CN104726560B - 一种检测凝血酶的比色法 - Google Patents

一种检测凝血酶的比色法 Download PDF

Info

Publication number
CN104726560B
CN104726560B CN201510073478.1A CN201510073478A CN104726560B CN 104726560 B CN104726560 B CN 104726560B CN 201510073478 A CN201510073478 A CN 201510073478A CN 104726560 B CN104726560 B CN 104726560B
Authority
CN
China
Prior art keywords
zymoplasm
reaction
add
capture probe
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510073478.1A
Other languages
English (en)
Other versions
CN104726560A (zh
Inventor
王宗花
王赛
毕赛
夏建飞
张菲菲
杨敏
桂日军
李延辉
夏延致
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201510073478.1A priority Critical patent/CN104726560B/zh
Publication of CN104726560A publication Critical patent/CN104726560A/zh
Application granted granted Critical
Publication of CN104726560B publication Critical patent/CN104726560B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/56Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving blood clotting factors, e.g. involving thrombin, thromboplastin, fibrinogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Neurosurgery (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种检测凝血酶的比色法。采用滚环复制放大技术,形成大量DNA酶,放大检测信号,提高了凝血酶的检测灵敏度。采用96孔板连接引物,可消除未反应的氯化血红素对反应的影响,提高信噪比,进一步提高检测的灵敏度。采用灵敏的比色体系,利用过氧化氢将金离子还原成分散或团聚状态产生的红色或蓝色,直接判断有无靶分子的存在,无需预先制备纳米金溶液,简单易行,无需复杂仪器设备。通过本方法,可实现凝血酶的超高灵敏检测,检出限可达10-17M(约6个凝血酶分子)。

Description

一种检测凝血酶的比色法
技术领域:
本发明属于生化分析技术领域,特别涉及一种检测凝血酶的比色法。
背景技术:
凝血酶是一种蛋白水解酶,由两条肽链组成,肽链之间以二硫键互相连接。凝血酶通过将血液中的纤维蛋白原转化成纤维蛋白,加速血小板的凝聚,达到迅速止血的目的。癌症患者肿瘤组织及肿瘤细胞的转移与扩散,都会使患者的凝血机制发生变化,可以通过检测凝血酶的浓度对癌症等疾病进行评估。目前检测凝血酶的方法主要有荧光法、发色底物法及电化学法,但这三种方法的灵敏度均不佳,检出限较高,无法达到现代医学要求的痕量检测;拉曼散射检测生物分子具有较高的灵敏度,但操作复杂,需要昂贵的仪器,成本较高。目前常用比色法进行检测。比色法是通过比较或测量有色物质溶液颜色深度来确定待测组分含量的方法。信号是溶液颜色的变化,可以肉眼检测,简便快捷。
专利200810036219.1提供了一种基于纳米金与核酸结构的靶分子检测方法,有凝血酶存在时会与双链探针中的核酸适体结合,释放出的cDNA单链吸附到预先制备的纳米金表面,从而提高纳米金的耐盐性,使溶液保持红色,实现对凝血酶的检测。但信号仅由加入的凝血酶产生,使体系检出限较高。专利201210057638.X提供了一种基于滚环扩增比色法检测靶核酸或蛋白的方法,利用抗原抗体结合将待测靶核酸或蛋白通过捕获抗体间接固定于磁珠上,通过杂交上的滚环引物进行滚环扩增,产生的大量重复序列的长链DNA团聚,表面负离子高度堆积,对纳米金颗粒表面的负电荷有屏蔽作用,使纳米金颗粒间排斥减弱,易发生聚集,使纳米金溶液由酒红色变紫黑色。该发明滚环复制的发生需要捕获抗体、凝血酶、检测抗体、引物探针和环形模板逐一连接,较为繁琐且浪费资源,且需要预先制备粒径均一的纳米金溶液,较为繁琐。
本发明无需预先制备纳米金溶液,且只需要两段核酸序列:环形模板利用捕获探针成环,捕获探针同时作为引物,即可在成环的环形模板上进行滚环复制。本发明将核酸适体特异性识别凝血酶及滚环复制相结合,只需两段核酸序列互相连接,在进行滚环复制放大信号的基础上,将核酸适体特异性结合凝血酶的原理与金-过氧化氢变色体系相结合。当过氧化氢存在时,会将金离子还原成纳米金,高浓度的过氧化氢有助于形成分散的、球形的纳米金,使溶液显红色;当滚环复制反应生成DNA酶后,DNA酶可催化过氧化氢分解,使过氧化氢浓度降低,则形成团聚的纳米金,使溶液显蓝色。该方法无需预先制备纳米金溶液,省时省力,且极大地提高了检测灵敏度,该发明的检出限可达10-17M(约6个凝血酶分子),实现了凝血酶的超高灵敏分析检测。
DNA酶是一种具有催化活性的DNA分子,具有蛋白酶的催化性能。蛋白酶在高温、强酸或强碱条件下会因为发生不可逆变性而失活,因此使用条件较为苛刻;而DNA酶在具有蛋白酶的催化性能的同时,不会因为温度、pH等条件的改变而发生不可逆变性,因此得到了越来越广泛的关注。
滚环复制是噬菌体感染细菌后进行自我复制所采取的一种形式,是以封闭的单链环状DNA作为模板,当有相应的与之碱基互补杂交的引物存在时,在等温的环境下进行复制扩增。通过这种复制方式,环状单链DNA能够实现相对无限的单链扩增。该方法不需要对模板DNA样品进行特殊处理,实现信号的高效放大。
发明内容:
为了解决上述问题,我们采用滚环复制放大技术,形成大量DNA酶,放大检测信号,提高了凝血酶的检测灵敏度。采用96孔板连接引物,可消除未反应的氯化血红素(hemin)对反应的影响,提高信噪比,进一步提高检测的灵敏度。采用灵敏的比色体系,利用过氧化氢将金离子还原成分散或团聚状态产生的红色或蓝色,直接判断有无靶分子的存在,无需预先制备纳米金溶液,简单易行,无需复杂仪器设备。通过本方法,可实现凝血酶的超高灵敏检测,检出限可达10-17M(约6个凝血酶分子)。
为了实现上述目的,本发明采用以下技术方案:
一种检测凝血酶的比色法,包括如下步骤:
1)在细胞培养板—96孔板—表面包被戊二醛,通过共价方法固定捕获探针;
2)设计环形模板,其可与凝血酶特异性结合,结合后阻挡滚环复制的继续;
3)加入DNA连接酶,使上述的环形模板在细胞培养板表面的捕获探针上成环;
4)加入摩尔数为上述捕获探针的0-10-11倍的待测液,通过DNA聚合酶作用进行滚环复制扩增反应;
5)加入摩尔数为上述捕获探针的2-10倍的氯化血红素,与滚环复制形成的富G-四链体长链形成G-四链体DNA酶;
6)依次加入过氧化氢和氯金酸溶液,反应后观察溶液颜色变化并测吸光度。
优选的是,步骤1)中,所述的细胞培养板为96孔板。
优选的是,步骤1)中,所述的捕获探针,其核苷酸序列为5′-GACGGCGAAGGATTGATACT-3′,5′端氨基修饰。
优选的是,步骤2)中,所述环形模板,其核苷酸序列中包括GGTTGGTGTGGTTGG段。
优选的是,步骤2)中,所述环形模板,其核苷酸序列为5′-CTTCGCCGTCCCCAACCCGCCCTACCCGGTTGGTGTGGTTGGCCCAACCCGCCCTACCCAGTATCAATC-3′。
优选的是,步骤3)中,所述DNA连接酶为T4连接酶。
优选的是,步骤4)中,所述DNA聚合酶为phi29DNA聚合酶。
优选的是,步骤5)中,形成G-四链体DNA酶的条件为25℃反应1-1.5h。
优选的是,步骤6)中,所述过氧化氢的摩尔数为上述捕获探针的104倍。
优选的是,步骤6)中,所述氯金酸的摩尔数为上述捕获探针的100倍。
序列表SEQIDNO:1-2分别是捕获探针和环形模板的核苷酸序列。
凝血酶的检测原理:当有凝血酶存在时,凝血酶会与环形模板形成的DNA环特异性结合,阻止滚环复制的发生,无法形成滚环复制产物与氯化血红素结合生成DNA酶,进而无法催化过氧化氢的分解。因此过氧化氢足量,能使金还原成分散良好的状态,显红色;而当没有凝血酶存在时,无法阻止滚环复制的发生,滚环复制产物与氯化血红素结合后生成的大量DNA酶将过氧化氢分解,将金还原成团聚的状态,显蓝色。
本发明的有益技术效果:1.本发明提供了一种检测凝血酶的比色法。采用滚环复制放大技术,形成大量DNA酶,放大检测信号,提高了凝血酶的检测灵敏度。采用96孔板连接引物,可消除未反应的氯化血红素对反应的影响,提高信噪比,进一步提高检测的灵敏度。采用灵敏的比色体系,利用过氧化氢将金离子还原成分散或团聚状态产生的红色或蓝色,直接判断有无靶分子的存在,无需预先制备纳米金溶液,简单易行,无需复杂仪器设备。通过本方法,可实现凝血酶的超高灵敏检测,检出限可达10-17M(约6个凝血酶分子)。2.其环形模板为富C碱基的序列,成环后,引物以环为模板进行滚环复制,产物为一条富G碱基的序列,该富G序列与氯化血红素通过电子堆积作用结合,形成G-四链体DNA酶,可以催化过氧化氢的分解。滚环复制可使该富G序列无限延长,极大地增大DNA酶的量,进而放大检测信号。
附图说明
图1凝血酶与DNA环特异性结合电泳表征图
图2不同浓度凝血酶的检测灵敏度
图3不同浓度凝血酶反应后,溶液在540nm处光吸收的变化规律
图4凝血酶、牛血清白蛋白、牛血红蛋白、溶菌酶、核仁素以及空白反应后,溶液颜色的变化规律
具体实施方式
下面结合实施例进一步说明。
实施例1实验部分
一.96孔板的修饰:
(1)在96孔板的6个微孔中加入200μL5mM戊二醛,湿盒37℃水浴震荡4h,在微孔底部包被戊二醛。
(2)弃去反应液,将6个微孔用pH5的PBS和水各洗5次,加入200μL1×10-6M的捕获探针(5′-GACGGCGAAGGATTGATACT-3′),37℃水浴4h,将捕获探针修饰到微孔板上。
(3)弃去反应液,将6个微孔用200μL水清洗1次,各加入25μL1×10-6M环形模板(5′-CTTCGCCGTCCCCAACCCGCCCTACCCGGTTGGTGTGGTTGGCCCAACCCGCCCTACCCAGTATCAATC-3′),3μL10×T4连接酶缓冲液,90℃10min后,室温退火1h,将环形模板连接到微孔板表面的捕获探针上。
(4)在6个微孔中加入2μLT4连接酶,25℃反应2h,使环形模板在微孔板表面的捕获探针上成环。
(5)弃去反应液,在6个微孔中各加入40μL水,5μL10×phi29聚合酶缓冲液,分别加入1μL浓度为0,10-17,5×10-17,10-16,5×10-16,10-15M的凝血酶,室温15min。
二.酶扩增:
(6)在6个微孔中各加入3μL10mMdNTPs,1μLphi29DNA聚合酶,37℃反应3h,进行滚环复制扩增反应。
(7)弃去上清液,在6个微孔中各加入100μL5×10-6M氯化血红素,25℃反应1h,形成大量DNA酶。
三.金纳米粒子的生长:
(8)弃去上清液,将6个微孔用200μL水清洗2次,加入100μL20mM的H2O2溶液(由1mMMES缓冲液配制),反应30min。
(9)在6个微孔中各加入100μL0.2mM的HAuCl4溶液(由1mMMES缓冲液配制),反应10min后拍照,测吸光度。
四.实验结果
图1中1,2,3跑道分别是分子标尺,结合了凝血酶的DNA环和滚环复制的DNA环。结合了凝血酶的DNA环(跑道2)无法进行滚环复制扩增,小分子能够在聚丙烯酰胺电泳中跑的较快;而未结合凝血酶的DNA环(跑道3)则能进行滚环复制扩增,形成的大分子在聚丙烯酰胺电泳中跑的更慢。由此证明了凝血酶与DNA环结合产物的生成。
图2中从左到右依次为加入1μL10-15,5×10-16,10-16,5×10-17,10-17,0M凝血酶反应后,反应液溶液颜色的照片,检出限可达10-17M。
图3为加入1μL0,10-17,5×10-17,10-16,5×10-16,10-15M凝血酶反应后,反应溶液在540nm处光吸收值。540nm处的吸收值随凝血酶浓度的增大而增大,且趋于平缓;检出限可达10-17M。
图4中从左到右依次为加入1μL10-15M的凝血酶、牛血清白蛋白、牛血红蛋白、溶菌酶、核仁素以及空白反应后,反应溶液颜色的照片。只有当凝血酶存在时才能特异性结合环形模板形成的DNA环,阻止滚环复制的发生,进而无法形成滚环复制产物与氯化血红素结合生成DNA酶,使过氧化氢足量,形成分散良好的红色纳米金溶液。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

1.一种检测凝血酶的比色法,其特征在于,包括如下步骤:
1)在96孔板表面包被戊二醛,通过共价方法固定捕获探针;
2)设计环形模板,该模板由两段富C碱基序列和凝血酶特异性结合适配子序列组成;
3)加入DNA连接酶,使上述的环形模板在细胞培养板表面的捕获探针上形成DNA环;
4)加入摩尔数为上述捕获探针的0-10-11倍的待测液,加入DNA聚合酶,若待测液中无凝血酶存在时,捕获探针以上述DNA环为模板进行滚环复制,形成富G碱基的序列;若待测液有凝血酶存在时,凝血酶与上述DNA环的凝血酶适配子序列结合,阻挡滚环复制的继续进行;
5)加入摩尔数为上述捕获探针的2-10倍的氯化血红素,无凝血酶存在的待测液中的富G序列的长链与氯化血红素结合形成能催化过氧化氢分解的G-四链体DNA酶;有凝血酶存在的待测液样品中,无所述的G-四链体DNA酶生成;
6)依次加入过氧化氢和氯金酸溶液,反应后观察溶液颜色变化并测吸光度,其中,无凝血酶存在的待测液中的G-四链体DNA酶催化过氧化氢分解,将金还原成团聚的状态,显蓝色;有凝血酶存在的待测液中缺少催化过氧化氢分解的G-四链体DNA酶,足量的过氧化氢使金还原成分散良好的状态,显红色。
2.如权利要求1所述的方法,其特征在于,包括如下步骤:
一.96孔板的修饰:
(1)在96孔板的6个微孔中加入200μL5mM戊二醛,湿盒37℃水浴震荡4h,在微孔底部包被戊二醛;
(2)弃去反应液,将6个微孔用pH5的PBS和水各洗5次,加入200μL1×10-6M的捕获探针5′-GACGGCGAAGGATTGATACT-3′,37℃水浴4h,将捕获探针修饰到微孔板上;
(3)弃去反应液,将6个微孔用200μL水清洗1次,各加入25μL1×10-6M环形模板5′-CTTCGCCGTCCCCAACCCGCCCTACCCGGTTGGTGTGGTTGGCCCAACCCGCCCTACCCAGTATCAATC-3′,3μL10×T4连接酶缓冲液,90℃10min后,室温退火1h,将环形模板连接到微孔板表面的捕获探针上;
(4)在6个微孔中加入2μLT4连接酶,25℃反应2h,使环形模板在微孔板表面的捕获探针上成环;
(5)弃去反应液,在6个微孔中各加入40μL水,5μL10×phi29缓冲液,分别加入1μL浓度为0,10-17,5×10-17,10-16,5×10-16,10-15M的凝血酶,室温15min;
二.酶扩增:
(6)在6个微孔中各加入3μL10mMdNTPs,1μLphi29DNA聚合酶,37℃反应3h,进行滚环复制扩增反应;
(7)弃去上清液,在6个微孔中各加入100μL5×10-6M氯化血红素,25℃反应1h,形成大量DNA酶;
三.金纳米粒子的生长:
(8)弃去上清液,将6个微孔用200μL水清洗2次,加入100μL20mM的H2O2溶液—由1mMMES缓冲液配制而成,反应30min;
(9)在6个微孔中各加入100μL0.2mM的HAuCl4溶液—由1mMMES缓冲液配制而成,反应10min后拍照,测吸光度。
3.如权利要求1所述的方法,其特征在于,步骤1)中,所述的捕获探针,其核苷酸序列为5′-GACGGCGAAGGATTGATACT-3′,5′端氨基修饰。
4.如权利要求1所述的方法,其特征在于,步骤2)中,所述环形模板,其核苷酸序列中包括GGTTGGTGTGGTTGG段。
5.如权利要求1所述的方法,其特征在于,步骤2)中,所述环形模板,其核苷酸序列为5′-CTTCGCCGTCCCCAACCCGCCCTACCCGGTTGGTGTGGTTGGCCCAACCCGCCCTACCCAGTATCAATC-3′。
6.如权利要求1所述的方法,其特征在于,步骤3)中,所述DNA连接酶为T4连接酶。
7.如权利要求1所述的方法,其特征在于,步骤4)中,所述DNA聚合酶为phi29DNA聚合酶。
8.如权利要求1所述的方法,其特征在于,步骤5)中,形成G-四链体DNA酶的条件为25℃反应1-1.5h。
9.如权利要求1所述的方法,其特征在于,步骤6)中,所述过氧化氢的摩尔数为上述捕获探针的104倍。
10.如权利要求1所述的方法,其特征在于,步骤6)中,所述氯金酸的摩尔数为上述捕获探针的100倍。
CN201510073478.1A 2015-02-11 2015-02-11 一种检测凝血酶的比色法 Active CN104726560B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510073478.1A CN104726560B (zh) 2015-02-11 2015-02-11 一种检测凝血酶的比色法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510073478.1A CN104726560B (zh) 2015-02-11 2015-02-11 一种检测凝血酶的比色法

Publications (2)

Publication Number Publication Date
CN104726560A CN104726560A (zh) 2015-06-24
CN104726560B true CN104726560B (zh) 2015-12-02

Family

ID=53450971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510073478.1A Active CN104726560B (zh) 2015-02-11 2015-02-11 一种检测凝血酶的比色法

Country Status (1)

Country Link
CN (1) CN104726560B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567839B (zh) * 2016-02-03 2019-02-22 青岛大学 基于网络型核酸纳米探针的酶循环放大检测dna的比色法
CN106525940B (zh) * 2016-11-28 2018-11-30 江南大学 基于g-四链体-血红素复合物和聚合链式放大反应检测单链目标dna浓度的电化学方法
KR101970327B1 (ko) * 2017-04-13 2019-04-18 고려대학교 산학협력단 검출 신호의 자가 증폭 원리를 이용한 정확, 신속, 편리한 단일 단계 질병 진단 방법
CN108588180B (zh) * 2018-05-10 2021-02-09 四川大学 一种可视化检测的等离子体纳米平台及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101672770A (zh) * 2008-08-11 2010-03-17 中国科学院长春应用化学研究所 基于金纳米探针和核酸适配子无标记比色测定凝血酶的方法
CN102586450A (zh) * 2012-03-06 2012-07-18 中国科学院上海微系统与信息技术研究所 基于滚环扩增比色检测靶核酸或蛋白的方法
CN103451313A (zh) * 2013-09-27 2013-12-18 中国科学院上海微系统与信息技术研究所 一种基因芯片的金沉积检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101672770A (zh) * 2008-08-11 2010-03-17 中国科学院长春应用化学研究所 基于金纳米探针和核酸适配子无标记比色测定凝血酶的方法
CN102586450A (zh) * 2012-03-06 2012-07-18 中国科学院上海微系统与信息技术研究所 基于滚环扩增比色检测靶核酸或蛋白的方法
CN103451313A (zh) * 2013-09-27 2013-12-18 中国科学院上海微系统与信息技术研究所 一种基因芯片的金沉积检测方法

Also Published As

Publication number Publication date
CN104726560A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
Cheng et al. Novel non-nucleic acid targets detection strategies based on CRISPR/Cas toolboxes: A review
Wu et al. Hybridization chain reaction and its applications in biosensing
Zhang et al. The recent development of hybridization chain reaction strategies in biosensors
Miao et al. Cascade strand displacement and bipedal walking based DNA logic system for miRNA diagnostics
CN104726560B (zh) 一种检测凝血酶的比色法
Ghadiali et al. Enzyme‐responsive nanoparticle systems
Liu et al. Affinity and enzyme-based biosensors: recent advances and emerging applications in cell analysis and point-of-care testing
Hu et al. Controlled/“living” radical polymerization-based signal amplification strategies for biosensing
Ding et al. Amplification strategies using electrochemiluminescence biosensors for the detection of DNA, bioactive molecules and cancer biomarkers
Cao et al. A carbon nanotube/quantum dot based photoelectrochemical biosensing platform for the direct detection of microRNAs
Chen et al. A label-free colorimetric platform for DNA via target-catalyzed hairpin assembly and the peroxidase-like catalytic of graphene/Au-NPs hybrids
Wu et al. Research advances for exosomal miRNAs detection in biosensing: From the massive study to the individual study
CN110592191B (zh) 一种基于酶催化循环及二硫化钼吸附介导可视化检测核酸的方法
CN104502437B (zh) 一种多重信号放大的免标记电化学传感器及对核酸的检测
CN110408679B (zh) 一种基于酶辅助循环信号放大的电化学急性白血病基因Pax-5a检测方法
Xie et al. A novel electrochemical aptasensor for highly sensitive detection of thrombin based on the autonomous assembly of hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme nanowires
Huang et al. Biocatalytic Metal‐Organic Frameworks: Promising Materials for Biosensing
CN103940890A (zh) 一种DNA-AuNPs纳米网络结构的制备方法及应用
Hun et al. Mismatched catalytic hairpin assembly coupling hydroxylamine-O-sulfonic acid as oxide for DNA assay
CN110346436B (zh) 检测尿嘧啶-dna糖基化酶的、基于非酶纳米材料信号放大的无底物电化学生物传感器
CN112710710A (zh) 基于磁性纳米材料和生物信号放大技术测定t4多聚核苷酸激酶活性的方法
Bai et al. Electrochemical nucleic acid sensors: Competent pathways for mobile molecular diagnostics
Jia et al. Ultrasensitive electrochemical detection of circulating tumor DNA by hollow polymeric nanospheres and dual enzyme assisted target amplification strategy
CN105567808B (zh) 滚环扩增产物为模板的铜纳米颗粒合成方法及其在电化学检测中的应用
Zheng et al. Dual-modal biosensor for highly sensitive and selective DNA methyltransferase activity detection based on a porous organic polymer-inorganic nanocomposite (Cu2O@ FePPOPBADE) with high laccase-like activity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant