CN104733752A - 燃料电池堆栈用充入电流生成方法及装置 - Google Patents
燃料电池堆栈用充入电流生成方法及装置 Download PDFInfo
- Publication number
- CN104733752A CN104733752A CN201410696513.0A CN201410696513A CN104733752A CN 104733752 A CN104733752 A CN 104733752A CN 201410696513 A CN201410696513 A CN 201410696513A CN 104733752 A CN104733752 A CN 104733752A
- Authority
- CN
- China
- Prior art keywords
- mentioned
- filled
- fuel cell
- alternating current
- cell stack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04574—Current
- H01M8/04597—Current of auxiliary devices, e.g. batteries, capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/003—Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/002—Flicker reduction, e.g. compensation of flicker introduced by non-linear load
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0053—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/12—Recording operating variables ; Monitoring of operating variables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/40—Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/70—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
- B60L50/72—Constructional details of fuel cells specially adapted for electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/20—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/30—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/40—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04559—Voltage of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04574—Current
- H01M8/04589—Current of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04664—Failure or abnormal function
- H01M8/04679—Failure or abnormal function of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04895—Current
- H01M8/0491—Current of fuel cell stacks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/12—Buck converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/14—Boost converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/52—Drive Train control parameters related to converters
- B60L2240/529—Current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M16/00—Structural combinations of different types of electrochemical generators
- H01M16/003—Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04865—Voltage
- H01M8/0488—Voltage of fuel cell stacks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/30—The power source being a fuel cell
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/01—Arrangements for reducing harmonics or ripples
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/40—Arrangements for reducing harmonics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nonlinear Science (AREA)
- Physics & Mathematics (AREA)
- Fuel Cell (AREA)
Abstract
本发明涉及燃料电池堆栈用充入电流生成方法及装置,本发明一实施例的燃料电池堆栈用充入电流生成装置包括:第一转换器,将与高电压电池对应的电压的直流电流转换为特定电压的直流电流;第二转换器,将被转换的上述直流电流转换为交流电流;滤波器,在被转换的上述交流电流中对预先设定的频带的信号进行滤波;控制部,当向上述燃料电池堆栈充入被滤波的上述交流电流时,以没有畸变地充入交流电流的方式进行反馈控制。因此,本发明使用高电压电池来代替普通的车辆用电池,从而在升压与高电压电池对应的电压的直流电流方面,只要升压数十伏特左右即可,因而能够减少变压比,也能降低部件价格及回路的体积。
Description
技术领域
本发明的实施例涉及燃料电池堆栈用充入电流生成方法及执行该燃料电池堆栈用充入电流生成方法的装置。
背景技术
燃料电池为无需借助燃烧将燃料所具有的化学能变成热,而是在堆栈内以电化学方式发生反应,从而转换为电能的一种发电装置,上述燃料电池不仅能够供给产业用、家庭用及车辆驱动用电力,而且还能适用于小型的电器/电子产品,尤其能够适用于便携式装置的供电。
当前,作为用于驱动车辆的供电源,最普遍研究的是燃料电池中具有最高的功率密度的高分子电解质膜燃料电池(PEMFC:Polymer ElectrolyteMembrane Fuel Cell,Proton Exchange Membrane Fuel Cell)形态,其因低的工作温度而具有快速的起动时间和快速的电力转换反应时间。
这种高分子电解质膜燃料电池包括:膜电极接合体(MEA:MembraneElectrode Assembly),以由氢离子所移动的固体高分子电解质膜为中心,在膜的两侧附着有引起电化学反应的催化剂电极层;气体扩散层(GDL;Gas Diffusion Layer),起到使反应气体均匀地分布,且传递所产生的电能的作用;密封圈及紧固机构,用于维持反应气体及冷却水的气密性和适当的紧固压;以及分离板(Bipolar Plate),使反应气体及冷却水移动。
当利用这种单位电池结构来组装燃料电池堆栈时,在电池内的最内侧设有作为主要结构部件的膜电极接合体及气体扩散层的组合,而膜电极接合体在高分子电解质膜的双面具有以能够与氢和氧发生反应的方式涂敷了催化剂的催化剂电极层,即,正极(Anode)及负极(Cathode),并在正极及负极所处的外侧部分层叠有气体扩散层、密封圈等。
在气体扩散层的外侧设有分离板,在上述分离板形成有用于供给反应气体(作为燃料的氢和作为氧化剂的氧或空气),并由冷却水所通过的流场(Flow Field)。在将这种结构作为单位电池来层叠多个单位电池之后,在最外侧结合集电板(Current Collector)、绝缘板及用于支撑层叠电池的端板(End Plate),而在端板之间反复层叠并紧固单位电池,从而构成燃料电池堆栈。
为了获得实际车辆所需的电位,应层叠于所需电位相对应的单位电池,而层叠单位电池后形成堆栈。在一个单位电池中所产生的电位约1.3V,为了生产出车辆的驱动所需的电力而将多个电池以串联的方式层叠多个电池。
发明内容
本发明的目的在于,提供燃料电池堆栈用充入电流生成方法及执行该燃料电池堆栈用充入电流生成方法的装置,上述燃料电池堆栈用充入电流生成方法及执行该燃料电池堆栈用充入电流生成方法的装置使用高电压电池来代替普通的车辆用电池,从而在升压与高电压电池对应的电压的直流电流方面,只要升压数十伏特左右即可,因而能够减少变压比,也能降低部件价格及回路的体积。
并且,本发明的目的在于,提供燃料电池堆栈用充入电流生成方法及执行该燃料电池堆栈用充入电流生成方法的装置,在上述燃料电池堆栈用充入电流生成方法及执行该燃料电池堆栈用充入电流生成方法的装置中,即使车辆的起动转换为关闭状态,高电压电池也始终维持电源开启状态,因此,在燃料电池堆栈发电之前,也能测定燃料电池堆栈的电压,从而能够诊断燃料电池堆栈的故障。
本发明所要解决的问题并不局限于以上所述的问题,本发明所属领域的技术人员能够从以下的记载中明确地理解未提及的其他问题。
在多个实施例中,燃料电池堆栈用充入电流生成装置包括:第一转换器,将与高电压电池对应的电压的直流电流转换为特定电压的直流电流;第二转换器,将被转换的上述直流电流转换为交流电流;滤波器,在被转换的上述交流电流中对预先设定的频带的信号进行滤波;控制部,当向上述燃料电池堆栈充入被滤波的上述交流电流时,以没有畸变地充入交流电流的方式进行反馈控制。
在一实施例中,还可以包括电流传感器,上述电流传感器向上述控制部提供充入于上述燃料电池堆栈的实际交流电流。
在一实施例中,上述控制部可确认从上述电流传感器接收的实际交流电流和充入交流电流的差异。
在一实施例中,若上述确认结果为上述实际交流电流和上述充入交流电流之间发生差异,则上述控制部可控制上述充入交流电流的振幅。
在一实施例中,若上述实际交流电流小于上述充入交流电流,则上述控制部可使上述充入交流电流的振幅变大。
在一实施例中,若上述实际交流电流大于上述充入交流电流,则上述控制部可使上述充入交流电流的振幅变小。
在一实施例中,上述高电压电池能够以并列方式与上述燃料电池堆栈相连接。
在一实施例中,上述燃料电池堆栈用充入电流生成装置还可以包括双向转换器,上述双向转换器转换上述高电压电池的电压,来向上述燃料电池堆栈提供,转换上述燃料电池堆栈的电压,来向上述高电压电池提供。
在一实施例中,上述第一转换器可使与上述高电压电池对应的电压的直流电流升压为大于上述燃料电池堆栈的电压的电压。
在一实施例中,上述第二转换器可调节被转换的上述直流电流的脉冲宽度,来将上述直流电流转换为交流电流。
在一实施例中,上述滤波器可使被转换的上述交流电流中低频部分通过,并阻隔被转换的上述交流电流中高频部分,来生成正弦波形态的交流电流。
在多个实施例中,在燃料电池堆栈用充入电流生成装置中执行的燃料电池堆栈用充入电流生成方法包括:将与高电压电池对应的电压的直流电流转换为特定电压的直流电流的步骤;将被转换的上述直流电流转换为交流电流的步骤;在被转换的交流电流中对预先设定的频带的信号进行滤波的步骤;以及当向上述燃料电池堆栈充入被滤波的上述交流电流时,以没有畸变地充入上述交流电流的方式进行反馈控制。
在一实施例中,燃料电池堆栈用充入电流生成方法还可以包括接收向上述燃料电池堆栈充入的实际交流电流的步骤。
在一实施例中,以没有畸变地充入上述交流电流的方式进行反馈控制的步骤可包括确认向上述燃料电池堆栈充入的充入交流电流和实际交流电流之间是否发生差异的步骤。
在一实施例中,确认向上述燃料电池堆栈充入的充入电流和实际充入电流之间是否发生差异的上述步骤可包括若上述确认结果为上述实际交流电流和上述充入交流电流之间发生差异,则控制上述充入交流电流的振幅的步骤。
在一实施例中,控制上述充入交流电流的振幅的步骤可包括若上述实际交流电流小于上述充入交流电流,则使上述充入交流电流的振幅变大的步骤。
在一实施例中,控制上述充入交流电流的振幅的步骤可包括若上述实际交流电流大于上述充入交流电流,则使上述充入交流电流的振幅变小的步骤。
在一实施例中,上述高电压电池能够以并列方式与上述燃料电池堆栈相连接。
在一实施例中,燃料电池堆栈用充入电流生成方法可包括:转换上述高电压电池的电压,来向上述燃料电池堆栈提供的步骤;以及转换上述燃料电池堆栈的电压,来向上述高电压电池提供的步骤。
在一实施例中,转换为特定电压的直流电流的上述步骤可包括使与上述高电压电池对应的电压的直流电流升压为大于上述燃料电池堆栈的电压的电压的步骤。
在一实施例中,将上述直流电流转换为交流电流的步骤可包括调节被转换的上述直流电流的脉冲宽度,来将上述直流电流转换为交流电流的步骤。
在一实施例中,在被转换的交流电流中对预先设定的频带的信号进行滤波的上述步骤可包括使被转换的上述交流电流中低频部分通过,并阻隔被转换的上述交流电流中高频部分,来生成正弦波形态的交流电流的步骤。
其他实施例的具体事项包括在详细的说明及附图中。
以下参照附图详细说明的实施例会让本发明的优点和/或特征及实现这些优点和特征的方法更加明确。但是,本发明并不局限于以下所公开的实施例,能够以互不相同的各种方式实施,本实施例只用于使本发明所属技术领域的普通技术人员完整地理解本发明的范畴,本发明仅由发明要求保护范围而定义。在说明书全文中,相同的附图标记表示相同的结构要素。
根据本发明实施例,具有如下效果:使用高电压电池来代替普通的车辆用电池,从而在升压与高电压电池对应的电压的直流电流方面,只要升压数十伏特左右即可,因而能够减少变压比,也能降低部件价格及回路的体积。
并且,根据本发明的实施例,具有如下效果:即使车辆的起动转换为关闭状态,高电压电池也始终维持电源开启状态,因此,在燃料电池堆栈发电之前,也能测定燃料电池堆栈的电压,从而能够诊断燃料电池堆栈的故障。
附图说明
图1为用于说明本发明一实施例的燃料电池堆栈用充入电流生成装置的框图。
图2为用于说明本发明的燃料电池堆栈用充入电流生成方法的一实施例的流程图。
图3为用于说明本发明的燃料电池堆栈用充入电流生成方法的另一实施例的流程图。
附图标记的说明
100:燃料电池堆栈用充入电流生成装置
110:燃料电池堆栈
120:高电压电池
130:第一转换器
140:第二转换器
150:滤波器
160:电流传感器
170:控制部
具体实施方式
现有的燃料电池堆栈故障诊断装置利用向燃料电池堆栈充入交流电流,检测燃料电池堆栈的电压并进行分析的结果来求得失真率(THD),从而判断是否故障。
在工作电流中追加正弦波的交流电流来使用的情况下,正常电池的电压在线性区间发生电压变化,非正常电压在非线性区间发生电压变化。此时,燃料电池堆栈的电流成为基本工作电流和正弦波电流之和。
测定基于燃料电池堆栈的电流的燃料电池堆栈的电压,而正常电池的电压的基于电流变化的失真率小,相反,非正常电池的电压根据电池电流的变化,电压振幅大,且失真率也大。
失真率以所充入的交流电流的基本频率与总谐波成分之和来计算。现有的燃料电池堆栈故障诊断装置通过燃料电池堆栈电压的频率分析来计算失真率,并诊断电池电压,从而能够判断燃料电池堆栈是否故障。
观察现有的燃料电池堆栈故障诊断装置的结构要素,大致分为燃料电池堆栈的充入部、用于测定燃料电池堆栈的电压的部分及诊断故障的结构等三个结构要素。
为了诊断利用失真率的燃料电池堆栈的故障,向燃料电池堆栈充入交流电流。为了生成这种交流电流,经过通过DC-DC转换器使与车辆用电池对应的电压的直流电流升压的过程。但是用DC-DC转换器,存在部件价格上升,回路体积变大的问题。
为了解决这种问题,本发明提出燃料电池堆栈用充入电流生成方法及执行该燃料电池堆栈用充入电流生成方法的装置,上述燃料电池堆栈用充入电流生成方法及执行该燃料电池堆栈用充入电流生成方法的装置使用高电压电池来代替普通的车辆用电池,从而在升压与高电压电池对应的电压的直流电流方面,只要升压数十伏特左右即可,因而能够减少变压比,也能降低部件价格及回路的体积。
以下,参照附图对本发明的实施例进行详细说明。
图1为用于说明本发明一实施例的燃料电池堆栈用充入电流生成装置的框图。
参照图1,燃料电池堆栈用充入电流生成装置100包括燃料电池堆栈110、高电压电池120、第一转换器130、第二转换器140、滤波器150、电流传感器160及控制部170。
燃料电池堆栈110由多个单位电池连续地排列。这种燃料电池堆栈110产生直流电流,并能充入借助控制部170来控制的交流电流。即,为了防止从燃料电池堆栈110中产生的直流电流和向燃料电池堆栈110充入的交流电流之间的冲突,向燃料电池堆栈110充入的交流电流以与借助电流传感器160来反馈的实际充入电流相同的方式得到控制部170的控制。这种过程在对以下的控制部170进行说明的过程中进行更具体的说明。
高电压电池120的电压可高于燃料电池堆栈110的电压,或者低于燃料电池堆栈110的电压。以下,对高电压电池120的电压低于燃料电池堆栈110的电压的情况进行说明。
在一实施例中,高电压电池120能够以并列方式与燃料电池堆栈110相连接。像这样,高电压电池120以并列方式与燃料电池堆栈110相连接的理由在于,燃料电池堆栈借助氢和氧的化学反应来产生电,而在急加速等峰值负荷条件下,由于负荷无法直接应对所需的电力,因而通过作为辅助电力的电池来负担不足电力。
在一实施例中,第一转换器130将高电压电池120的电压的直流电流升压为特定电压的直流电流,来向第二转换器140提供被升压的电压的直流电流。
在此,第一转换器130可将高电压电池120的电压的直流电流升压为与图1的直流链(DC-Link)(例如550V~600V)对应的电压。这种第一转换器130可以为升压型DC-DC转换器。即,第一转换器130可将高电压电池120的电压的直流电流升压为大于燃料电池堆栈110的电压的电压。
并且,由于第一转换器130在升压与高电压电池120对应的电压的直流电流方面,只要升压数十伏特左右即可,因而具有能够减少变压比,能降低部件价格及回路的体积的效果。
第二转换器140根据控制部170的控制,将借助第一转换器130来升压的直流电流转换为交流电流,来向滤波器150提供被转换的交流电流。
在一实施例中,若借助第一转换器130来升压的直流电流传递,则第二转换器140可以根据控制部170的控制来调节脉冲宽度,并将直流电流转换为交流电流。这种第二转换器140可以为DC-AC转换器。
借助第二转换器140来转换的交流电流为了转换为正弦波的交流电流,应对预先设定的频带的信号进行滤波。
为此,若从第二转换器140中传递交流电流,则滤波器150滤波预先设定的频带(例如,300Hz)的信号。
在一实施例中,滤波器150可使交流电流中低频部分通过,阻隔交流电流中高频部分,从而能够生成正弦波形态的交流电流。这种滤波器150可以为低(Low)通滤波器。
电流传感器160对借助滤波器150来滤波,并向燃料电池堆栈110充入的交流电流进行感测,从而向控制部170提供。
若从电流传感器160接收实际交流电流,则控制部170确认实际交流电流和充入交流电流之间是否发生差异,并根据确认结果来控制充入交流电流的振幅。控制部170反复执行这种过程,直到实际交流电流和充入交流电流之间不会发生差异为止。
在一实施例中,若实际交流电流小于充入交流电流,则控制部170可控制第二转换器140,使得充入交流电流的振幅变大,并转换为交流电流。像这样,若控制部170控制第二转换器140,使得交流电流的振幅变大,并转换为交流电流,则充入交流电流的值也变大。
在另一实施例中,若实际交流电流大于充入交流电流,则控制部170可控制第二转换器140,使得充入交流电流的振幅变小,并转换为交流电流。像这样,若控制部170控制第二转换器140,使得交流电流的振幅变小,并转换为交流电流,则充入交流电流的值也会变小。
燃料电池堆栈用充入电流生成装置100还可以包括双向转换器。当高电压电池120以并列方式与燃料电池堆栈110相连接时,双向转换器转换高电压电池120的电压,来向燃料电池堆栈110提供,或者转换燃料电池堆栈110的电压,来向高电压电池120提供。
在一实施例中,当向燃料电池堆栈110供给高电压电池120的电压时,双向转换器可对高电压电池120的电压进行升压,来向燃料电池堆栈110提供。
在另一实施例中,若借助再生制动使燃料电池堆栈110的电压上升,则双向转换器可对燃料电池堆栈110的电压进行降压,来向高电压电池120提供。
像这样,以低于燃料电池堆栈110的电压的方式构成高电压电池120的电压,使用将高电压电池120的电压上升至燃料电池堆栈110的电压的双向转换器,从而具有能够降低高电压电池120的电池数量,降低高电压电池120的价格的优点。
即使车辆的起动转换为关闭状态,这种高电压电池120也始终维持电源开启状态。因此,在燃料电池堆栈110发电之前,也能测定燃料电池堆栈110的电压,从而具有能够诊断燃料电池堆栈110的故障的效果。
另一方面,能够使用超级电容器来代替图1的高电压电池120,而在使用超级电容器的情况下,能够在没有单独的双向转换器的情况下,使超级电容器以并列方式与燃料电池堆栈110相连接。
图2为用于说明本发明的燃料电池堆栈用充入电流生成方法的一实施例的流程图。
参照图2,燃料电池堆栈用充入电流生成装置100使与高电压电池对应的电压的直流电流升压,从而转化为特定电压的直流电流(步骤S210)。
燃料电池堆栈用充入电流生成装置100将被转换的直流电流转换为交流电流(步骤S220)。在对于步骤S220的一实施例中,燃料电池堆栈用充入电流生成装置100能够通过调节直流电流的脉冲宽度,将直流电流转换为交流电流。
燃料电池堆栈用充入电流生成装置100在被转换的交流电流中对预先设定的频带的信号进行滤波(步骤S230)。
在对于步骤S230的一实施例中,燃料电池堆栈用充入电流生成装置100可使交流电流中低频部分通过,并阻隔交流电流中高频部分,来生成正弦波形态的交流电流。
当向上述燃料电池堆栈充入被滤波的交流电流时,燃料电池堆栈用充入电流生成装置100以没有畸变地充入上述交流电流的方式进行反馈控制(步骤S240)。
图3为用于说明本发明的燃料电池堆栈用充入电流生成方法的另一实施例的流程图。
参照图3,燃料电池堆栈用充入电流生成装置100从电流传感器接收燃料电池堆栈的实际充入电流(步骤S310)。燃料电池堆栈用充入电流生成装置100确认从电流传感器接收的实际交流电流和向燃料电池堆栈充入的交流电流之间的差异(步骤S320)。若确认结果为实际交流电流和交流电流之间发生差异(步骤S330),则燃料电池堆栈用充入电流生成装置100控制交流电流的振幅(步骤S340)。
到目前为止,虽然对本发明的具体实施例进行了说明,但在不脱离本发明的范围的情况下,能够进行多种变形。因此,本发明的范围不应局限于上述的实施例,而是应根据后述的发明要求保护范围的范围及与该发明要求保护范围等同的内容而定。
如上所述,本发明虽然通过限定的实施例和附图进行了说明,但本发明并不局限于上述的实施例,只要是本发明所属技术领域的普通技术人员,就能从这种记载中进行多种修改及变形。因此,本发明应只通过发明要求保护范围来掌握,且发明要求保护范围的等同或等价的变形应全部视为属于本发明思想的范畴。
Claims (22)
1.一种燃料电池堆栈用充入电流生成装置,其特征在于,包括:
第一转换器,将与高电压电池对应的电压的直流电流转换为特定电压的直流电流;
第二转换器,将被转换的上述直流电流转换为交流电流;
滤波器,在被转换的上述交流电流中对预先设定的频带的信号进行滤波;
控制部,当向上述燃料电池堆栈充入被滤波的上述交流电流时,以没有畸变地充入交流电流的方式进行反馈控制。
2.根据权利要求1所述的燃料电池堆栈用充入电流生成装置,其特征在于,还包括电流传感器,上述电流传感器向上述控制部提供充入于上述燃料电池堆栈的实际交流电流。
3.根据权利要求2所述的燃料电池堆栈用充入电流生成装置,其特征在于,上述控制部确认从上述电流传感器接收的实际交流电流和充入交流电流的差异。
4.根据权利要求3所述的燃料电池堆栈用充入电流生成装置,其特征在于,若确认结果为上述实际交流电流和上述充入交流电流之间发生差异,则上述控制部控制上述充入交流电流的振幅。
5.根据权利要求4所述的燃料电池堆栈用充入电流生成装置,其特征在于,若上述实际交流电流小于上述充入交流电流,则上述控制部使上述充入交流电流的振幅变大。
6.根据权利要求4所述的燃料电池堆栈用充入电流生成装置,其特征在于,若上述实际交流电流大于上述充入交流电流,则上述控制部使上述充入交流电流的振幅变小。
7.根据权利要求1所述的燃料电池堆栈用充入电流生成装置,其特征在于,上述高电压电池以并列方式与上述燃料电池堆栈相连接。
8.根据权利要求7所述的燃料电池堆栈用充入电流生成装置,其特征在于,还包括双向转换器,上述双向转换器转换上述高电压电池的电压,来向上述燃料电池堆栈提供,转换上述燃料电池堆栈的电压,来向上述高电压电池提供。
9.根据权利要求1所述的燃料电池堆栈用充入电流生成装置,其特征在于,上述第一转换器使与上述高电压电池对应的电压的直流电流升压为大于上述燃料电池堆栈的电压的电压。
10.根据权利要求1所述的燃料电池堆栈用充入电流生成装置,其特征在于,上述第二转换器调节被转换的上述直流电流的脉冲宽度,来将上述直流电流转换为交流电流。
11.根据权利要求1所述的燃料电池堆栈用充入电流生成装置,其特征在于,上述滤波器使被转换的上述交流电流中低频部分通过,并阻隔被转换的上述交流电流中高频部分,来生成正弦波形态的交流电流。
12.一种燃料电池堆栈用充入电流生成方法,在燃料电池堆栈用充入电流生成装置中执行,其特征在于,包括:
将与高电压电池对应的电压的直流电流转换为特定电压的直流电流的步骤;
将被转换的上述直流电流转换为交流电流的步骤;
在被转换的交流电流中对预先设定的频带的信号进行滤波的步骤;以及
当向上述燃料电池堆栈充入被滤波的上述交流电流时,以没有畸变地充入上述交流电流的方式进行反馈控制的步骤。
13.根据权利要求12所述的燃料电池堆栈用充入电流生成方法,其特征在于,还包括接收向上述燃料电池堆栈充入的实际交流电流的步骤。
14.根据权利要求13所述的燃料电池堆栈用充入电流生成方法,其特征在于,以没有畸变地充入上述交流电流的方式进行反馈控制的步骤包括确认向上述燃料电池堆栈充入的充入交流电流和实际交流电流之间是否发生差异的步骤。
15.根据权利要求13所述的燃料电池堆栈用充入电流生成方法,其特征在于,确认向上述燃料电池堆栈充入的充入电流和实际充入电流之间是否发生差异的上述步骤包括若上述确认结果为上述实际交流电流和上述充入交流电流之间发生差异,则控制上述充入交流电流的振幅的步骤。
16.根据权利要求15所述的燃料电池堆栈用充入电流生成方法,其特征在于,控制上述充入交流电流的振幅的步骤包括若上述实际交流电流小于上述充入交流电流,则使上述充入交流电流的振幅变大的步骤。
17.根据权利要求15所述的燃料电池堆栈用充入电流生成方法,其特征在于,控制上述充入交流电流的振幅的步骤包括若上述实际交流电流大于上述充入交流电流,则使上述充入交流电流的振幅变小的步骤。
18.根据权利要求12所述的燃料电池堆栈用充入电流生成方法,其特征在于,上述高电压电池以并列方式与上述燃料电池堆栈相连接。
19.根据权利要求18所述的燃料电池堆栈用充入电流生成方法,其特征在于,包括:
转换上述高电压电池的电压,来向上述燃料电池堆栈提供的步骤;以及
转换上述燃料电池堆栈的电压,来向上述高电压电池提供的步骤。
20.根据权利要求12所述的燃料电池堆栈用充入电流生成方法,其特征在于,转换为特定电压的直流电流的上述步骤包括使与上述高电压电池对应的电压的直流电流升压为大于上述燃料电池堆栈的电压的电压的步骤。
21.根据权利要求12所述的燃料电池堆栈用充入电流生成方法,其特征在于,将上述直流电流转换为交流电流的步骤包括调节被转换的上述直流电流的脉冲宽度,来将上述直流电流转换为交流电流的步骤。
22.根据权利要求12所述的燃料电池堆栈用充入电流生成方法,其特征在于,在被转换的交流电流中对预先设定的频带的信号进行滤波的上述步骤包括使被转换的上述交流电流中低频部分通过,并阻隔被转换的上述交流电流中高频部分,来生成正弦波形态的交流电流的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130159877A KR101584864B1 (ko) | 2013-12-20 | 2013-12-20 | 연료전지 스택용 주입 전류 생성 방법 및 이를 실행하는 장치 |
KR10-2013-0159877 | 2013-12-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104733752A true CN104733752A (zh) | 2015-06-24 |
CN104733752B CN104733752B (zh) | 2017-05-31 |
Family
ID=53275456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410696513.0A Active CN104733752B (zh) | 2013-12-20 | 2014-11-26 | 燃料电池堆栈用充入电流生成方法及装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10147959B2 (zh) |
KR (1) | KR101584864B1 (zh) |
CN (1) | CN104733752B (zh) |
DE (1) | DE102014118051B4 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112038655A (zh) * | 2020-09-10 | 2020-12-04 | 广州云也科技有限公司 | 一种具有双极板密封结构的燃料电池 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016201212A1 (de) * | 2016-01-27 | 2017-07-27 | Bayerische Motoren Werke Aktiengesellschaft | Steuerungsvorrichtung und Verfahren zur Steuerung eines Brennstoffzellenbasierten Kraftfahrzeugantriebs |
US10788445B2 (en) * | 2017-03-17 | 2020-09-29 | The University Of Akron | Polymer electrolyte membrane fuel cell (PEMFC) sensor |
DE102023202354A1 (de) * | 2023-03-15 | 2024-09-19 | Robert Bosch Gesellschaft mit beschränkter Haftung | Diagnoseverfahren zur Diagnose eines Zustands einer Brennstoffzelle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060074574A1 (en) * | 2004-09-15 | 2006-04-06 | Gasda Michael D | Technique and apparatus to measure a fuel cell parameter |
CN1758066A (zh) * | 2004-10-07 | 2006-04-12 | Avl里斯脱有限公司 | 用于监控燃料电池堆工作状态的方法 |
CN101578193A (zh) * | 2006-11-13 | 2009-11-11 | 丰田自动车株式会社 | 电力供给系统 |
KR101246353B1 (ko) * | 2012-07-30 | 2013-03-25 | (주)지필로스 | 연료전지용 전력변환장치 및 그 제어 방법 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4214761B2 (ja) * | 2002-01-31 | 2009-01-28 | 株式会社デンソー | 燃料電池システム |
DE10220172B4 (de) * | 2002-05-06 | 2006-01-12 | Fachhochschule Amberg-Weiden | Verfahren und Vorrichtung zur Überwachung des Betriebszustands einer elektrochemischen Vorrichtung |
JP5136945B2 (ja) * | 2005-07-05 | 2013-02-06 | トヨタ自動車株式会社 | 燃料電池システム |
JP2007207442A (ja) * | 2006-01-30 | 2007-08-16 | Toyota Motor Corp | 燃料電池システム |
JP5067707B2 (ja) * | 2007-05-31 | 2012-11-07 | トヨタ自動車株式会社 | 燃料電池システム |
JP5280244B2 (ja) * | 2008-06-30 | 2013-09-04 | 日置電機株式会社 | 抵抗測定装置 |
KR101417121B1 (ko) * | 2008-11-07 | 2014-07-08 | 현대자동차주식회사 | 연료전지 차량의 시동 방법 |
US8089290B2 (en) | 2009-01-29 | 2012-01-03 | GM Global Technology Operations LLC | Liquid water sensor signal conditioning circuit for use in PEM fuel cells |
DE112009004773B4 (de) * | 2009-05-14 | 2018-03-15 | Toyota Jidosha Kabushiki Kaisha | Brennstoffzellensystem |
KR20120020686A (ko) * | 2010-08-31 | 2012-03-08 | 현대자동차주식회사 | 연료전지 차량의 비상 시동 장치 및 방법 |
DE102011005966A1 (de) * | 2011-03-23 | 2012-09-27 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Betrieb eines elektrochemischen Energiewandlers |
US8953350B2 (en) * | 2011-04-08 | 2015-02-10 | Sunedison, Inc. | Photovoltaic power converters |
KR101519271B1 (ko) * | 2013-12-20 | 2015-05-11 | 현대오트론 주식회사 | 연료전지 스택용 주입 전류 생성 방법 및 이를 실행하는 장치 |
KR101593760B1 (ko) * | 2013-12-20 | 2016-02-18 | 현대오트론 주식회사 | 연료전지 스택용 주입 전류 생성 방법 및 이를 실행하는 장치 |
-
2013
- 2013-12-20 KR KR1020130159877A patent/KR101584864B1/ko active IP Right Grant
-
2014
- 2014-11-26 CN CN201410696513.0A patent/CN104733752B/zh active Active
- 2014-12-05 DE DE102014118051.8A patent/DE102014118051B4/de active Active
- 2014-12-09 US US14/564,600 patent/US10147959B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060074574A1 (en) * | 2004-09-15 | 2006-04-06 | Gasda Michael D | Technique and apparatus to measure a fuel cell parameter |
CN1758066A (zh) * | 2004-10-07 | 2006-04-12 | Avl里斯脱有限公司 | 用于监控燃料电池堆工作状态的方法 |
CN101578193A (zh) * | 2006-11-13 | 2009-11-11 | 丰田自动车株式会社 | 电力供给系统 |
KR101246353B1 (ko) * | 2012-07-30 | 2013-03-25 | (주)지필로스 | 연료전지용 전력변환장치 및 그 제어 방법 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112038655A (zh) * | 2020-09-10 | 2020-12-04 | 广州云也科技有限公司 | 一种具有双极板密封结构的燃料电池 |
CN112038655B (zh) * | 2020-09-10 | 2021-07-27 | 广州云也科技有限公司 | 一种具有双极板密封结构的燃料电池 |
Also Published As
Publication number | Publication date |
---|---|
DE102014118051B4 (de) | 2017-02-23 |
KR20150072584A (ko) | 2015-06-30 |
DE102014118051A1 (de) | 2015-06-25 |
US20150180365A1 (en) | 2015-06-25 |
CN104733752B (zh) | 2017-05-31 |
US10147959B2 (en) | 2018-12-04 |
KR101584864B1 (ko) | 2016-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104733752A (zh) | 燃料电池堆栈用充入电流生成方法及装置 | |
US9435865B2 (en) | Method for diagnosing fault of fuel cell stack | |
US9385383B2 (en) | Method for generating injected current of fuel cell stack | |
US9461321B2 (en) | Method for diagnosing fault of fuel cell stack | |
US9548611B2 (en) | Method for generating injected current of fuel cell stack and apparatus performing the same | |
CN104733753A (zh) | 燃料电池堆栈用充入电流生成方法及装置 | |
KR101448767B1 (ko) | 연료전지 스택의 진단 및 열관리 시스템 | |
CN104733742B (zh) | 燃料电池堆栈用充入电流生成方法及装置 | |
KR101593761B1 (ko) | 연료전지 스택 고장 진단 방법 및 이를 실행하는 장치 | |
US20140247053A1 (en) | Method of utilizing power transistor of fuel cell stack diagnostic system | |
KR101418178B1 (ko) | 연료전지 스택의 주입 전류 생성 방법 및 이를 실행하는 장치 | |
KR101655600B1 (ko) | 연료전지 스택 고장 진단 방법 및 이를 실행하는 장치 | |
KR101593758B1 (ko) | 연료전지 스택용 주입 전류 생성 방법 및 이를 실행하는 장치 | |
KR101827065B1 (ko) | 연료전지 스택 진단용 진단 전류 주입 방법 및 이를 실행하는 장치 | |
KR101836587B1 (ko) | 연료전지 스택 진단용 진단 전류 주입 방법 및 이를 실행하는 장치 | |
KR101593759B1 (ko) | 연료전지 스택용 주입 전류 생성 방법 및 이를 실행하는 장치 | |
KR101491375B1 (ko) | 연료전지 스택용 주입 전류 생성 방법 및 이를 실행하는 장치 | |
KR101568065B1 (ko) | 연료전지 스택용 주입 전류 생성 방법 및 이를 실행하는 장치 | |
KR101745208B1 (ko) | 연료 전지의 스택 상태 진단 장치 | |
KR20150072585A (ko) | 연료전지 스택용 주입 전류 생성 방법 및 이를 실행하는 장치 | |
Indumathi et al. | Design and optimization of fuel cell consumption using intelligent control | |
KR20150071456A (ko) | 연료전지 스택용 주입 전류 생성 방법 및 이를 실행하는 장치 | |
KR20150071455A (ko) | 연료전지 스택 고장 진단 방법 및 이를 실행하는 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: Gyeonggi Do, South Korea Applicant after: HYUNDAI AUTRON CO., LTD. Address before: Gyeonggi Do, South Korea Applicant before: HYUNDAI AUTRON CO., LTD. |
|
COR | Change of bibliographic data | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210210 Address after: Han Guojingjidao Patentee after: HYUNDAI KEFICO Corp. Address before: Han Guojingjidao Patentee before: Autorun Co.,Ltd. |
|
TR01 | Transfer of patent right |