CN104751936B - A kind of crystal silicon solar energy battery positive conductive silver paste and preparation method thereof - Google Patents

A kind of crystal silicon solar energy battery positive conductive silver paste and preparation method thereof Download PDF

Info

Publication number
CN104751936B
CN104751936B CN201310740519.9A CN201310740519A CN104751936B CN 104751936 B CN104751936 B CN 104751936B CN 201310740519 A CN201310740519 A CN 201310740519A CN 104751936 B CN104751936 B CN 104751936B
Authority
CN
China
Prior art keywords
powder
silver paste
crystal silicon
solar energy
conductive silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310740519.9A
Other languages
Chinese (zh)
Other versions
CN104751936A (en
Inventor
谭伟华
姜占锋
秦世嵘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201310740519.9A priority Critical patent/CN104751936B/en
Publication of CN104751936A publication Critical patent/CN104751936A/en
Application granted granted Critical
Publication of CN104751936B publication Critical patent/CN104751936B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention provides a kind of crystal silicon solar energy battery positive conductive silver paste, on the basis of the gross mass of the crystal silicon solar energy battery positive conductive silver paste, silver powder containing 85 90wt% in the crystal silicon solar energy battery positive conductive silver paste, 5.0 10wt% organic carrier, 3.0 8.0wt% inorganic binder;The inorganic binder includes inorganic metal powder and glassy oxide powder;The glassy oxide powder is PbO and/or Bi2O3;The temperature that phase transformation occurs in the inorganic metal powder is 150 550 DEG C.Present invention also offers the preparation method of the positive conductive silver paste.The solar cell piece prepared with the positive conductive silver paste of the present invention, the outward appearance of silver electrode is good, and the series resistance for meeting industry requirement, especially battery with the welding pulling force of silicon substrate and photovoltaic welding belt is significantly reduced, battery conductive performance is good, and average photoelectric transformation efficiency is obviously improved.

Description

A kind of crystal silicon solar energy battery positive conductive silver paste and preparation method thereof
Technical field
Led the invention belongs to crystal silicon solar energy battery field, more particularly to a kind of crystal silicon solar energy battery positive pole Electric silver paste and preparation method thereof.
Background technology
The current research on solar cell is very active, and solar cell is expected to turn into the main of future electrical energy supply Pillar, crystal silicon solar energy battery is the leading products on photovoltaic market, and conductor paste is to make crystal silicon solar energy battery Main auxiliary material.This kind of slurry is mainly formed by mixed rollings such as conductive metal powder, unorganic glass powder, organic carriers.Its Species mainly has phototropic face silver paste, shady face silver paste, back field aluminum paste etc..
The research direction to phototropic face silver paste has two at present, and one is how on the basis of existing silver paste, to pass through formula Improve, improve the photoelectric transformation efficiency of monolithic battery, be on the premise of guaranteed efficiency and performance, to use as far as possible on the other hand Base metal substitutes silver and reduces the cost of slurry, to increase the competitiveness of solar cell generating.
Publication number position CN102687205A patent discloses a kind of conductive paste composition, includes Argent grain, glass Grain, organic carrier, fine conducting metal particles and additive tantalum pentoxide, conducting metal particles include gold and platinum.When with When the electrical contact on solar cell is formed, this slurry provides enhanced bonding of the contact to the battery and improved Electric transmission.But, the additive in slurry may diffuse into silicon chip formation impurity element in sintering process, so as to battery Efficiency have large effect.It is unfavorable in the cost of reduction slurry and golden or platinum group metal is expensive.
Publication No. CN102651247A patent discloses a kind of new solar cell front electrode conductive paste Material, the electrocondution slurry uses metallic binding phase(Using high and low melting point metals mixed powder)Presoma system it is existing to replace Glass powder with low melting point, all metals of solid matter that slurry is formed after sintering, so formed electrode electric conductivity and can Weldering property is greatly improved.But, the unorganic glass powder of solar cell front electrode slurry is not simply by conductive metal powder Between and conductive metal powder and silicon substrate between form Nian Jie, and more importantly corrode antireflective coating, pass through silver-colored particulate Antireflection layer is contacted with N+.Therefore, in the present invention, the composition of molten corrosive antireflective coating has been lacked, antireflective coating is used as one Individual non-conductive layer isolates N+ layers with the silver layer in electrocondution slurry, so considerably increases the ohmic contact resistance of battery, battery Photoelectric properties might have very big decline.
The content of the invention
The present invention asks to solve the technology that electric conductivity is poor, cell photoelectric conversion efficiency is low of existing conductive glass powder Topic there is provided it is a kind of conduct electricity very well, the crystal silicon solar energy battery positive conductive silver paste that photoelectric transformation efficiency is high and its preparation side Method.
The invention provides a kind of crystal silicon solar energy battery positive conductive silver paste, with the crystal silicon solar energy battery just On the basis of the gross mass of pole conductive silver paste, the silver containing 85-90wt% in the crystal silicon solar energy battery positive conductive silver paste Powder, 5.0-10wt% organic carrier, 3.0-8.0wt% inorganic binder;The inorganic binder include inorganic metal powder and Glassy oxide powder;The glassy oxide powder is PbO and/or Bi2O3The temperature that phase transformation occurs in the inorganic metal powder is 150-550℃。
Present invention also offers a kind of preparation method of crystal silicon solar energy battery positive conductive silver paste, by silver powder and inorganic Binding agent is scattered in organic carrier, and the crystal silicon solar energy battery positive conductive silver paste is obtained after grinding.
The crystal silicon solar energy battery positive conductive silver paste of the present invention, when silver paste process of passing through tunnel stove, because of inorganic metal powder Fusing point it is low, before glassy state salt oxide fusion, the inorganic metal powder gradually softens.And the silicon nitride film in antireflective coating Under the metal powder atmosphere of melting, and with the presence of glassy oxide powder under conditions of, on the one hand, silazine link be broken, it is therein Silicon and PbO or Bi2O3Reaction;On the other hand, PbO or Bi2O3, also can be with silicon substrate after silicon nitride film is abolished(N+ type silicon)In Silicon reaction.PbO or Bi2O3It is reduced into metal Pb or Bi.And Si silicon(Whether the silicon or silicon substrate in silicon nitride film Silicon)It is oxidized to SiO2
Reaction mechanism is:
SixNy= xSi+ yN;
PbO +Si= SiO2+ Pb;
Bi2O3 +Si= SiO2+ Bi;
PbO or Bi2O3Metal Pb or Bi are reduced into, on the one hand space between silver powder particle is filled out as filler Fill and adhesion, another aspect and silicon substrate(N+ type silicon)Adhesion simultaneously forms silicon alloy.Also, PbO or Bi2O3Obtained being reduced Metal when, metallic atom is when crystallization forms the starting stage of particulate, and particle diameter is in nanometer category, therefore, and it is filled and viscous The effect connect, compared to the metal powder or alloyed powder of outer addition, effect can be more preferable.The crystal silicon solar energy battery positive pole of the present invention is led Electric silver paste, inorganic metal powder is equally used as bonding agent.
Embodiment
In order that technical problem solved by the invention, technical scheme and beneficial effect are more clearly understood, below in conjunction with Embodiment, the present invention will be described in further detail.It should be appreciated that specific embodiment described herein is only to explain The present invention, is not intended to limit the present invention.
The invention provides a kind of crystal silicon solar energy battery positive conductive silver paste, with the crystal silicon solar energy battery just On the basis of the gross mass of pole conductive silver paste, the silver containing 85-90wt% in the crystal silicon solar energy battery positive conductive silver paste Powder, 5.0-10wt% organic carrier, 3.0-8.0wt% inorganic binder;The inorganic binder include inorganic metal powder and Glassy oxide powder;The glassy oxide powder is PbO and/or Bi2O3The temperature that phase transformation occurs in the inorganic metal powder is 150-550℃。
Start fusing temperature spot it is too low, then metal powder melting it is too early, glassy state powder not with pasc reaction before and easily with The molten metal of melting is lost in, and the temperature spot for starting melting is too high, then in glassy state powder when not with pasc reaction, it is impossible to provide melting Aluminium alloy environment, and gap filling and also bad with effect that silicon serves as a contrast low silicon formation alloy.
Glassy oxide powder of the present invention is by PbO and/or Bi2O3Formed through melting, water quenching, ball milling.PbO or Person Bi2O3 is after melting and water quenching, and because of quick refrigeration, it is from crystalline state to amorphous state, the glassy state slag after by its water cooling After ball milling, drying, sieving, PbO or Bi2O3 glassy oxide powder is obtained.The glassy oxide powder with it is common a variety of Oxide(Such as PbO, Bi2O3, B2O3, SiO2)The glassy state thing of mixed material formation is the same, the transformation temperature with glassy state Ts, the softening temperature Tf on expansion curve are spent, wherein it is its softening temperature Tf, Tf master the sintering character of slurry to be influenceed maximum To be determined by the property of glassy state, while it is also influenceed by glassy state powder footpath, particle diameter is smaller, and softening temperature is lower.
According to crystal silicon solar energy battery positive conductive silver paste provided by the present invention, it is preferable that the inorganic metal powder For Pb simple substance powder, Sn simple substance powder, the mixed powder of Pb simple substance powder and Sn simple substance powder, the mixed powder of Pb simple substance powder and Bi simple substance powder, Pb One or more in the mixed powder of simple substance powder, Sn simple substance powder and Bi simple substance powder.
According to crystal silicon solar energy battery positive conductive silver paste provided by the present invention, it is preferable that the inorganic metal powder For metal alloy powder;The metal alloy powder is Pb-Sn alloyed powders, Pb-Bi alloyed powders, Pb-Sn-Bi alloyed powders, Pb-Sn-Sb At least one of alloyed powder, Pb-Sn-Bi-Sb alloyed powders.
The temperature spot that phase transformation occurs in the heating melting of the inorganic metal powder of the present invention is low, can soften in glassy state organic matter First melt, space between silver powder particle is filled and adhesion before as filler, on the other hand, this is without Base Metal powder Can and silicon substrate(N+ type silicon)Adhesion simultaneously forms silicon alloy.To make metal dust reach optimal effect, metal of the invention Powder preferentially using the mixed-powder of alloyed powder or elemental metals powder, more preferably Pb-Sn alloyed powders, Pb-Bi alloyed powders, The alloyed powder of at least one of Pb-Sn-Bi alloyed powders, Pb-Sn-Sb alloyed powders, Pb-Sn-Bi-Sb alloyed powders, because alloy Powder(In addition to eutectic point)Melting temperature be regional extent, it is such similar with the melting of glassy state powder, can promote Make glassy state powder and pasc reaction.The metal simple-substance powder or metal alloy powder of the present invention can be given birth to using nitrogen atomization method or other method Production, can also be commercially available.
According to crystal silicon solar energy battery positive conductive silver paste provided by the present invention, it is preferable that with inorganic binder On the basis of gross mass, the content of the glassy oxide powder is 10-50wt%, and the content of the inorganic metal powder is 50- 90wt%。
According to crystal silicon solar energy battery positive conductive silver paste provided by the present invention, it is preferable that the glassy state oxidation The middle particle diameter D50 of thing powder is 0.2-1.5 microns.The middle particle diameter D50 of the metal simple-substance powder is 0.2-1.5 microns.The metal The middle particle diameter D50 of alloyed powder is 0.2-1.5 microns.
According to crystal silicon solar energy battery positive conductive silver paste provided by the present invention, it is preferable that the Bi2O3Softening Point is 500-600 DEG C.The PbO softening points are 600-700 DEG C.
According to crystal silicon solar energy battery positive conductive silver paste provided by the present invention, it is preferable that the middle grain of the silver powder Footpath D50For 0.3-0.8 microns, specific surface area 1.0m2/ g, tap density 4.0g/cm3
According to crystal silicon solar energy battery positive conductive silver paste provided by the present invention, it is preferable that the conductive silver paste is also Including thickener and auxiliary agent.The thickener has no particular limits, and can be various thickeners commonly used in the art, such as can be with For at least one of ethyl cellulose, NC Nitroncellulose, alkyd resin, phenolic resin, epoxy resin, novolac epoxy resin. Described auxiliary agent is polyamide powder, modified hydrogenated castor oil, hexadecanol, octadecyl alcolol.
The organic carrier is terpinol, butyl carbitol, butyl carbitol acetate, turpentine oil, butyl glycol ether, neighbour Dibatyl phithalate, ethylene glycol ether acetate, ATBC, butyl carbitol acetate and tricresyl phosphate fourth Two or more in ester is mixed.
The content of the organic carrier, thickener and auxiliary agent is in the usual range of this area, and the present invention is without spy Different regulation.For example, on the basis of the gross mass of organic carrier, thickener and auxiliary agent, wherein the content of thickener is 4-10wt%, The content of auxiliary agent is 1-5wt%, and the content of organic carrier is 85-95wt%.It is described as a kind of preferred embodiment of the present invention Organic carrier is the mixture of terpinol, ethylene glycol ether acetate and butyl carbitol.In the case of more preferably, with 100 weight On the basis of the organic carrier of part, wherein the content of terpinol is 55-65 parts by weight, and the content of ethylene glycol ether acetate is 15- 25 parts by weight, the content of butyl carbitol is 15-25 parts by weight.
The present invention is described in further detail with reference to embodiment.
Embodiment 1
1st, the preparation of inorganic binder
Take the PbO of certain part by weight to be fitted into corundum crucible, be placed in silicon carbide rod furnace.It will be warming up in silicon carbide rod furnace 550 DEG C, 0.5h is incubated, then is warming up to 1200 DEG C, 2h is incubated, water quenching is filtrated to get glass dregs.Glass dregs are fitted into ball grinder Wet-milling 20h, is dried after filtering, then the 0.5h that dry grinds, and obtains the glassy oxide powder of the present invention.Test wherein particle diameter D50For 0.20 μm, the softening point of glassy oxide powder is 600 DEG C.
Mixed using simple substance Pb powder as metal powder and above-mentioned glassy oxide powder, the middle particle diameter D of Pb powder therein50For 0.20µm.Glassy oxide powder ratio shared in inorganic binder is 30wt%.
2nd, the preparation of organic carrier
According to quality than lauryl alcohol ester:Butyl carbitol=90:10 organic solvent is well mixed, and constitutes the mixing of slurry Solvent.Take the mixed solvent of 90.5 mass parts, add 8.0 mass parts ethyl cellulose STD-4 (Tao Shi is produced, viscosity be 4), The rilanit special of 0.5 mass parts, the hexadecanol of 1.0 mass parts is heated to 60 DEG C, it is fully dissolved, and stirs, and obtains To organic carrier.
3rd, the preparation of conductive silver paste
The organic carrier for taking 10.5 mass parts steps 2 to prepare is placed in the stainless cylinder of steel of high speed dispersor, while stirring, one Side adds the middle particle diameter D of 85 mass parts50For 0.40 ± 0.25 μm of ball shape silver powder(The Ag-202A boards of Japanese Zhao Rong companies production Number silver powder), and obtained inorganic binder in the step 1 of 4.5 mass parts, wherein ball shape silver powder is added several times, each to add First stir evenly, then add next time;After all adding, stir evenly at a high speed;It is ground 6 ~ 8 times with 150 three-roll grinder again, makes it Fineness is less than 10 μm, you can obtain crystal silicon solar energy battery positive conductive silver paste S1.
Embodiment 2
Method according to embodiment 1 prepares crystal silicon solar energy battery positive conductive silver paste S2, and difference is embodiment 1 The Pb powder of middle step 1 is changed to aoxidize as the glassy state in inorganic metal powder and embodiment 1 using the mixed powder of Pb powder and Sn powder Thing powder is mixed, the middle particle diameter D of Pb powder and Sn powder therein50For 0.20 μm.The mass ratio of Pb powder and Sn powder is 1:1.Glassy state oxygen Compound powder ratio shared in inorganic binder is 40wt%.
Embodiment 3
Method according to embodiment 1 prepares crystal silicon solar energy battery positive conductive silver paste S3, and difference is embodiment 1 The Pb powder of middle step 1 is changed to mixed as inorganic metal powder and glassy oxide powder using the mixed powder of Pb powder, Sn powder, Bi powder Close, the middle particle diameter D of all inorganic metal powder50For 0.20 μm.Pb:Sn:The mass ratio of Bi powder is 1:1:1.Glassy oxide powder Glassy state powder ratio shared in inorganic binder is 20wt%.
Embodiment 4
Method according to embodiment 1 prepares crystal silicon solar energy battery positive conductive silver paste S4, and difference is embodiment 1 The Pb powder of middle step 1 is changed to use Pb-Sn alloyed powders(Mass ratio Pb in alloy: Sn=37:63, the middle particle diameter D of alloyed powder50For 0.50µm.The alloy starts to melt the temperature spot for phase transformation occur for 180 DEG C or so)Glassy oxide powder is used as inorganic metal powder With the mixing of glassy state powder.
Embodiment 5
Method according to embodiment 1 prepares crystal silicon solar energy battery positive conductive silver paste S5, and difference is embodiment 1 The Pb powder of middle step 1 is changed to use Pb-Sn-Sb alloyed powders(Mass ratio Pb in alloy:Sn:Sb=58:2 :40, in alloyed powder Particle diameter D50For 1.50 μm, the alloy starts to melt the temperature spot for phase transformation occur for 550 DEG C)It is used as inorganic metal powder and glassy state powder Mixing.
Embodiment 6
Method according to embodiment 1 prepares crystal silicon solar energy battery positive conductive silver paste S6, and difference is:By embodiment The middle PbO of step 1 is changed to Bi in 12O3, wherein particle diameter D50For 1.5 μm, the softening point of glassy state powder is 550 DEG C.
Embodiment 7
Method according to embodiment 1 prepares crystal silicon solar energy battery positive conductive silver paste S7, and difference is:By embodiment The wet-milling time of glass dregs is changed to 5h in step 1 in 1, the glassy oxide powder powder of the present embodiment is obtained.Test is obtained Glassy oxide powder middle particle diameter D50For 1.30 μm, softening point temperature is 680 DEG C.
Embodiment 8
Method according to embodiment 1 prepares crystal silicon solar energy battery positive conductive silver paste S8, and difference is:By embodiment The middle particle diameter D for the simple substance Pb powder that step 1 is used in 150For 1.50 μm, glassy oxide powder ratio shared in inorganic binder Example is 10wt%.
Embodiment 9
Method according to embodiment 1 prepares crystal silicon solar energy battery positive conductive silver paste S9, and difference is:By embodiment The glassy oxide powder of step 1 ratio shared in inorganic binder is changed to 50wt% in 1.
Embodiment 10
Method according to embodiment 1 prepares crystal silicon solar energy battery positive conductive silver paste S10, and difference is:It will implement The glassy oxide powder of step 1 is changed to PbO and Bi in example 12O3Mix powder(PbO and Bi2O3Mass ratio be 1:1, glass The PbO powder and Bi of embodiment 1 and 6 can be respectively adopted in glass state oxidate powder2O3Powder)Glassy oxide powder.
Embodiment 11
Method according to embodiment 1 prepares crystal silicon solar energy battery positive conductive silver paste S11, and difference is:It will implement The middle Pb powder of step 1 is changed to the mixed powder of Pb powder and Bi powder in example 1(The mass ratio of Pb powder and Bi powder is 1:1), Pb powder therein With the middle particle diameter D of Bi powder50For 0.40 μm.
Embodiment 12
Method according to embodiment 1 prepares crystal silicon solar energy battery positive conductive silver paste S12, and difference is:It will implement The middle Pb powder of step 1 is changed to Pb-Bi alloyed powders in example 1(Mass ratio Pb in alloy:Bi =1:1), the middle particle diameter D of alloyed powder50For 0.40µm.Beta alloy starts to melt the temperature spot for phase transformation occur for 520 DEG C).
Embodiment 13
Method according to embodiment 1 prepares crystal silicon solar energy battery positive conductive silver paste S13, and difference is:It will implement The middle Pb powder of step 1 is changed to Pb-Sn-Bi alloyed powders in example 1(Mass ratio Pb in alloy:Sn:Bi =35:60:5, in alloyed powder Particle diameter D50For 0.20 μm.Beta alloy starts to melt the temperature spot for phase transformation occur for 170 DEG C).
Embodiment 14
Method according to embodiment 1 prepares crystal silicon solar energy battery positive conductive silver paste S14, and difference is:It will implement The middle Pb powder of step 1 is changed to Pb-Sn-Bi-Sb alloyed powders in example 1(Mass ratio Pb in alloy:Sn:Bi:Sb =30:60:7:3, close The middle particle diameter D of bronze50For 0.20 μm.Alloy starts to melt the temperature spot for phase transformation occur for 150 DEG C).
Comparative example 1
Method according to embodiment 1 prepares crystal silicon solar energy battery positive conductive silver paste D1, and difference is:Using tradition Unorganic glass powder alternate embodiment 1 in inorganic binder prepare crystal silicon solar energy battery positive conductive silver paste.
The preparation of glass dust:
Take 81 parts by weight PbO, 9.0 parts by weight SiO2, 6.0 parts by weight ZnO, 4.0 parts by weight TiO2.Using V-Mixer Each oxide powder is well mixed, is transferred in corundum crucible, is placed in silicon carbide rod furnace.550 will be warming up in silicon carbide rod furnace DEG C, 0.5h is incubated, then it is warming up to 1250 DEG C, 2h is incubated, water quenching is filtrated to get glass dregs.Glass dregs are fitted into wet-milling in ball grinder 8.5h, is dried after filtering, then the 0.5h that dry grinds, and obtains middle particle diameter D50For 0.65 μm, softening point is 480 DEG C of glass dust.
Comparative example 2
Crystal silicon solar energy battery positive conductive silver paste D2 is prepared using method disclosed in embodiment in CN102687205A.
Comparative example 3
Crystal silicon solar energy battery positive conductive silver paste D3 is prepared using method disclosed in embodiment in CN102651247A.
Embodiment 15-28
S1-S14 is adopted and is fabricated to solar cell piece in the following method, SS1-SS14 is denoted as respectively.Test certain every time Slurry takes its average value using 200 cell pieces, test data.
The polysilicon chip specification used for:156×156.Thickness is 180 microns(Before corrosion), thickness is before printing 160 microns.After by silicon wafer wool making, PN junction processed, plating silicon nitride anti-reflecting film, first using 280 mesh silk-screen printing back side silver pastes (The PV505 silver pastes of Dupont companies), the printing weight in wet base of back silver paste is 40-50mg, drying, in the remaining backlight face of back silver paste Point, it is same to print back field aluminum paste using 280 mesh(The large standing grain science and technology 108C aluminium pastes in Taiwan), the printing weight in wet base of aluminium paste is 1.30-1.50g After drying, 360 mesh, line width is used to print the crystal silicon solar energy battery positive conductive silver paste of the present invention for 70 microns of half tone On the phototropic face of silicon chip, printing weight in wet base is 110-130mg, enters and sintering is dried in continuous tunnel furnace, and preheating temperature is 200-400 DEG C, Peak temperature is 940-960 DEG C, and the whole time for crossing continuous tunnel furnace is 2min or so, and peak value sintering time is 1 second, is produced after coming out of the stove To finished product solar cell piece.
Comparative example 4-6
D1-D3 is prepared into solar cell piece according to embodiment 15-28 method, DD1-DD3 is denoted as respectively.Test certain every time Slurry is planted using 200 cell pieces, test data takes its average value.
Performance test
1st, surface appearance:With 10 times of amplification sem observation solar cell metallic film surfaces, whether silver electrode surface has trachoma Or pin hole, if surface it is smooth, without the phenomenon such as plot point and hole, be designated as OK, be otherwise designated as NG.
2nd, pulling force is welded:Win footpath between fields 2*0.2mm tin-lead weldings from Shanghai, dried after being soaked with Henkel X32-10I types scaling powder It is dry, manual welding then is carried out to silver electrode at 330 DEG C.After after cell piece natural cooling, mountain degree SH-100 puller systems edge is used 135 ° of directions carry out tensile test to it, test its Average peel force, and unit is N.
3rd, series resistance(Rs), electricity conversion (Eta):The electricity conversion of cell piece is special with solar cell piece Tester, such as single flash operation simulator is tested.Test condition is standard test condition (STC):Light intensity:1000W/m2; Spectrum:AM1.5;Temperature:25℃.Method of testing is carried out according to IEC904-1.
By in the test result of all battery samples tabulated below 1.
Table 1
The electrocondution slurry silk-screen for preparing the present invention is can be seen that on silicon cell and after sintering from the data in table 1, Obtained solar cell piece is printed using silver paste of the present invention, compared to traditional front side silver paste, the outward appearance of silver electrode is good, is served as a contrast with silicon The welding pulling force of bottom and photovoltaic welding belt meets industry requirement(Industry requirement is more than 2 ~ 3N), the especially series resistance of battery Significantly reduce, average photoelectric transformation efficiency is obviously improved.
The foregoing is merely illustrative of the preferred embodiments of the present invention, is not intended to limit the invention, all essences in the present invention Any modifications, equivalent substitutions and improvements made within refreshing and principle etc., should be included in the scope of the protection.

Claims (13)

1. a kind of crystal silicon solar energy battery positive conductive silver paste, it is characterised in that with the crystal silicon solar energy battery positive pole On the basis of the gross mass of conductive silver paste, the silver powder containing 85-90wt% in the crystal silicon solar energy battery positive conductive silver paste, 5.0-10wt% organic carrier, 3.0-8.0wt% inorganic binder;The inorganic binder includes inorganic metal powder and glass Glass state oxidate powder;On the basis of the gross mass of inorganic binder, the content of the glassy oxide powder is 10-50wt%, The content of the inorganic metal powder is 50-90wt%;The glassy oxide powder is PbO and/or Bi2O3;The inorganic metal The temperature that phase transformation occurs in powder is 150-550 DEG C.
2. crystal silicon solar energy battery positive conductive silver paste as claimed in claim 1, it is characterised in that the inorganic metal powder For Pb simple substance powder, Sn simple substance powder, the mixed powder of Pb simple substance powder and Sn simple substance powder, the mixed powder of Pb simple substance powder and Bi simple substance powder, Pb One or more in the mixed powder of simple substance powder, Sn simple substance powder and Bi simple substance powder.
3. crystal silicon solar energy battery positive conductive silver paste as claimed in claim 1, it is characterised in that the inorganic metal powder For metal alloy powder;The metal alloy powder is Pb-Sn alloyed powders, Pb-Bi alloyed powders, Pb-Sn-Bi alloyed powders, Pb-Sn-Sb At least one of alloyed powder, Pb-Sn-Bi-Sb alloyed powders.
4. crystal silicon solar energy battery positive conductive silver paste as claimed in claim 1, it is characterised in that the glassy state oxidation The middle particle diameter D of thing powder50For 0.2-1.5 μm.
5. crystal silicon solar energy battery positive conductive silver paste as claimed in claim 1, it is characterised in that the inorganic metal powder Middle particle diameter D50For 0.2-1.5 μm.
6. crystal silicon solar energy battery positive conductive silver paste as claimed in claim 1, it is characterised in that the Bi2O3Softening Point is 500-600 DEG C.
7. crystal silicon solar energy battery positive conductive silver paste as claimed in claim 1, it is characterised in that the PbO softening points For 600-700 DEG C.
8. crystal silicon solar energy battery positive conductive silver paste as claimed in claim 1, it is characterised in that the middle grain of the silver powder Footpath D50For 0.3-0.8 μm.
9. crystal silicon solar energy battery positive conductive silver paste as claimed in claim 8, it is characterised in that the ratio table of the silver powder Area >=1.0m2/ g, tap density >=4.0g/cm3
10. crystal silicon solar energy battery positive conductive silver paste as claimed in claim 1, it is characterised in that the conductive silver paste Also include thickener and auxiliary agent.
11. a kind of preparation method of the crystal silicon solar energy battery positive conductive silver paste described in claim 1-10 any one, Characterized in that, silver powder and inorganic binder are scattered in organic carrier, the crystal silicon solar electricity is obtained after grinding Pond positive conductive silver paste.
12. preparation method according to claim 11, it is characterised in that the preparation method of the inorganic binder is by glass Glass state oxidate powder is well mixed with inorganic metal powder.
13. preparation method according to claim 12, it is characterised in that the preparation method bag of the glassy oxide powder Include following steps:
S1, in corundum crucible it is put into PbO and/or Bi2O3, it is placed in silicon carbide rod furnace, 300-550 will be warming up in silicon carbide rod furnace DEG C, 0.5-1h is incubated, then it is warming up to 1000-1200 DEG C, 0.5-2.0h is incubated, water quenching is filtrated to get glass dregs;
S2, glass dregs are loaded to ball grinder, in mass ratio zirconia ball:Bead:Deionized water=4:1-2:0.5-0.7, tank Fast 300-350 revs/min, wet-milling 5.0-20h is dried after filtering, then the 0.5-2.0h that dry grinds, zirconia ball and glass dust during dry grinding Mass ratio be 1:1-3, glassy oxide powder is obtained after dry grinding by the sieving of 50-100 eye mesh screens again.
CN201310740519.9A 2013-12-27 2013-12-27 A kind of crystal silicon solar energy battery positive conductive silver paste and preparation method thereof Active CN104751936B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310740519.9A CN104751936B (en) 2013-12-27 2013-12-27 A kind of crystal silicon solar energy battery positive conductive silver paste and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310740519.9A CN104751936B (en) 2013-12-27 2013-12-27 A kind of crystal silicon solar energy battery positive conductive silver paste and preparation method thereof

Publications (2)

Publication Number Publication Date
CN104751936A CN104751936A (en) 2015-07-01
CN104751936B true CN104751936B (en) 2017-08-22

Family

ID=53591484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310740519.9A Active CN104751936B (en) 2013-12-27 2013-12-27 A kind of crystal silicon solar energy battery positive conductive silver paste and preparation method thereof

Country Status (1)

Country Link
CN (1) CN104751936B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107274962A (en) * 2017-05-18 2017-10-20 江苏东昇光伏科技有限公司 A kind of slurry used for solar batteries and preparation method thereof
CN108492910A (en) * 2018-03-15 2018-09-04 山东建邦胶体材料有限公司 A kind of crystal silicon solar batteries slurry preparation method containing low melting point salt
CN111167569B (en) * 2019-12-31 2021-08-17 曲靖华益兴新材料有限公司 Method and equipment for preparing easily-dispersible aluminum powder pigment by direct ball milling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077764A (en) * 2013-02-01 2013-05-01 李春生 Electrocondution slurry for front side electrode of solar cell
CN103137239A (en) * 2011-11-25 2013-06-05 比亚迪股份有限公司 Front electrode silver paste for solar battery and preparation method thereof and solar battery piece
CN103165214A (en) * 2011-12-14 2013-06-19 比亚迪股份有限公司 Solar cell aluminum electric-conduction slurry and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9947809B2 (en) * 2009-11-11 2018-04-17 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137239A (en) * 2011-11-25 2013-06-05 比亚迪股份有限公司 Front electrode silver paste for solar battery and preparation method thereof and solar battery piece
CN103165214A (en) * 2011-12-14 2013-06-19 比亚迪股份有限公司 Solar cell aluminum electric-conduction slurry and preparation method thereof
CN103077764A (en) * 2013-02-01 2013-05-01 李春生 Electrocondution slurry for front side electrode of solar cell

Also Published As

Publication number Publication date
CN104751936A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
CN104078090B (en) A kind of crystal silicon solar energy battery electrocondution slurry and preparation method thereof
TWI585781B (en) Thick film conductive composition and use thereof
CN104637568B (en) Aluminum paste for all-aluminum back surface field crystalline silicon solar cell and preparation method thereof
CN110040968A (en) A kind of glass powder and the silver-colored aluminium paste in N-type double-sided solar battery front including the glass powder
TW201248654A (en) Paste composition for electrode, photovoltaic cell element, and photovoltaic cell
WO2012099877A1 (en) Electroconductive paste compositions and solar cell electrodes and contacts made therefrom
CN105374412A (en) Back passivation solar cell back silver paste and preparation method thereof, and solar cell and preparation method thereof
TW200931449A (en) Conductive compositions and processes for use in the manufacture of semiconductor devices: Mg-containing additive
CN101931014A (en) Conductive slurry for solar battery and preparation method
TW201250714A (en) Conductive paste composition containing lithium, and articles made therefrom
CN104157328A (en) Silicon solar cell front face electrode silver paste and preparing method thereof
CN105913897B (en) A kind of crystal silicon solar energy battery silver paste of low silver content and preparation method thereof
WO2011097606A2 (en) Process for the production of a mwt silicon solar cell
CN108431964A (en) Paste compound for front electrode of solar battery and the solar cell using the paste compound
CN104157331B (en) Silicon solar cell electrode silver coated copper sizing agent and preparing method thereof
TWI711594B (en) Electrode paste for solar cell's electrode and solar cell using the same
TW201737502A (en) Conductive paste and solar cell
CN104751936B (en) A kind of crystal silicon solar energy battery positive conductive silver paste and preparation method thereof
CN105469853A (en) Crystalline silica solar cell conductive slurry and preparation method thereof
CN107240435B (en) A kind of photovoltaic cell silver paste and preparation method thereof
CN103183474B (en) A kind of unorganic glass powder and preparation method thereof, a kind of electrocondution slurry and preparation method thereof
CN111403077B (en) General back electrode silver paste for PERC single-sided double-sided battery and preparation method
CN110504045A (en) A kind of crystal silicon solar batteries PERC aluminium paste of high-tensile strength and preparation method thereof
CN105637046A (en) Conductive pastes or inks comprising nanometric chemical frits
CN116230289B (en) Composition for P+ surface of solar cell, preparation method of composition and solar cell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant