CN104732073B - 地表水‑地下水耦合模拟的计算方法 - Google Patents

地表水‑地下水耦合模拟的计算方法 Download PDF

Info

Publication number
CN104732073B
CN104732073B CN201510096938.2A CN201510096938A CN104732073B CN 104732073 B CN104732073 B CN 104732073B CN 201510096938 A CN201510096938 A CN 201510096938A CN 104732073 B CN104732073 B CN 104732073B
Authority
CN
China
Prior art keywords
mrow
mfrac
msub
basin
underground water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510096938.2A
Other languages
English (en)
Other versions
CN104732073A (zh
Inventor
陈喜
宋琪峰
张志才
朱泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201510096938.2A priority Critical patent/CN104732073B/zh
Publication of CN104732073A publication Critical patent/CN104732073A/zh
Application granted granted Critical
Publication of CN104732073B publication Critical patent/CN104732073B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Sewage (AREA)

Abstract

本发明公开了一种地表水‑地下水耦合模拟的计算方法,其特征在于:包括产流的计算方法:产流即为径流量R,采用指数型蓄水容量曲线进行计算;还包括地下水蓄水库演算方法及基流量Qg的计算方法,地下水埋深D及地下水埋深D符合Gamma分布时基流量Qg的计算方法和流域汇流的计算方法。本发明提供的一种地表水‑地下水耦合模拟的计算方法,改进了流域水文模型,建立考虑地下水埋深统计分布特征的降水入渗补给量、潜水蒸发量计算方法以及河川径流量与地下水埋深的计算方法,实现了不同灌溉开采量影响下的地下水位动态变化模拟,以及流域降雨‑径流响应分析,并为研究地下水位变化对地表‑地下水转化影响提供了研究方法。

Description

地表水-地下水耦合模拟的计算方法
技术领域
本发明涉及一种地表水-地下水耦合模拟的计算方法,尤其涉及一种改进了流域水文模型的地表水-地下水耦合模拟的计算方法。
背景技术
在极易形成暴雨,降水量年际变化很大的地区,流域主要是雨洪径流,在多雨年份,汛期雨量集中,洪水暴涨暴落,极易造成灾害;还有,不同地貌对地下水的利用情况也不同。
本发明为研究地下水开采以及地下水位下降对蒸发和径流的影响,针对淮河流域降雨-径流关系、径流和基流与地下水位关系,以及地下水位时空变化的统计特征,本发明改进了流域水文模型,建立考虑地下水埋深统计分布特征的降水入渗补给量、潜水蒸发量计算方法以及河川径流量与地下水埋深的计算方法,实现了不同灌溉开采量影响下的地下水位动态变化模拟,以及流域降雨-径流响应分析,并为研究地下水位变化对地表水-地下水转化影响提供了研究方法。
发明内容
本发明所要解决的技术问题是,将产流概化为径流量,提供一种流域产流的计算方法,揭示了降雨-径流关系;进一步地,本发明提供一种地下水蓄水库演算方法及基流量Qg的计算方法,揭示了径流和基流与地下水位关系,建立了考虑地下水埋深统计分布特征的降水入渗补给量、潜水蒸发量计算方法以及河川径流量的计算方法,实现了不同灌溉开采量影响下的地下水位动态变化模拟;更进一步地,本发明提供一种地下水埋深D及地下水埋深D符合Gamma分布时基流量Qg的计算方法,揭示了地下水位时空变化的统计特征,建立了地下水埋深的计算方法;更进一步地,本发明提供一种流域汇流的计算方法,通过构建适用于各子流域以及嵌套子流域地表水与地下水耦合的水文模型,研究不同土地利用条件下地下水动态变化及其对降雨-径流过程响应的影响。
为解决上述技术问题,本发明采用的技术方案为:
地表水-地下水耦合模拟的计算方法,其特征在于:包括产流的计算方法:产流即为径流量R,采用指数型蓄水容量曲线进行计算:
PEt=Pt+Wg-Et (1)
式(1)中,PE为净雨量;PEt为t时刻的净雨量;P为时段降雨量;Pt为t时刻的降雨量;Wg为灌溉开采量,单位为mm;E为土壤蒸发量,采用三层蒸发模式;Et为t时刻的土壤蒸发量;
一般灌溉开采量Wg不产流,但部分回归地下水;
当PEt≤0,则Rt=0 (2)
当PEt>0,若PEt+At≥WMM,则Rt=Wt+PEt-WM (3)
当PEt>0,若PEt+At<WMM,则Rt=Wt+PEt-Wt+1 (4)
Wt+1=Wt+PEt+Egt (5)
式(2)-(5)中,Eg为潜水蒸发量;Egt为t时刻的潜水蒸发量;Wt和Wt+1分为t和t+1时刻流域平均蓄水量;A为流域单点最大蓄水量,At为t时刻的流域单点最大蓄水量;R为径流量;Rt为t时刻的径流量;WMM为流域单点最大蓄水容量,WM为流域最大平均蓄水容量;
所述流域单点即为流域单元,即将所述流域划分为若干流域单点。
还包括地下水蓄水库演算方法及基流量Qg的计算方法:
a).含水层水平衡及补排项计算方法:
当浅层含水层概化为地下水蓄水库,其水量平衡公式为:
SGt+1=SGt-Egt+Prt-Wgt-Qgt (6)
式(6)中,SGt、SGt+1分别为t、t+1时刻流域平均地下水库蓄水量,Egt为t时刻的潜水蒸发量;Prt为t时刻的入渗补给量;Wgt为t时刻的灌溉开采量;Qgt为地下水蓄水库t时刻的出流量,即基流量;
b).入渗补给量Pr的计算方法:
流域内某一点地下水埋深为D时,径流量R进入地下水蓄水库的入渗补给量Pr用下列经验公式计算。
若P+Wg-E>0,假设单元i入渗补给量与土壤含水量成正比,
即Pri=α(P+Wg-E)(Wi/WMM) (7)
则在流域面上积分得到:
若P+Wg-E<0,则Pr=0(9)
式(7)-(9)中,Wi为fi/F部分流域的蓄水量,其中fi为土壤蓄水饱和时的面积,F为流域总面积;A0为初始时刻单点最大蓄水量;W0为初始时刻流域平均蓄水量;WM为流域最大平均蓄水容量;α,b均为参数;
fi为土壤蓄水饱和时的面积,再产生降水就会流走形成径流;fi/F为已经蓄水满的面积与总面积之比;
将每一个流域单点再划分为若干单元,单元i为若干单元中的任意一个;
c).潜水蒸发量Eg的计算方法:
Eg=eta×EP×(1-D/Dmax)n (10)
式(10)中,eta为蒸发折算系数;Dmax为潜水蒸发极限埋深;EP为同气温条件下水面蒸发量;D为流域内某一点地下水埋深;
d).地下水灌溉开采量Wg的估算方法:
由于待研究区地下水开采量主要用于农业灌溉,故根据灌溉需水量Wguan乘以一个开采系数qcai来计算灌溉开采量Wg及其变化过程;
Wg=qcai×Wguan (11)
e).地下水蓄水库出流量Qg的计算方法:
Qg=k×SG (12)
SG=Sy×(Dz-D) (13)
式(12)-(13)中,Sy为给水度;Dz为基流量接近于0时的埋深,相当于河流切割深度,Dz的取值范围在2~4m之间;SG为流域平均地下水库蓄水量;k为渗透系数。
还包括地下水埋深D及地下水埋深D符合Gamma分布时基流量Qg的计算方法:
地下水埋深D空间分布服从Gamma分布:
式(14)中,Γ(γ)为Gamma函数;α和γ为参数,γ为形状系数;d代表含水层厚度;
当地下水埋深D服从Gamma分布时,流域平均地下水埋深为Gamma分布的数学期望;
假设地下水埋深分布函数中形状系数γ不变,则α随平均地下水埋深变化而变化;
假设最大平均地下水埋深Dm时的参数为α,则某一地下水平均埋深为时,参数α0
地下水埋深服从Gamma分布时,基流量Qg、潜水蒸发量Eg的计算方法如下:
m代表把地下含水层分为m层,其中任意一层为用i表示。
流域汇流的计算方法为:流域径流量R一部分进入地下水蓄水库,再按式(18)排泄至河道;另一部分按自由蓄水库曲线划分为地表径流Rs和壤中流Ri;地表径流Rs直接进入河道,壤中流Ri经过线性水库调蓄进入河道;三者汇入河道后经过马斯京根汇流流到出口断面。
待研究区的流域中,下游流域多为与上游流域相嵌套的流域,上游流域与下游流域衔接的出口即为出口断面;因此这些河道水流演算需要考虑上游出口断面入流以及傍测入流的演算过程;上游流域模拟的出流量作为下游流域的入流量,再考虑下游流域产汇流进行连续演算;所述出流量即为径流量R。
傍测入流即河流与地下水交换量,包括潜水蒸发量Eg、灌溉开采量Wg和入渗补给量Pr。
水文气象实测资料的测量时间间隔为逐日;在模拟的逐日径流量基础上,统计逐月径流量作为目标函数;模拟了各流域每5日平均地下水埋深。
本发明提供的一种地表水-地下水耦合模拟的计算方法,改进了流域水文模型,建立考虑地下水埋深统计分布特征的降水入渗补给量、潜水蒸发量计算方法以及河川径流量与地下水埋深的计算方法,实现了不同灌溉开采量影响下的地下水位动态变化模拟,以及流域降雨-径流响应分析,并为研究地下水位变化对地表-地下水转化影响提供了研究方法。
附图说明
图1为本发明产流计算示意图;图中ΔW为时段降雨量P后W0的增加量。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1所示,本发明以颖涡地区为例:
沙颍河是淮河的最大支流,地处河南省腹地,发源于河南省伏牛山脉摩天岭(又名没大岭)东麓,东南流经鲁山、平顶山、叶县、漯河、周口、项城、沈丘等县市,至界首县城关镇附近进入安徽省,往下经太和、阜阳,于颍上县沫河口入淮河。全长619km,流域面积近39880km2,其中山区面积9070km2,丘陵区面积5370km2,平原面积20000km2,干流长418km。较大的支流有北汝河、澧河、颍河、贾鲁河、新运河、汾泉河和黑茨河等8条。流域内有耕地3180万亩,2400万人,有丰富的煤炭资源,是我国重要的能源基地,工农业生产发展前景广阔。阜阳闸水文站为颍河中下游的闸坝控制站。阜阳站以上有沙河、贾鲁河、茨河、泉河等众多支流汇入颍河,流域面积38240km2。流域呈大陆性季风气候,气象变化受季风影响,为南北气候的过渡地带。在汛期(6~9月),由于东南暖湿气流内移,加之西部地形影响,极易形成暴雨,为河南省暴雨中心地区之一。年平均降雨量西部山区为800~1000mm,东部平原为700~900mm,降雨量一般集中在汛期,占年降水量的60%以上。降水量年际变化很大,最大值和最小值可达5倍。因此,流域主要是雨洪径流,在多雨年份,汛期雨量集中,洪水暴涨暴落,极易造成灾害。
涡河为淮河第二大支流,淮北平原区河道。发源于河南省尉氏县,东南流经开封、通许、扶沟、太康、鹿邑和安徽省亳州、涡阳、蒙城,于怀远县城附近注入淮河。长380km,流域面积1.59万km2。涡河流域属温暖带半湿润大陆性季风气候区。冬春干旱少雨,夏秋季太平洋副热带高压增强,降水量集中,易造成洪涝。非汛期(1~6月及10~12月)9个月份涡河月平均最大流量9.1m3/s,汛期(7~9)三个月涡河月平均最大流量为149m3/s,年最大径硫总量为8.25亿m3。多年平均降雨量600~900mm。6~9月多年平均降雨量占全年降水量的70%,多年平均无雨天数为260天,多年平均气温14.5℃,各月平均气温以1月份最低,为-0.1℃,7月份最高,为38.0℃。涡河流域内地势由西北向东南倾斜,地面高程为55~40m,地面坡降1/4500,河床宽一般40~100m,局部较窄,水深一般1~3m,河床比降为1/6000~1/9000。堤内近河堤处由于筑堤取土等原因,多分布有坑塘、洼地。涡河河道弯曲,河流沿岸为河谷地貌形态。
本发明主要选取颍河阜阳闸以上流域和涡河玄武闸以上流域进行研究。将阜阳闸以上颍河流域划分为12个子流域(区间),加上涡河玄武闸以上子流域共计13个流域,通过构建适用于各子流域以及嵌套子流域地表水与地下水耦合的水文模型,研究不同土地利用条件下地下水动态变化及其对降雨-径流过程响应的影响。
颍涡地区降雨-径流模拟:本发明针对颍河阜阳闸以上区域和涡河玄武闸以上区域,将阜阳闸以上控制区域划分为12个子流域,各个子流域从上游到下游互相嵌套,上游模拟的出流量作为下游流域入流量,再考虑下游流域产汇流进行连续演算,对每个子流域用本发明建立的流域水文模型进行产汇流模拟。选取1997-2011年逐日水文气象实测资料进行模型计算,其中1997-2006年作为模型参数率定期,2007-2011年作为模型验证期。首先通过模型计算的河流下断面流量与实测流量数据对比,优化模型参数,验证模型模拟结果的可靠性。再通过对比模拟与实测流域平均地下水埋深,以及模拟与分割的基流量,进一步验证模型模拟结果的可靠性。
河川径流量模拟:考虑到研究区河流多有闸坝控制,且本研究目的是地下水位变化对设计径流量影响,本发明在模拟的逐日流量基础上,统计逐月流量作为目标函数。如表1所示,率定期实测与模拟流量效率系数NSC在0.32~0.91,大多数流域率定期和验证期NSC在0.7以上,表明模型能较好地模拟流量过程。
地下水埋深模拟:为了对模型进一步验证,模型同时模拟了各流域每5日面平均地下水埋深,并与根据每5日实测地下水位资料计算的流域面平均地下水埋深进行对比。如表1所示,有地下水位观测资料的流域模拟与实测多年平均埋深接近,相关性系数R2大都在0.7以上,表明模型能较好地模拟地下水位动态变化。
河道基流量模拟:模型模拟了12个子流域基流量,如表1所示,模拟的多年平均基流量与分割的基流量较为接近。
模型通过在颍涡研究区各子流域的应用,分别模拟了径流量、地下水埋深及基流量,取得了较好的模拟效果,说明该模型在颍涡地区具有较好的适用性。
表1.颍涡地区模型模拟统计结果
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.地表水-地下水耦合模拟的计算方法,其特征在于:包括产流的计算方法:产流即为径流量R,采用指数型蓄水容量曲线进行计算:
PEt=Pt+Wg-Et (1)
式(1)中,PEt为t时刻的净雨量;Pt为t时刻的降雨量;Wg为灌溉开采量,单位为mm;Et为t时刻的土壤蒸发量;
一般灌溉开采量Wg不产流,但部分回归地下水;
当PEt≤0,则Rt=0 (2)
当PEt>0,若PEt+At≥WMM,则Rt=Wt+PEt-WM (3)
当PEt>0,若PEt+At<WMM,则Rt=Wt+PEt-Wt+1 (4)
Wt+1=Wt+PEt+Egt (5)
式(2)-(5)中,Egt为t时刻的潜水蒸发量;Wt和Wt+1分为t和t+1时刻流域平均蓄水量;At为t时刻的流域单点最大蓄水量;Rt为t时刻的径流量;WMM为流域单点最大蓄水容量,WM为流域最大平均蓄水容量;
所述流域单点即为流域单元,即将所述流域划分为若干流域单点;
还包括地下水蓄水库演算方法及基流量Qg的计算方法:
a).含水层水平衡及补排项计算方法:
当浅层含水层概化为地下水蓄水库,其水量平衡公式为:
SGt+1=SGt-Egt+Prt-Wgt-Qgt (6)
式(6)中,SGt、SGt+1分别为t、t+1时刻流域平均地下水库蓄水量,Egt为t时刻的潜水蒸发量;Prt为t时刻的入渗补给量;Wgt为t时刻的灌溉开采量;Qgt为地下水蓄水库t时刻的出流量,即基流量;
b).入渗补给量Pr的计算方法:
流域内某一点地下水埋深为D时,径流量R进入地下水蓄水库的入渗补给量Pr用下列经验公式计算;
若P+Wg-E>0,假设单元i入渗补给量与土壤含水量成正比,
即Pri=α(P+Wg-E)(Wi/WMM) (7)
则在流域面上积分得到:
<mrow> <msub> <mi>P</mi> <mi>r</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mn>1</mn> </msubsup> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>i</mi> </mrow> </msub> <mi>d</mi> <mi>a</mi> <mo>=</mo> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <mi>P</mi> <mo>+</mo> <mi>W</mi> <mi>g</mi> <mo>-</mo> <mi>E</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <msub> <mi>A</mi> <mn>0</mn> </msub> <mrow> <mi>W</mi> <mi>M</mi> <mi>M</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>b</mi> </msup> <mo>+</mo> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <msub> <mi>W</mi> <mn>0</mn> </msub> <mrow> <mi>W</mi> <mi>M</mi> </mrow> </mfrac> </mrow> <mo>)</mo> <mo>+</mo> <mfrac> <msub> <mi>A</mi> <mn>0</mn> </msub> <mrow> <mi>W</mi> <mi>M</mi> <mi>M</mi> </mrow> </mfrac> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <msub> <mi>A</mi> <mn>0</mn> </msub> <mrow> <mi>W</mi> <mi>M</mi> <mi>M</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>b</mi> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
若P+Wg-E<0,则Pr=0 (9)
式(7)-(9)中,Wi为fi/F部分流域的蓄水量,其中fi为土壤蓄水饱和时的面积,F为流域总面积;A0为初始时刻单点最大蓄水量;W0为初始时刻平均蓄水量;WM为流域最大平均蓄水容量;α,b均为参数;
将每一个流域单点再划分为若干单元,单元i为若干单元中的任意一个;
c).潜水蒸发量Eg的计算方法:
Eg=eta×EP×(1-D/Dmax)n (10)
式(10)中,eta为蒸发折算系数;Dmax为潜水蒸发极限埋深;EP为同气温条件下水面蒸发量;D为流域内某一点地下水埋深;
d).地下水灌溉开采量Wg的估算方法:
由于待研究区地下水开采量主要用于农业灌溉,故根据灌溉需水量Wguan乘以一个开采系数qcai来计算灌溉开采量Wg及其变化过程;
Wg=qcai×Wguan (11)
e).地下水蓄水库出流量Qg的计算方法:
Qg=k×SG (12)
SG=Sy×(Dz-D) (13)
式(12)-(13)中,Sy为给水度;Dz为基流量接近于0时的埋深,相当于河流切割深度,Dz的取值范围在2~4m之间;SG为流域平均地下水库蓄水量;k为渗透系数;
还包括地下水埋深D及地下水埋深D符合Gamma分布时基流量Qg的计算方法:
地下水埋深D空间分布服从Gamma分布:
<mrow> <msub> <mi>f</mi> <mi>D</mi> </msub> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msup> <mi>&amp;alpha;</mi> <mi>&amp;gamma;</mi> </msup> <mrow> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msup> <mi>d</mi> <mrow> <mi>&amp;gamma;</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&amp;alpha;</mi> <mi>d</mi> </mrow> </msup> <mo>,</mo> <mi>&amp;alpha;</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> <mi>&amp;gamma;</mi> <mo>&gt;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
式(14)中,Γ(γ)为Gamma函数;α和γ为参数,γ为形状系数;d代表含水层厚度;
当地下水埋深D服从Gamma分布时,流域平均地下水埋深为Gamma分布的数学期望;
<mrow> <mover> <mi>D</mi> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mi>E</mi> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mi>&amp;gamma;</mi> <mi>&amp;alpha;</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>&amp;alpha;</mi> <mo>=</mo> <mfrac> <mi>&amp;gamma;</mi> <mover> <mi>D</mi> <mo>&amp;OverBar;</mo> </mover> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
假设地下水埋深分布函数中形状系数γ不变,则α随平均地下水埋深变化而变化;
假设最大平均地下水埋深Dm时的参数为α,则某一地下水平均埋深为时,参数α0:
<mrow> <msub> <mi>&amp;alpha;</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>&amp;alpha;</mi> <mfrac> <mover> <msub> <mi>D</mi> <mi>m</mi> </msub> <mo>&amp;OverBar;</mo> </mover> <mover> <mi>D</mi> <mo>&amp;OverBar;</mo> </mover> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
地下水埋深服从Gamma分布时,基流量Qg、潜水蒸发量Eg的计算方法如下:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>Q</mi> <mi>g</mi> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mrow> <mi>D</mi> <mi>z</mi> </mrow> </msubsup> <msub> <mi>f</mi> <mi>D</mi> </msub> <mrow> <mo>(</mo> <mi>D</mi> <mo>)</mo> </mrow> <mi>K</mi> <mi>g</mi> <mo>*</mo> <mi>S</mi> <mi>y</mi> <mo>*</mo> <mrow> <mo>(</mo> <mi>D</mi> <mi>z</mi> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>D</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mfrac> <msup> <mrow> <mo>(</mo> <mi>&amp;alpha;</mi> <mo>*</mo> <mfrac> <msub> <mi>D</mi> <mi>m</mi> </msub> <mover> <mi>D</mi> <mo>&amp;OverBar;</mo> </mover> </mfrac> <mo>)</mo> </mrow> <mi>&amp;gamma;</mi> </msup> <mrow> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>D</mi> <mi>z</mi> <mo>*</mo> <mi>i</mi> </mrow> <mi>m</mi> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>&amp;gamma;</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>*</mo> <mfrac> <msub> <mi>D</mi> <mi>m</mi> </msub> <mover> <mi>D</mi> <mo>&amp;OverBar;</mo> </mover> </mfrac> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>D</mi> <mi>z</mi> <mo>*</mo> <mi>i</mi> </mrow> <mi>m</mi> </mfrac> <mo>)</mo> </mrow> </mrow> </msup> <mo>*</mo> <mi>K</mi> <mi>g</mi> <mo>*</mo> <mi>S</mi> <mi>y</mi> <mo>*</mo> <mrow> <mo>(</mo> <mi>D</mi> <mi>z</mi> <mo>-</mo> <mfrac> <mrow> <mi>D</mi> <mi>z</mi> <mo>*</mo> <mi>i</mi> </mrow> <mi>m</mi> </mfrac> <mo>)</mo> </mrow> <mo>*</mo> <mfrac> <mrow> <mi>D</mi> <mi>z</mi> </mrow> <mi>m</mi> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>E</mi> <mi>g</mi> <mo>&amp;ap;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mfrac> <msup> <mrow> <mo>(</mo> <mi>&amp;alpha;</mi> <mo>*</mo> <mfrac> <msub> <mi>D</mi> <mi>m</mi> </msub> <mover> <mi>D</mi> <mo>&amp;OverBar;</mo> </mover> </mfrac> <mo>)</mo> </mrow> <mi>&amp;gamma;</mi> </msup> <mrow> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>D</mi> <mi>max</mi> </msub> <mo>*</mo> <mi>i</mi> </mrow> <mi>m</mi> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>&amp;gamma;</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>*</mo> <mfrac> <msub> <mi>D</mi> <mi>m</mi> </msub> <mover> <mi>D</mi> <mo>&amp;OverBar;</mo> </mover> </mfrac> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>D</mi> <mi>max</mi> </msub> <mo>*</mo> <mi>i</mi> </mrow> <mi>m</mi> </mfrac> <mo>)</mo> </mrow> </mrow> </msup> <mo>*</mo> <mi>e</mi> <mi>t</mi> <mi>a</mi> <mo>*</mo> <mi>E</mi> <mi>P</mi> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msub> <mi>D</mi> <mi>max</mi> </msub> <mo>*</mo> <mi>i</mi> </mrow> <mrow> <mi>m</mi> <mo>*</mo> <msub> <mi>D</mi> <mi>max</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mi>n</mi> </msup> <mo>*</mo> <mfrac> <msub> <mi>D</mi> <mi>max</mi> </msub> <mi>m</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow>
m代表把地下含水层分为m层,其中任意一层为用i表示;
流域汇流的计算方法为:流域径流量R一部分进入地下水蓄水库,再按式(18)排泄至河道;另一部分按自由蓄水库曲线划分为地表径流Rs和壤中流Ri;地表径流Rs直接进入河道,壤中流Ri经过线性水库调蓄进入河道;三者汇入河道后经过马斯京根汇流流到出口断面。
2.根据权利要求1所述的地表水-地下水耦合模拟的计算方法,其特征在于:待研究区的流域中,下游流域多为与上游流域相嵌套的流域,上游流域与下游流域衔接的出口即为出口断面;因此这些河道水流演算需要考虑上游出口断面入流以及傍测入流的演算过程;上游流域模拟的出流量作为下游流域的入流量,再考虑下游流域产汇流进行连续演算;所述出流量即为径流量R。
3.根据权利要求2所述的地表水-地下水耦合模拟的计算方法,其特征在于:傍测入流即河流与地下水交换量,包括潜水蒸发量Eg、灌溉开采量Wg和入渗补给量Pr。
4.根据权利要求1所述的地表水-地下水耦合模拟的计算方法,其特征在于:水文气象实测资料的测量时间间隔为逐日;在模拟的逐日径流量基础上,统计逐月径流量作为目标函数;模拟了各流域每5日平均地下水埋深。
CN201510096938.2A 2015-03-04 2015-03-04 地表水‑地下水耦合模拟的计算方法 Expired - Fee Related CN104732073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510096938.2A CN104732073B (zh) 2015-03-04 2015-03-04 地表水‑地下水耦合模拟的计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510096938.2A CN104732073B (zh) 2015-03-04 2015-03-04 地表水‑地下水耦合模拟的计算方法

Publications (2)

Publication Number Publication Date
CN104732073A CN104732073A (zh) 2015-06-24
CN104732073B true CN104732073B (zh) 2017-10-27

Family

ID=53455954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510096938.2A Expired - Fee Related CN104732073B (zh) 2015-03-04 2015-03-04 地表水‑地下水耦合模拟的计算方法

Country Status (1)

Country Link
CN (1) CN104732073B (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105005687B (zh) * 2015-07-02 2019-07-02 中国矿业大学 一种潜水蒸发条件下地下水临界深度的计算方法
CN105821797B (zh) * 2016-03-21 2018-06-15 中国电建集团成都勘测设计研究院有限公司 一种适用于山区河流的流水景观需水量计算方法
CN106202911B (zh) * 2016-07-07 2018-11-09 中国电建集团贵阳勘测设计研究院有限公司 一种河道生态流量地下水补给需水计算方法
CN106570340A (zh) * 2016-11-14 2017-04-19 中国电建集团贵阳勘测设计研究院有限公司 河道横剖面地下水径流量估算方法
CN106600456A (zh) * 2016-12-01 2017-04-26 安徽省(水利部淮河水利委员会)水利科学研究院(安徽省水利工程质量检测中心站) 一种地下水安全开采量调节计算方法
CN106595798B (zh) * 2016-12-12 2019-06-18 齐永强 一种使用高频地下水位数据自动求取含水层参数的方法
CN106777724B (zh) * 2016-12-23 2020-03-31 吉林大学 一种针对半湿润半干旱地区及湿润地区的基流分割方法
CN106599605B (zh) * 2017-02-22 2019-05-17 中国水利水电科学研究院 一种石灰岩土石山区山坡尺度水文过程模拟方法
CN107679021B (zh) * 2017-09-27 2020-10-30 中国科学院南京地理与湖泊研究所 一种河流入湖库流量计算方法
CN107590573A (zh) * 2017-10-31 2018-01-16 中国科学院寒区旱区环境与工程研究所 干旱内陆河浅山区小流域水资源量化方法
CN108256140B (zh) * 2017-12-07 2021-04-06 中国矿业大学(北京) 一种基于水量交换的多重介质耦合的地下水流计算方法
CN108733888B (zh) * 2018-04-17 2019-05-10 西安理工大学 一种基于正交试验法的潜流交换影响因素敏感性分析方法
CN108763798B (zh) * 2018-06-04 2021-05-04 中国水利水电科学研究院 一种湖泊与地下水非稳定流作用模拟方法
CN109061105B (zh) * 2018-08-02 2019-06-28 中国水利水电科学研究院 一种土壤盐渍化临界地下水埋深的计算方法
CN109325206B (zh) * 2018-09-10 2023-03-24 柳创新 一种降雨径流模型参数优化方法
CN109858666A (zh) * 2018-12-12 2019-06-07 中国水利水电科学研究院 一种湖泊水资源量评估与预测方法
CN110990762B (zh) * 2019-11-07 2023-06-20 上海勘察设计研究院(集团)有限公司 一种快速确定潜水位波动特征的计算方法
CN110955977A (zh) * 2019-12-03 2020-04-03 安徽省(水利部淮河水利委员会)水利科学研究院(安徽省水利工程质量检测中心站) 一种裸地雨日潜水蒸发的计算方法
CN111768310B (zh) * 2020-06-11 2024-03-19 中国水利水电科学研究院 一种水库补水潜力的预测方法、装置及电子设备
CN111984700B (zh) * 2020-08-17 2023-04-28 中国电建集团成都勘测设计研究院有限公司 一种基于水热耦合平衡原理的月径流预测方法
CN112462032B (zh) * 2020-11-12 2022-03-04 武汉大学 适用于盐渍土地区评价暗管排水排盐效果的方法
CN112818438B (zh) * 2020-12-31 2024-02-06 中国电建集团中南勘测设计研究院有限公司 一种基于swmm的河道模型及其调度模拟概化方法
CN112905949B (zh) * 2021-03-05 2023-10-24 河海大学 一种基于流域下垫面特征的分布式产流参数估算方法
CN113344440B (zh) * 2021-06-30 2023-05-23 西北农林科技大学 一种地下水承载力评估模型的构建方法
CN113656745B (zh) * 2021-08-26 2024-03-12 中国水利水电科学研究院 一种反映降雨径流关系的产流基准地下水埋深的计算方法
CN114925944B (zh) * 2022-07-25 2022-10-21 中国科学院地理科学与资源研究所 一种地下水位恢复量的预测方法
CN116368984B (zh) * 2023-04-10 2023-11-10 中国水利水电科学研究院 协同解决干旱区灌溉绿洲缺水与盐渍化的方法
CN117313290A (zh) * 2023-10-24 2023-12-29 中国水利水电科学研究院 地下水疏干条件下的全有效网格单元潜水蒸发模拟方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213775A (zh) * 2011-04-12 2011-10-12 河海大学 获取分布式水文模型下垫面条件的地下水连通性探测方法
CN103093114A (zh) * 2013-02-05 2013-05-08 河海大学 一种基于地形和土壤特性的分布式流域缺水量测算方法
CN103645295A (zh) * 2013-12-03 2014-03-19 中国科学院遥感与数字地球研究所 一种多层土壤水分模拟方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213775A (zh) * 2011-04-12 2011-10-12 河海大学 获取分布式水文模型下垫面条件的地下水连通性探测方法
CN103093114A (zh) * 2013-02-05 2013-05-08 河海大学 一种基于地形和土壤特性的分布式流域缺水量测算方法
CN103645295A (zh) * 2013-12-03 2014-03-19 中国科学院遥感与数字地球研究所 一种多层土壤水分模拟方法和系统

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
a numerical modelling system of hydrological cycle for estimation of water fluxes in the huaihe river plain region,china;xi chen等;《journal of hydrometeorology-special section》;20071231;第8卷(第4期);第702-714页 *
凌敏华等.地表水与地下水耦合模型研究进展.《水利水电科技进展》.2010,第30卷(第4期), *
地表水与地下水相互作用模拟研究;陈喜等;《中国水文科学与技术研究进展》;20090610;第602-607页 *
地表水文过程与地下水动力过程耦合模拟及应用;凌敏华等;《水文》;20111125;第31卷(第6期);第8-13页 *
海河流域地表水与地下水耦合模拟;王中根等;《地理科学进展》;20111115;第30卷(第11期);第1345-1353页 *
灌区地表水-地下水耦合模型的构建;刘路广等;《水利学报》;20120715;第43卷(第7期);第836-833页 *
陈喜等.含水层和上覆弱透水层水文地质参数的计算方法.《工程勘探》.2004,(第5期), *
降雨入渗补给地下水研究;张志才;《中国优秀硕士学位论文全文数据库 基础科学辑》;20060615(第06期);A011-19 *
陶建华.沙颍河流域地表水与地下水耦合模拟研究.《中国优秀硕士学位论文全文数据库 基础科学辑》.2013,(第06期), *

Also Published As

Publication number Publication date
CN104732073A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
CN104732073B (zh) 地表水‑地下水耦合模拟的计算方法
CN106884405B (zh) 一种无资料地区溃堤型山洪灾害分析评价方法
Jia et al. Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River basin
CN113610264B (zh) 一种精细化电网台风洪涝灾害预测系统
CN113723024B (zh) 一种适用于滨海地区的“溪流”-“河道”-“河口”分布式洪水过程模拟方法
CN106934232B (zh) 一种平原河网地区河道水量建模调控方法
CN102930357A (zh) 岩溶隧道暗河暴雨涌水洪峰峰值及峰值时间的预测方法
CN109993350B (zh) 一种基于降雨空间分布的临界雨量估算方法
CN106383923A (zh) 一种山区河道生态径流的计算及应用方法
CN104679985A (zh) 一种dhsvm模型的改进方法
Li et al. Development of 1D and 2D coupled model to simulate urban inundation: an application to Beijing Olympic Village
CN108269199A (zh) 一种面向对象的小水库群时空分布式出流计算方法
Pan et al. Analysis of channel evolution characteristics in the Hobq Desert reach of the Yellow River (1962–2000)
Zhou et al. Flood forecasting scheme of Nanshui reservoir based on Liuxihe model
CN110889185A (zh) 一种小流域的洪峰流量分析方法及其应用
Oki Reassessment of ground-water recharge and simulated ground-water availability for the Hawi area of north Kohala, Hawaii
CN105912861A (zh) 基于gis的非参数概念性水文模型
Dong et al. Sustainable development of water resources and hydraulic engineering in China
CN103208135A (zh) 一种基于cd-tin的城区地表特征点汇水量计算方法
CN111340649B (zh) 一种水系结构连通性的量测方法
Liu et al. Extensive responses of lake dynamics to climate change on northeastern Tibetan Plateau
Van Hieu et al. Application of hydrological model to simulate rainfall-runoff into An Khe Reservoir in the Ba River Basin, Vietnam
CN107274113A (zh) 一种新型大坝维修决策评估方法
Yang et al. Hydrological Analysis of Tangjiashan Barrier Lake Area
LIU et al. Numerical Simulation of Flood Disaster in the Zhujiajian Island

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171027

Termination date: 20200304

CF01 Termination of patent right due to non-payment of annual fee