CN104704299A - 确定潜在太阳能安装表面积的系统和方法 - Google Patents

确定潜在太阳能安装表面积的系统和方法 Download PDF

Info

Publication number
CN104704299A
CN104704299A CN201380053897.8A CN201380053897A CN104704299A CN 104704299 A CN104704299 A CN 104704299A CN 201380053897 A CN201380053897 A CN 201380053897A CN 104704299 A CN104704299 A CN 104704299A
Authority
CN
China
Prior art keywords
determination
solar panel
identify
relevant
roof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380053897.8A
Other languages
English (en)
Other versions
CN104704299B (zh
Inventor
O·萨德卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN104704299A publication Critical patent/CN104704299A/zh
Application granted granted Critical
Publication of CN104704299B publication Critical patent/CN104704299B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/043Optimisation of two dimensional placement, e.g. cutting of clothes or wood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/40Document-oriented image-based pattern recognition
    • G06V30/42Document-oriented image-based pattern recognition based on the type of document
    • G06V30/422Technical drawings; Geographical maps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S2201/00Prediction; Simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Multimedia (AREA)
  • Development Economics (AREA)
  • Water Supply & Treatment (AREA)
  • Game Theory and Decision Science (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Operations Research (AREA)
  • Public Health (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种识别位置内的表面以用于确定安装在该表面上的太阳能电池板的发电潜力的系统及方法。该系统接收一个位置的地址并提取该位置的顶部图像。该系统配置用于确定该位置内表面的轮廓、表面倾斜度及投射在该位置上的阴影。这种确定由与轮廓表面有关的图形及根据轮廓面积确定太阳能电池板的潜在安装面积组成。该系统进一步将这一信息与其它类型的信息(包括日光路径及经济刺激措施)相结合,从而确定提议太阳能系统的发电能力及经济可行性。在一个实施例中,该系统以所述位置顶部图像上的覆盖量的形式显示潜在安装面积。

Description

确定潜在太阳能安装表面积的系统和方法
相关申请的交叉引用
本申请要求2012年8月28日申请的美国临时专利申请No.61/693,787的权益,该专利的内容通过引用而并入本申请中。
技术领域
本发明一般涉及确定适合安装太阳能电池板的位置的系统和方法,更具体地说,本发明涉及能够确定构筑物太阳能安装表面积的系统和方法。
背景技术
世界能源需求增加,能源越来越难获取,需要再生能源强化技术。除传统能源之外,可以利用其它替代能源产生系统。这些系统包括水力发电、能量热转化和机械转化、风力和太阳能。为了满足世界日益增加的能源需求,增加太阳能的使用量是必然的。
太阳能系统发电或加热水的有效性取决于利用太阳能的具体位置。肉眼评估和手动估计可以对太阳能产生点的效率和有效性提供一些指示。
目前在先有技术中,评估构筑物放置太阳能电池板的潜力以产生动力的评估方法劳动强度较大。典型的房屋评估包括利用各种仪器及爬到指定表面上,通过估计可能产生的KW-小时来评估太阳能动力潜力。这样做还要考虑其它构筑物和物体的阴影形式的影响。然后,评估预期的投资回报率。如果构筑物具有必要的几何规格及合理的年日光照射量,然后,推荐符合要求投资回报率(ROI)的某一尺寸的太阳能系统。但是,这一过程耗时较多,成本相对高昂。
值得注意的是,评估构筑物放置太阳能电池板的潜力的在线解决方案是本领域熟悉的,正如名称为“Method and systems for Provisioning Energy Systems(提供能量系统的方法和系统)”的美国专利US 8,417,061所描述的那样。但是,这种先有技术的解决方案通常需要手动操作,成本高昂,无法提供瞬时的、全球的覆盖率,描述的性能不充分。另一个先有技术解决方案,即名称为“System and Method for Identifying the Solar Potential ofRooftops(确定屋顶太阳能潜力的系统和方法)”的美国专利US 7,500,391描述了一种确定某一屋顶是否符合某一太阳能潜力标准的自动系统。但是,这些实施例取决于输入的三维地图数据。获得及维持这些数据的成本非常高。
因此,提供一种经济高效、自动确定潜在太阳能安装表面积的解决方案,克服先有技术的局限性是非常有利的。
附图说明
本发明的主题在说明书结尾的权利要求书中特别进行了指出和清楚地进行了说明。根据下述详细说明及附图,本发明的上述目的和其它目的、特征和优点将显而易见。
图1是系统一个实施例的示意图;
图2是流程图,描述了确定太阳能安装表面积的一个实施例的操作;
图3a是构筑物在第一位置的顶部图像;
图3b是构筑物在第二位置的顶部图像;
图4是根据投影确定构筑物相对高度的实施例的示意图;
图5a是确定屋顶图形的示意图;及
图5b是确定屋顶图形的示意图。
具体实施方式
本发明公开的实施例只是本发明创新性教导许多有益用途的实例,注意到这一点是非常重要的。一般说来,本申请说明书的陈述并不一定限制任何各种要求保护的发明。此外,有些陈述可能适用于某些发明特征,但并不适用于其它发明特征。通常,除非特别声明,单数元件可能是复数,反之亦然,并不会丧失通用性。在图中,在几个视图中,类似的数字指的是类似的部分。
一种识别位置内的表面以用于确定安装在该表面上的太阳能电池板的发电潜力的系统及方法。该系统接收一个位置的地址并提取所述位置的顶部图像。该系统配置用于识别所述位置内表面的轮廓、表面倾斜度及投射在所述位置上的阴影。这种确定由与轮廓表面(outlinedsurface)有关的图形及根据轮廓面积确定太阳能电池板的潜在安装面积组成。所述系统进一步将这一信息与其它类型的信息(包括日光路径及经济刺激措施)相结合,从而确定提议太阳能系统的发电能力及经济可行性。在一个实施例中,所述系统以所述位置顶部图像上的覆盖量的形式显示潜在安装面积。
参考图1,图1描述了用于评估有效太阳能表面的系统100的一个实施例的示例性和非限制性示意方框图。服务器110与网络120连接。网络120可以是无线网、蜂窝或有线网、局域网(LAN)、广域网(WAN)、城域网(MAN)、因特网、万维网(WWW)、类似网络及这些网络的任何组合。服务器110配置用于接收具体位置的地址。服务器110通过130-N与多个数据源130-1通信连接。数据源130配置用于收集和提供地球地图图像,如地图及类似数据源。在本发明的一个实施例中,系统100可以进一步包括能够储存多个地球地图图像的数据库140。服务器110包括与存储器114连接的处理单元112。存储器114储存指令,当处理单元112执行这些指令时,配置服务器110从一个或多个数据源130提取一个位置的顶部图像。存储器114进一步包含指令,当处理单元112执行这些指令时,配置服务器110对提取的图像进行分析,识别图形及至少一个相关面。存储器114进一步包含指令,当处理单元112执行这些指令时,配置服务器110,对提取的图像进行分析,识别所提取图像内构筑物的表面轮廓。通过识别各条直线,并对构成与屋顶轮廓有关的多边形的各条直线组合进行匹配,在每个屋顶轮廓内,搜索与表面有关的图形,从而做到这一点。在另一个实施例中,通过统计学上审查通常与屋顶有关的轮廓角度,将识别的各条直线与通常与屋顶有关的轮廓角度进行对比,从而实现这种确定。
根据与表面有关的图形,处理单元112配置用于确定安装太阳能电池板的表面。图形每个面内可用面积的确定,例如,是通过识别表面的结构均匀性来实现的。在一个实施例中,通过确定视点变换和表面法线(例如,可以利用统计评估来确定这两者),可以确定表面的倾斜度。在另一个实施例中,通过比较具体位置各构筑物的相关信息数据库,例如,包含道路或其它构筑物技术图形的数据库,可以对视点变换进行估计。确定变换和法线后,重新审查面积,确定其是否符合矩形构架,并在识别的屋顶和太阳能电池板的矩形构架之间确定一个最佳位置。根据全球可以利用的标准图像来确定安装太阳能电池板的屋顶的潜力,该方法经济高效,克服了先有技术的缺点。
在一个实施例中,根据位置,确定日照时间周期。例如,可以利用该位置的日照地图、太阳路径地图、天气状况地图、数字地面模型或它们的组合(但并不局限于这些)进行这种确定。识别该位置内的构筑物后,处理单元112执行存储器114内保存的指令,配置服务器110,识别与该位置内物体有关的阴影。根据物体投射的阴影,可以确定物体的高度,下面将参考图4对此进行进一步的说明。在另一个实施例中,识别与该位置周围物体有关的阴影,并据此确定周围构筑物的高度。然后,可以确定这些物体投射在太阳能电池板潜在安装面积上的阴影量,从而确定其有效效率。在另一个实施例中,存储器114进一步包含指令,当处理单元112执行这些指令时,配置服务器110,显示与表面有关的太阳能电池板潜在安装面积的覆盖量。
图2是一个示例性和非限制性流程图200,描述了一个实施例确定太阳能安装表面积的操作。为了确定一个位置安装太阳能电池板的潜力,在S210中,接收到这个位置,例如,以位置的地址进行接收,但是,也可以是地理坐标。词语“地址”应以广义理解,包括街道地址、地理坐标等,但并不局限于这些。在S220中,例如,从数据源130提取该位置的顶部图像。在S230中,识别该位置至少一个表面的轮廓。在S235中,确定与安装太阳能电池板构筑物的至少一个表面有关的图形。在S240中,确定表面倾斜度。在一个实施例中,确定与位置周围物体有关的阴影,及据此确定周围物体的高度。在S245中,例如,考虑阴影、位置等,确定太阳能电池板的有效安装面积。在任选的S250中,以所提取图像的覆盖量的形式显示与表面有关的太阳能电池板潜在安装面积覆盖量。在S260中,检查是否需要测定其它位置的潜力,如果需要的话,利用S210继续执行操作;否则的话,执行操作结束。
图3a描述了在第一位置的示例性和非限制性的构筑物310a的第一顶部图像300a。根据一个实施例,顶部图像300a用于确定太阳能安装表面积。顶部图像300a示出了安装太阳能电池板的均匀构筑物310a屋顶。此外,还可以看到构筑物320a的阴影,可用于进一步确定构筑物310a,这将在下文进一步进行描述。
图3b描述了在第二位置的示例性和非限制性的构筑物的第二顶部图像300b。根据一个实施例,顶部图像300b用于确定太阳能安装表面积。顶部图像300b示出了非均匀构筑物310b屋顶。物体320b固定在构筑物310b屋顶上,减少了太阳能电池板的潜在安装表面。利用物体310b投射的阴影330a可以确定该物体的高度,该物体在周围其它表面上投射阴影,将参考图4对此进一步进行说明。
图4描述了示例性和非限制性图400,解释了按照一个实施例,根据物体投射的阴影确定物体的高度。在图中,400x是正实数,x>0,x表示物体离太阳的地面距离。S1和S2代表第一高度(如高度a)的第一构筑物投射的阴影,及第二高度(如高度2a)的第二构筑物投射的阴影。这种确定通过下述公式进行,其中h表示太阳的高度,与本发明提到的其它尺寸相比,太阳的高度实际上是无限大。因此,可以进行下述计算:
x + s 1 h = s 1 a
x + s 2 h = s 2 2 a
x + s 1 + ( s 2 - s 1 ) h = s 2 2 a
s 1 a + s 2 - s 1 h = s 2 2 a
s 1 a = ~ s 2 2 a
2 s 1 = ~ s 2
熟悉本领域的技术人员将很容易理解的是,上面的公式表明,高度为2a的物体投射的阴影是高度为a的物体的两倍。通过这种计算,可以确定在指定表面上投射阴影的物体及周围物体的相对高度。通过了解一个物体投射在指定表面上的阴影图,可以确定太阳能电池板发电表面积的有效性。在一个实施例中,为了确定物体的绝对高度,系统100识别至少一个高度已知的物体。这个高度可以是以前测定的高度,或者是系统100可以访问的记录中提供的高度。
根据一个实施例,图5a和5b描述了屋顶图形510a和510b的顶视图的示例性和非限制性示意图。在一个实施例中,系统100匹配各直线组合,从而构建矩形,确定屋顶的轮廓。在每个矩形中,系统100识别屋顶图形。图形510a和510b只是通常看到的屋顶形状的实例,数据库可以包含其它可以识别为屋顶的形状,系统100同样可以识别这些形状。
本发明的各实施例以硬件、固件、软件或它们的组合实施。此外,软件优选以应用程序实施,应用程序安装在由各部分,或某些装置与/或装置组合组成的程序存储单元上或计算机可读介质上。应用程序可以上传到包含任何合适架构的机器上,并由该机器执行。该机器优选在具有硬件,如一个或多个中央处理单元(“CPU”)、存储器与输入/输出接口的计算机平台上实施。
计算机平台还可以包括操作系统和微指令代码。此处描述的各种处理和功能可以是由CPU执行的微指令代码的一部分或应用程序的一部分,或者是它们的任何组合,不管是否清楚示出此种计算机或处理器。此外,计算机平台可连接各种其它外围设备,如数据存储单元和打印单元。此外,非瞬时性计算机可读介质是除瞬时性传播信号外的任何计算机可读介质。
此处列举的所有实例及条件语言旨在用于教导目的,帮助读者理解本发明的原理及发明人的理念,进一步对技术进行阐释,并且应解释为并不局限于此类具体列举的实例和条件。此外,此处列举的本发明的原理、方面及实施例的所有陈述,以及它们的具体实例,旨在包含其结构性和功能性的相当物。此外,此类相当物包括目前已知的相当物以及将来开发的相当物,即开发的不管其结构如何,但执行相同功能的任何元件。
熟悉本领域的技术人员将很容易注意到,可以实现本发明的其它实施例,但并不背离本公开发明的范围。所有此类实施例均包括在本发明中。本发明的范围应仅由其权利要求书限制。

Claims (26)

1.一种确定太阳能电池板潜在安装表面的计算机方法,包括:
接收一位置;
从顶部图像数据库提取各自地址的至少一个顶部图像;
识别所述顶部图像内至少一个表面的轮廓;
确定与所述轮廓表面有关的图形,所述图形包括至少一个面;
确定所述至少一个面的太阳能电池板的安装面积;及
以顶部图像上覆盖量的形式显示安装面积。
2.根据权利要求1所述的计算机方法,其中接收一位置包括以下几项中的至少一项:接收街道地址、接收地理坐标。
3.根据权利要求1所述的计算机方法,其中轮廓的识别进一步包括:
识别顶部图像中的各条直线;及
将各条直线组合进行匹配,从而确定所述表面屋顶轮廓。
4.根据权利要求3所述的计算机方法,其中太阳能电池板安装面积的确定进一步包括:
统计学上审查通常和屋顶有关的轮廓角度;及
将识别的各条直线与通常和屋顶有关的轮廓角度进行对比。
5.根据权利要求1所述的计算机方法,其中轮廓的确定进一步包括:
识别所述位置的至少一个物体;及
识别与该位置中的至少一个物体有关的阴影。
6.根据权利要求5所述的计算机方法,进一步包括:
确定所述至少一个阴影是否影响太阳能电池板的有效性;及
根据阴影影响,校正预期的太阳能电池板功率输出。
7.根据权利要求6所述的计算机方法,进一步包括:确定表面倾斜度。
8.根据权利要求7所述的计算机方法,其中表面倾斜度的确定进一步包括:确定视点变换和表面法线。
9.根据权利要求1所述的计算机方法,其中轮廓的确定进一步包括:
识别固定在构筑物屋顶上的至少一个物体;
识别与固定在构筑物屋顶上的至少一个物体有关的阴影;及
根据与至少一个物体有关的阴影确定所述物体的面。
10.根据权利要求1所述的计算机方法,其中太阳能电池板潜在安装表面的确定进一步包括:根据位置确定日照时间周期。
11.根据权利要求1所述的计算机方法,其中根据位置确定日照时间周期是基于至少来源于下述途径的信息:日照地图、太阳路径地图、数字地面模型、天气状况地图或它们的组合。
12.根据权利要求1所述的计算机方法,其中地址是街道地址和地理坐标中的一个。
13.根据权利要求1所述的计算机方法,其中通过确定表面的结构均匀性来确定安装面积。
14.一种非瞬时性计算机可读介质,其上储存促使一个或多个处理单元执行权利要求1所述方法的指令。
15.一种确定太阳能电池板潜在安装表面的装置,所述装置包括:
一个与网络连接的接口,用于通过网络接收和发送数据;
与所述网络连接的处理单元;
与所述处理单元连接且包含指令的存储器,当处理单元执行这些指令时,配置所述装置,从而:接收一位置;从顶部图像数据库提取该地址的至少一个顶部图像;识别所述顶部图像内至少一个表面的轮廓;确定与所述轮廓表面有关的图形,所述图形包括至少一个面;确定所述至少一个面的太阳能电池板安装面积;及以所述顶部图像上覆盖量的形式显示安装面积。
16.根据权利要求15所述的装置,其中接收一位置包括:街道地址和地理坐标中的至少一项。
17.根据权利要求15所述的装置,其中所述存储器进一步包含指令,当处理单元执行这些指令时,配置所述装置,从而:识别顶部图像中的各条直线;及将各条直线组合进行匹配,从而确定表面屋顶轮廓。
18.根据权利要求16所述的装置,其中通过统计学上审查通常和屋顶有关的轮廓角度,将识别的各条直线与通常和屋顶有关的轮廓角度进行对比,确定太阳能电池板的安装面积。
19.根据权利要求15所述的装置,其中轮廓的确定进一步包括:
识别所述位置的至少一个物体;及
识别与该位置的至少一个物体有关的阴影。
20.根据权利要求19所述的装置,其中轮廓的确定进一步包括:
确定至少一个阴影是否影响太阳能电池板的有效性;及
根据阴影影响,校正预期的太阳能电池板功率输出。
21.根据权利要求20所述的装置,其中轮廓的确定进一步包括:确定表面倾斜度。
22.根据权利要求21所述的装置,其中表面倾斜度的确定进一步包括:确定视点变换和表面法线。
23.根据权利要求15所述的装置,其中轮廓的确定进一步包括:
识别固定在构筑物屋顶上的至少一个物体;
识别与固定在构筑物屋顶上的至少一个物体有关的阴影;及
根据与至少一个物体有关的阴影确定所述物体的面。
24.根据权利要求15所述的装置,其中太阳能电池板潜在安装表面的确定进一步包括:根据位置确定日照时间周期。
25.根据权利要求24所述的装置,其中根据位置确定日照时间周期是基于至少来源于下述途径的信息:日照地图、太阳路径地图、数字地面模型、天气状况地图或它们的组合。
26.根据权利要求15所述的装置,其中通过确定表面的结构均匀性来确定安装面积。
CN201380053897.8A 2012-08-28 2013-08-25 确定潜在太阳能安装表面积的系统和方法 Active CN104704299B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261693787P 2012-08-28 2012-08-28
US61/693,787 2012-08-28
PCT/IL2013/050715 WO2014033707A1 (en) 2012-08-28 2013-08-25 A system and methods for determination of potential solar installable surface area

Publications (2)

Publication Number Publication Date
CN104704299A true CN104704299A (zh) 2015-06-10
CN104704299B CN104704299B (zh) 2018-05-15

Family

ID=50182607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380053897.8A Active CN104704299B (zh) 2012-08-28 2013-08-25 确定潜在太阳能安装表面积的系统和方法

Country Status (3)

Country Link
US (1) US9690987B2 (zh)
CN (1) CN104704299B (zh)
WO (1) WO2014033707A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105972836A (zh) * 2016-05-24 2016-09-28 湖南科技大学 一种太阳能碟式聚光器镜面单元安装的快速调焦方法
CN106595597A (zh) * 2016-12-16 2017-04-26 亚坦能源科技(上海)有限公司 一种在拍摄显示屏上展现测量信息的方法和装置
CN110910316A (zh) * 2019-05-14 2020-03-24 程爱军 太阳能设备控制平台
JP2021512399A (ja) * 2018-01-16 2021-05-13 カン、ムン シクKANG, Mun Sik 太陽光発電装置のシミュレーション方法、システム及びプログラム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9171108B2 (en) * 2012-08-31 2015-10-27 Fujitsu Limited Solar panel deployment configuration and management
US10402922B2 (en) * 2014-04-10 2019-09-03 Vivint Solar, Inc. Photovoltaic system installation
US20160238388A1 (en) * 2015-02-17 2016-08-18 Vivint Solar, Inc. Solar system installation
GB2554834A (en) * 2015-05-27 2018-04-11 Solview Systems Ltd A system and method for generation canvas representations
CN105071769B (zh) * 2015-07-31 2019-01-15 上海许继电气有限公司 地图上展示光伏电站方阵的方法及光伏电站方阵维护方法
US10373011B2 (en) 2015-08-26 2019-08-06 Onswitch Llc Automated accurate viable solar area determination
US10275923B2 (en) * 2016-02-09 2019-04-30 Google Llc Determining and presenting solar flux information
PT3726729T (pt) * 2017-12-14 2021-07-01 Acciona Energia Sa Sistema e método de inspeção de central fotovoltaica automatizada
BE1026027B1 (nl) * 2018-10-30 2019-09-12 Solarbuild Bvba Methode voor het automatisch evalueren van daken van gebouwen in een regio door middel van beeldverwerking van de schaduw van het gebouw.
WO2022125416A1 (en) * 2020-12-08 2022-06-16 Enphase Energy, Inc. Component placement for an energy generation and/or storage system
US20230046376A1 (en) * 2021-08-13 2023-02-16 Here Global B.V. Systems and methods for identifying inclined regions
CN117685929B (zh) * 2024-02-01 2024-05-03 中国地质调查局西安矿产资源调查中心 一种用于监测光伏板空间分布信息的方法和终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1677240A2 (en) * 2004-12-28 2006-07-05 Sharp Kabushiki Kaisha Support system and program for installing photovoltaic power generator
EP2010829A2 (en) * 2006-04-27 2009-01-07 Ecometricks Data Systems, Inc. System and method for identifying the solar potential of rooftops
AU2010219392A1 (en) * 2008-04-17 2010-09-30 Eagle View Technologies, Inc. Aerial roof estimation systems and methods
CN101918767A (zh) * 2007-10-04 2010-12-15 桑格威迪公司 用于提供能源系统的方法和装置
CN102326164A (zh) * 2009-02-20 2012-01-18 太阳能公司 包括定义不同设计优选能力的自动化太阳能收集器安装设计

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235222A (en) * 1978-10-19 1980-11-25 Istrate Ionescu Heat-responsive alignment system and solar collection device
US7305983B1 (en) * 2003-07-08 2007-12-11 University Of Hawai'i Assessment of solar energy potential on existing buildings in a region
US7516557B2 (en) * 2006-03-17 2009-04-14 Anthony Courter Solar site selection apparatus and method
US9322951B2 (en) 2007-02-12 2016-04-26 Locus Energy, Inc. Weather and satellite model for estimating solar irradiance
US7832267B2 (en) * 2007-04-25 2010-11-16 Ecometriks, Llc Method for determining temporal solar irradiance values
US8417061B2 (en) * 2008-02-01 2013-04-09 Sungevity Inc. Methods and systems for provisioning energy systems
US20090234692A1 (en) * 2008-03-13 2009-09-17 Tigo Energy, Inc. Method and System for Configuring Solar Energy Systems
US8170840B2 (en) * 2008-10-31 2012-05-01 Eagle View Technologies, Inc. Pitch determination systems and methods for aerial roof estimation
WO2010077993A2 (en) 2008-12-16 2010-07-08 Armageddon Energy, Inc. Methods and systems for solar shade analysis
DE102008062914A1 (de) * 2008-12-24 2010-07-01 Ludes, Georg, Dipl.-Meteor. Verfahren zur Ermittlung des energetischen Potenzials der Photovoltaik und/oder der Solarthermie in bebauten Gebieten
US20100307479A1 (en) 2009-06-03 2010-12-09 Ken Hyun Park Solar Panel Tracking and Mounting System
KR20110068469A (ko) 2009-12-16 2011-06-22 인하대학교 산학협력단 메타정보 없는 단일 영상에서 3차원 개체정보 추출방법
US9686122B2 (en) 2010-05-10 2017-06-20 Locus Energy, Inc. Methods for orientation and tilt identification of photovoltaic systems and solar irradiance sensors
US8763478B2 (en) 2010-09-07 2014-07-01 Unibest International, Llc Environmental sampler and methods of using same
US20120159596A1 (en) 2010-12-17 2012-06-21 Greenvolts, Inc. Browser-based back-end management system for a concentrated photovoltaic (cpv) system
TWI447339B (zh) 2011-01-27 2014-08-01 Univ Nat Central 太陽追蹤方法及太陽追蹤系統裝置
DE102011056207A1 (de) 2011-12-09 2013-06-13 Sma Solar Technology Ag Verfahren zum Lokalisieren von eine Photovoltaikanlage vorübergehend verschattenden Objekten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1677240A2 (en) * 2004-12-28 2006-07-05 Sharp Kabushiki Kaisha Support system and program for installing photovoltaic power generator
EP2010829A2 (en) * 2006-04-27 2009-01-07 Ecometricks Data Systems, Inc. System and method for identifying the solar potential of rooftops
CN101918767A (zh) * 2007-10-04 2010-12-15 桑格威迪公司 用于提供能源系统的方法和装置
AU2010219392A1 (en) * 2008-04-17 2010-09-30 Eagle View Technologies, Inc. Aerial roof estimation systems and methods
CN102326164A (zh) * 2009-02-20 2012-01-18 太阳能公司 包括定义不同设计优选能力的自动化太阳能收集器安装设计

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105972836A (zh) * 2016-05-24 2016-09-28 湖南科技大学 一种太阳能碟式聚光器镜面单元安装的快速调焦方法
CN106595597A (zh) * 2016-12-16 2017-04-26 亚坦能源科技(上海)有限公司 一种在拍摄显示屏上展现测量信息的方法和装置
JP2021512399A (ja) * 2018-01-16 2021-05-13 カン、ムン シクKANG, Mun Sik 太陽光発電装置のシミュレーション方法、システム及びプログラム
CN110910316A (zh) * 2019-05-14 2020-03-24 程爱军 太阳能设备控制平台

Also Published As

Publication number Publication date
US9690987B2 (en) 2017-06-27
CN104704299B (zh) 2018-05-15
US20150161442A1 (en) 2015-06-11
WO2014033707A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
CN104704299A (zh) 确定潜在太阳能安装表面积的系统和方法
Mansouri Kouhestani et al. Evaluating solar energy technical and economic potential on rooftops in an urban setting: the city of Lethbridge, Canada
Melius et al. Estimating rooftop suitability for PV: a review of methods, patents, and validation techniques
Schallenberg-Rodríguez et al. Evaluation of on-shore wind techno-economical potential in regions and islands
Nguyen et al. Incorporating shading losses in solar photovoltaic potential assessment at the municipal scale
Verso et al. GIS-based method to evaluate the photovoltaic potential in the urban environments: The particular case of Miraflores de la Sierra
Jo et al. A hierarchical methodology for the mesoscale assessment of building integrated roof solar energy systems
Ren et al. A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities
Fitzgerald et al. A GIS-based model to calculate the potential for transforming conventional hydropower schemes and non-hydro reservoirs to pumped hydropower schemes
US20090177458A1 (en) Systems and methods for solar mapping, determining a usable area for solar energy production and/or providing solar information
Boz et al. An automated model for rooftop PV systems assessment in ArcGIS using LIDAR.
KR101980741B1 (ko) 태양광 발전 장치의 시뮬레이션 방법, 시스템 및 프로그램
US20190251208A1 (en) Construction design support apparatus and construction design support method for photovoltaic power generation facilities
Mauro et al. Mapping land use impact of photovoltaic farms via crowdsourcing in the Province of Lecce (Southeastern Italy)
Han et al. Utilising high-fidelity 3D building model for analysing the rooftop solar photovoltaic potential in urban areas
Santos et al. Solar potential analysis in Lisbon using LiDAR data
Kausika et al. Bottom-up analysis of the solar photovoltaic potential for a city in the Netherlands: A working model for calculating the potential using high resolution LiDAR data
Dike et al. Optimal angles for harvesting solar electricity in some African cities
Adjiski et al. Assessment of the solar energy potential of rooftops using LiDAR datasets and GIS based approach
Singh et al. A visual-inertial system to determine accurate solar insolation and optimal PV panel orientation at a point and over an area
KR20160078920A (ko) 목표 지점의 일사량 계산 방법 및 장치
Nex et al. 3D Solarweb: A solar cadaster in the Italian Alpine landscape
Massano et al. A GIS Open-Data Co-Simulation Platform for Photovoltaic Integration in Residential Urban Areas
KR20160134947A (ko) 신재생에너지 자원지도 생성 장치 및 방법
Chaleeraktrakoon et al. Statistical analysis and downscaling for the minimum, average, and maximum daily-temperatures of the Chi and Mun River Basins

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant