testee gives off
red, namely the present invention is similar to the gross energy thinking that thermoelectric pile absorbs testee completely and gives off.Then have
the temperature can deriving testee is thus:
Wherein, S is the systematic parameter of whole thermometric, and this parameter comprises environmental change, and the factors such as Radiation Attribution are on the impact of thermoelectric pile, and namely described systematic parameter S includes ε σ, also comprises environmental change, and the factors such as Radiation Attribution are on the impact of thermoelectric pile.Described f (V
oBJ) and V
oBJmapping relations are had (specifically to see formula f (V
oBJ)=(V
oBJ-V
oS)+c
2× (V
oBJ-V
oS)
2), and described systematic parameter S makes
f (V
oBJ) value of coming for thermal infrared radiation, namely the energy that radiates of testee, which removes the heat radiation of periphery object and heat conducting impact, there are mapping relations with the radiation receiving testee, when measured object temperature raises, and f (V
oBJ) also corresponding rising, otherwise reduce.V
oSthe heat radiation of thermoelectric pile self, b
0, b
1and b
2that environment temperature is to V
oSfactor of influence, described b
0, b
1, b
2and S
0for temperature measuring parameter, need through calibration.Described a
1, a
2, c
2be the parameter of infrared thermopile sensor, its value is constant.Described constant a
1, a
2and c
2occurrence be: a
1=1.75 × e-3, a
2=-1.68 × e-5, c
2=13.4.
Further, provided by the inventionly shorten in the temperature measuring equipment of thermometric time, described calibration module 60 specifically for:
The initial value of the temperature measuring parameter of infrared thermopile sensor is set to:
b
0=-2.94×e-5,b
1=-5.7×e-7,b
2=4.78×e-9,s
0=6×e-14;
According to the voltage V that infrared thermopile sensor produces
oBJ, the environment temperature T of infrared thermopile sensor
dIE, and formula
Calculate f (V
oBJ) value;
According to the f (V calculated
oBJ) value and formula
F (V
oBJ)=(V
oBJ-V
oS)+c
2× (V
oBJ-V
oS)
2, calculate the heat radiation V of thermoelectric pile self
oS;
According to formula V
oS=b
0+ b
1× (T
dIE-T
rEF)+b
2× (T
dIE-T
rEF)
2]
,to V
oS(T
dIE-T
rEF) carry out binomial fitting, draw temperature measuring parameter b
0, b
1, b
2value;
According to the temperature measuring parameter b calculated
0, b
1, b
2value, by formula V
oS=b
0+ b
1× (T
dIE-T
rEF)+b
2× (T
dIE-T
rEF)
2] recalculate V
oSvalue;
According to formula f (V
oBJ)=(V
oBJ-V
oS)+c
2× (V
oBJ-V
oS)
2, recalculate f (V
oBJ) value;
According to formula f (V
oBJ)=(T
oBJ 4-T
dIE 4) × S and formula S=S
0× [1+a
1× (T
dIE-T
rEF)+a
2× (T
dIE-T
rEF)
2], draw formula (T
oBJ 4-T
dIE 4) × S
0=f (V
oBJ)/[1+a
1× (T
dIE-T
rEF)+a
2× (T
dIE-T
rEF)
2], to (T
oBJ 4-T
dIE 4) and f (V
oBJ)/[1+a
1× (T
dIE-T
rEF)+a
2× (T
dIE-T
rEF)
2] carry out once linear matching, the temperature measuring parameter S that must make new advances
0, concrete, to (T
oBJ 4-T
dIE 4) value that calculates and f (V
oBJ)/[1+a
1× (T
dIE-T
rEF)+a
2× (T
dIE-T
rEF)
2] value that calculates carries out once linear matching, the temperature measuring parameter S that must make new advances
0;
To temperature measuring parameter b
0, b
1, b
2and S
0carry out iterative computation 40 times, draw final temperature measuring parameter.In other words, utilize the initial value of temperature measuring parameter, calculate temperature measuring parameter b
0, b
1, b
2and S
0, and with the temperature measuring parameter calculated, replace original temperature measuring parameter, and cycle calculations 40 times according to this, obtain final temperature measuring parameter.
The temperature measuring equipment shortening the thermometric time provided by the invention, by arranging metallic sheath, make the heat of testee can be transmitted on infrared thermopile sensor rapidly by this metallic sheath, shorten the thermometric time, interference and the impact of external environment condition (other infrared rays) are also completely cut off, meanwhile, because the thermometric time is short, also reduce self heat radiation of infrared thermopile sensor and external environment to the impact of thermometric, improve the accuracy of thermometric.And, described temperature measuring equipment only need obtain the environment temperature of infrared thermopile sensor 20 and the voltage of infrared thermopile sensor 20 generation, i.e. adjustable temperature measuring parameter, and utilize calibration parameter and, the environment temperature of infrared thermopile sensor 20 and its voltmeter produced calculate the temperature of testee, makes temperature survey become simple and accurate.
Based on the temperature measuring equipment of the shortened thermometric time that a upper embodiment provides, the present invention is also corresponding provides a kind of temp measuring method shortening the thermometric time, and refer to Fig. 4, described method comprises step:
S10, between testee and infrared thermopile sensor, arrange one for conducting the metallic sheath of testee heat.Described metallic sheath is horn-like, and the topside area of metallic sheath is greater than bottom area.
The voltage that S20, the environment temperature obtaining infrared thermopile sensor and infrared thermopile sensor produce.
S30, according to described environment temperature and voltage, calibration temperature measuring parameter.
S40, according to the temperature measuring parameter after described environment temperature, voltage and calibration, calculate the actual temperature of testee.
Refer to Fig. 5, described step S40 specifically comprises:
S410, the voltage produced according to the environment temperature of infrared thermopile sensor and infrared thermopile sensor calculate the systematic parameter S of whole thermometric process, this parameter comprises environmental change, the factors such as Radiation Attribution are on the impact of thermoelectric pile, and the specific formula for calculation of described systematic parameter S is as follows:
S=S
0×[1+a
1×(T
DIE-T
REF)+a
2×(T
DIE-T
REF)
2];
S420, the voltage produced according to the environment temperature of infrared thermopile sensor and infrared thermopile sensor calculate the heat radiation V of thermoelectric pile self
oS:
V
OS=b
0+b
1×(T
DIE-T
REF)+b
2×(T
DIE-T
REF)
2];
S430, the value f (V come according to the environment temperature of infrared thermopile sensor and the voltage calculating thermal infrared radiation of infrared thermopile sensor generation
oBJ):
f(V
OBJ)=(V
OBJ-V
OS)+c
2×(V
OBJ-V
OS)
2;
S440, the value of coming according to the environment temperature of infrared thermopile sensor, thermal infrared radiation and systematic parameter, calculate the actual temperature T of testee
oBJ:
Wherein, described a
1, a
2and c
2for constant, described b
0, b
1, b
2and S
0for temperature measuring parameter; Described V
oBJfor the voltage that infrared thermopile sensor produces; T
dIEfor the environment temperature of infrared thermopile sensor; Described T
rEFfor normal temperature, be specially 298.15K (25 DEG C); In formula, the unit of temperature is Kelvin.
The theoretical foundation of described step S40 specific formula for calculation is this special fence-Boltzmann law (Stefan-Boltzmann law): the gross energy (being called radiancy or the energy flux density of object) that black-body surface unit area gives off within the unit interval is directly proportional to the biquadratic of the thermodynamic temperature T (also known as absolute temperature) of black matrix itself.If the gross energy that testee surface unit area gives off within the unit interval is E
red, then have according to this special fence-Boltzmann law:
wherein, σ is this special fence-Boltzmann constant, σ=5.7 × 10
-12w/cm
2/ K
4.ε is the emissivity of testee, refers to the radianting capacity of testee and the ratio of the radianting capacity of black matrix at identical temperature, is also called blackness.
Described V
oBJfor the voltage that infrared thermopile sensor thermoelectric pile produces, V
oBJthe net quantity of heat being approximately equal to the absorption of infrared thermopile sensor thermoelectric pile deducts the heat of self radiation, and it should be noted that, the net quantity of heat that thermoelectric pile absorbs is the gross energy E that testee gives off
red, namely the present invention is similar to the gross energy thinking that thermoelectric pile absorbs testee completely and gives off.Then have
the temperature can deriving testee is thus:
Wherein, b
0, b
1and b
2that environment temperature is to V
oSfactor of influence, described b
0, b
1, b
2and S
0for temperature measuring parameter, need through calibration.Described a
1, a
2, c
2be the parameter of infrared thermopile sensor, its value is constant.Described constant a
1, a
2and c
2occurrence be: a
1=1.75 × e-3, a
2=-1.68 × e-5, c
2=13.4.
Further, described step S30 specifically comprises:
S310, the initial value of the temperature measuring parameter of infrared thermopile sensor to be set to:
b
0=-2.94×e-5,b
1=-5.7×e-7,b
2=4.78×e-9,s
0=6×e-14。
S320, the voltage V produced according to infrared thermopile sensor
oBJ, the environment temperature T of infrared thermopile sensor
dIE, and formula
Calculate f (V
oBJ) value.Concrete, calculate f (V
oBJ) formula be: f (V
oBJ)=(T
oBJ 4-T
dIE 4) × S.
S330, according to the f (V calculated
oBJ) value and formula f (V
oBJ)=(V
oBJ-V
oS)+c
2× (V
oBJ-V
oS)
2, calculate the heat radiation V of thermoelectric pile self
oS.Calculate V
oSformula be:
S340, according to formula V
oS=b
0+ b
1× (T
dIE-T
rEF)+b
2× (T
dIE-T
rEF)
2], to V
oS(T
dIE-T
rEF) carry out binomial fitting, draw temperature measuring parameter b
0, b
1, b
2value; With the b that this calculates
0, b
1, b
2value, the initial value originally arranged is replaced.
The temperature measuring parameter b that S350, basis calculate
0, b
1, b
2value, by formula V
oS=b
0+ b
1× (T
dIE-T
rEF)+b
2× (T
dIE-T
rEF)
2] recalculate V
oSvalue.
S360, according to formula f (V
oBJ)=(V
oBJ-V
oS)+c
2× (V
oBJ-V
oS)
2, recalculate f (V
oBJ) value.
S370, according to formula f (V
oBJ)=(T
oBJ 4-T
dIE 4) × S and formula S=S
0× [1+a
1× (T
dIE-T
rEF)+a
2× (T
dIE-T
rEF)
2], draw formula (T
oBJ 4-T
dIE 4) × S
0=f (V
oBJ)/[1+a
1× (T
dIE-T
rEF)+a
2× (T
dIE-T
rEF)
2], to (T
oBJ 4-T
dIE 4) and f (V
oBJ)/[1+a
1× (T
dIE-T
rEF)+a
2× (T
dIE-T
rEF)
2] carry out once linear matching, the temperature measuring parameter S that must make new advances
0, concrete, to (T
oBJ 4-T
dIE 4) value that calculates and f (V
oBJ)/[1+a
1× (T
dIE-T
rEF)+a
2× (T
dIE-T
rEF)
2] value that calculates carries out once linear matching, the temperature measuring parameter S that must make new advances
0.
S380, circulation step S320-S370 carry out iterative computation 40 times, and Step wise approximation calculates optimized temperature measuring parameter b
0, b
1, b
2and S
0; In other words, utilize the initial value of the temperature measuring parameter in step S310, calculate temperature measuring parameter b
0, b
1, b
2and S
0, and with the temperature measuring parameter calculated, replace original temperature measuring parameter, and cycle calculations 40 times according to this, obtain final temperature measuring parameter.
The principle shortening the temp measuring method of thermometric time due to provided by the invention and feature elaborate in a upper embodiment, do not repeat them here.
Be understandable that, for those of ordinary skills, can be equal to according to technical scheme of the present invention and inventive concept thereof and replace or change, and all these change or replace the protection domain that all should belong to the claim appended by the present invention.