CN104703622B - 与金黄色葡萄球菌疾病期间抵消凝固酶活性的抗体相关的组合物和方法 - Google Patents

与金黄色葡萄球菌疾病期间抵消凝固酶活性的抗体相关的组合物和方法 Download PDF

Info

Publication number
CN104703622B
CN104703622B CN201380033151.0A CN201380033151A CN104703622B CN 104703622 B CN104703622 B CN 104703622B CN 201380033151 A CN201380033151 A CN 201380033151A CN 104703622 B CN104703622 B CN 104703622B
Authority
CN
China
Prior art keywords
antibody
coa
staphylococcus aureus
sequence
cdr2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380033151.0A
Other languages
English (en)
Other versions
CN104703622A (zh
Inventor
莫利·麦克多夫
卡拉·艾默罗
多米尼克·M·米西亚卡斯
奥拉夫·施内温德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Chicago
Original Assignee
University of Chicago
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Chicago filed Critical University of Chicago
Publication of CN104703622A publication Critical patent/CN104703622A/zh
Application granted granted Critical
Publication of CN104703622B publication Critical patent/CN104703622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1271Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Micrococcaceae (F), e.g. Staphylococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Communicable Diseases (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

实施方案涉及用于处理或预防细菌感染、特别是由葡萄球菌细菌感染引起的感染的方法和组合物。方面包括用于提供对细菌的被动免疫应答的方法和组合物。在一些实施方案中,方法和组合物涉及结合凝固酶(Coa)的抗体。

Description

与金黄色葡萄球菌疾病期间抵消凝固酶活性的抗体相关的组 合物和方法
本发明是在政府支持下依据国立卫生研究院(National Institutes of Health)授予的AI092711、AI052474和AI52767以及提供给MM.的HD009007培训经费完成的。D.M.M.和O.S.对来自国立过敏与传染病研究所(NIAID)的生物防御和新兴传染病财团基地的区域V“大湖”区域杰出中心的支持(国立卫生研究院资助的1-U54-AI-057153)和其内部的成员资格以及由国立卫生研究院授予的1-U54-AI-057153表示感谢。政府具有本发明的一定权利。
本申请要求2012年4月26日提交的美国临时专利申请序列号61/638797的优先权,其通过引用其以其全文并入本文。
I.发明领域
本发明一般涉及免疫学、微生物学和病理学。更具体地,其涉及与细菌蛋白的抗体和用于引发这类抗体的细菌肽有关的方法和组合物。蛋白质包括凝固酶(Coa)。
II.背景技术
北美医院正在经历金黄色葡萄球菌的流行病。这种生物引起从轻微的皮肤感染到危及生命的败血症、心内膜炎和肺炎的广泛疾病[2]。金黄色葡萄球菌天生具有广泛的毒力因子,使其有很多疾病临床表现。区别金黄色葡萄球菌与较小致病性的葡萄球菌物种的界定特征之一是其使抗凝的血液凝固的能力[48、75]。这一特点起因于两种蛋白质,即凝结酶(Coa)和血管假性血友病因子结合蛋白(vWbp)。Coa和vWbp结合至宿主凝血酶原并诱导宿主凝血酶原的构象变化,这模仿从酶原到活化的凝血酶的过渡,使得复合物将纤维蛋白原裂解成纤维蛋白[66、67、71、72、133、146、188]。纤维蛋白形成血凝块的网状网络。
Coa和vWbp在金黄色葡萄球菌感染的致病机制中发挥着重要的作用[212]。coa和vwb双突变体的感染导致鼠败血症模型中延迟的死亡且几乎消除了葡萄球菌形成脓肿的能力(Cheng等2010)。对抗Coa和vWbp的体液免疫应答提供了对抗葡萄球菌感染的保护(Cheng等2010)。利用直接凝血酶抑制剂对凝血酶的药物抑制抵消Coa和vWbp的活性并提供对葡萄球菌败血症的预防性保护[20、177、213]。
金黄色葡萄球菌能在干燥表面上存活,从而增加传播的机会。任何金黄色葡萄球菌感染都可引起葡萄球菌烫伤皮肤综合症,一种对外毒素进入到血液中的皮肤反应。金黄色葡萄球菌也会导致会威胁生命的被称为脓血症的一种败血症。耐甲氧西林金黄色葡萄球菌(MRSA)已成为医院获得性感染的主要原因。
金黄色葡萄球菌感染通常是用抗生素处理,其中青霉素是选用药物,而万古霉素用于甲氧西林耐药分离株。对抗生素呈现出广谱耐药性的葡萄球菌菌株比例已经增加,这对有效的抗菌治疗构成威胁。此外,最近出现的万古霉素耐药性金黄色葡萄球菌菌株引起了对其没有有效疗法的MRSA菌株开始出现并传播的担忧。
在葡萄球菌感染中抗生素的替代方法一直是在被动免疫治疗中使用对抗葡萄球菌抗原的抗体。这种被动免疫治疗的实例涉及多克隆抗血清的施用(WO00/15238、WO00/12132)以及利用抗脂磷壁酸的单克隆抗体的治疗(WO98/57994)。
靶向对抗金黄色葡萄球菌或对抗它产生的外蛋白的第一代疫苗已经取得了有限的成功(Lee,1996),但仍然需要开发用于处理葡萄球菌感染的其他治疗组合物。
发明内容
在美国,金黄色葡萄球菌是引起菌血症和医院获得性感染最常见的原因。目前没有FDA批准的预防葡萄球菌疾病的疫苗。
在一些实施方案中,提供抑制、减轻和/或预防葡萄球菌感染的抗体组合物。
一些实施方案涉及在确定患有或有风险患有葡萄球菌感染的患者中抑制葡萄球菌感染的方法,其包括向患者施用有效量的特异性地结合至葡萄球菌Coa多肽1-2结构域的Coa结合多肽。在一些实施方案中,该方法还包括施用有效量的两种或更多种Coa结合多肽。在一些实施方案中,该方法还包括向患者施用抗生素或葡萄球菌疫苗组合物。在其他实施方案中,还提供用于处理患有或者确定患有葡萄球菌感染的患者的方法。在进一步的实施方案中,还提供用于预防葡萄球菌感染的方法。
在一些方面,Coa结合多肽特异性地结合至葡萄球菌Coa多肽的结构域1。在其他方面,Coa结合多肽特异性地结合至葡萄球菌Coa多肽的结构域2。在进一步的实施方案中,Coa结合多肽特异性地结合至葡萄球菌Coa多肽的结构域1和结构域2二者上的区域。
一些实施方案涉及特异性地结合至由SEQ ID NOs:1-8中任一序列编码的多肽中的表位的Coa结合多肽。在一些方面,Coa结合多肽特异性地结合至由SEQ ID NO:1-8中任一序列编码的多肽的氨基酸1-149、150-282或1-282中的表位。在一些方面,表位包括至少或者具有至多来自本文提供的序列中的任一个或由来自本文提供的序列中的任一个编码的6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100个或者更多个连续氨基酸(或者其中可导出的任意范围)。
在具体的实施方案中,Coa结合多肽与5D5.4或者7H4.25单克隆抗体竞争结合葡萄球菌Coa多肽。在进一步的实施方案中,单克隆抗体是4H9.20、4B10.44、3B3.14、2A3.1、2H10.12、6D1.22、6C4.15、6C10.19、8C2.9或4F1.7。在一些实施方案中,Coa结合多肽对葡萄球菌Coa多肽具有通过ELISA测量的约0.5至20nM-1、1.0至10nM-1或1.0至6.0nM-1的缔合常数。在一些实施方案中,Coa结合多肽对葡萄球菌Coa结构域1-2具有通过ELISA测量的约0.5至20nM-1或1.0至10nM-1的缔合常数。
Coa结合多肽可以是特异性地结合来自葡萄球菌属细菌的Coa蛋白的任意多肽。在一些实施方案中,Coa结合多肽是经纯化的单克隆抗体或经纯化的多克隆抗体。多肽可以是例如为单结构域抗体、人源化抗体或者嵌合抗体的抗体。在一些实施方案中,可以给患者施用两种或更多种Coa结合多肽(例如,两种或更多种经纯化的单克隆抗体或经纯化的多克隆抗体)。在一些方面,Coa结合多肽是重组的。在其他实施方案中,可以对多肽进行化学修饰,例如添加一个或更多个化学修饰或者基团。
提供其中Coa结合多肽包含来自特异性地结合至葡萄球菌Coa多肽结构域1-2的抗体的一个或更多个CDR结构域的实施方案。在具体的实施方式中,Coa结合多肽包含来自5D5.4和7H4.25单克隆抗体的VH结构域或VL结构域中的一、二、三、四、五、六或更多个CDR结构域。在一些方面,Coa结合多肽包含来自5D5.4或7H4.25单克隆抗体的VH结构域或VL结构域中的六个CDR结构域。在一些实施方案中,Coa结合多肽包含与5D5.4或7H4.2 5单克隆抗体的VH结构域或VL结构域至少或者至多70%、75%、80%、85%、90%、95%或者99%一致的序列。提供了以下实施方案:其中Coa结合多肽包含来自5D5.4或7H4.25单克隆抗体的VH结构域和/或5D5.4或7H4.25单克隆抗体的VL结构域。在进一步的实施方案中,单克隆抗体是4H9.20、4B10.44、3B3.14、2A3.1、2H10.12、6D1.22、6C4.15、6C10.19、8C2.9或者4F1.7。
在一些实施方案中,Coa结合多肽包含来自特异性地结合至葡萄球菌Coa多肽的结构域1-2的Coa结合多肽的一个或者更多个CDR结构域和选自免疫球蛋白、纤连蛋白或者金黄色葡萄球菌蛋白Z的多肽的支架区。
Coa结合多肽可以有效地偶联至第二Coa结合多肽。在一些方面,第一和第二Coa结合蛋白有效地重组偶联。在其他方面,第一和第二Coa结合蛋白有效地化学偶联。
提供其中Coa结合多肽以约、至少约、或至多约0.1mg/kg到5mg/kg、1mg/kg到5mg/kg、0.1mg/kg到1mg/kg或者2mg/kg到5mg/kg(或者其中可导出的任意范围)的剂量施用的实施方案。
实施方案还提供了一种经纯化的多肽,其包含来自特异性地结合至葡萄球菌Coa多肽结构域1-2的抗体的一个或更多个Coa结合蛋白CDR结构域。在一些实施方案中,Coa结合多肽与单克隆抗体4H9.20、4B10.44、3B3.14、4F1.7、6C4.15、8C2.9、2A3.1、5C3.2、2H10.12、6D1.22、6C10.19、5D5.4或7H4.25竞争对葡萄球菌Coa多肽的结合。在一些方面,Coa结合多肽对葡萄球菌Coa多肽具有通过ELISA测量的约0.1nM-1至20nM-1、0.5nM-1至10nM-1、或1.0nM-1至10nM-1的缔合常数。多肽可以包含例如单结构域抗体Coa结合多肽、人源化抗体或者嵌合抗体。
在一些实施方案中,多肽是重组的。在一些方面,重组多肽包含来自4H9.20、4B10.44、3B3.14、4F1.7、8C2.9、2A3.1、5C3.2、2H10.12、6D1.22、6C4.15、6C10.19、5D5.4或7H4.25单克隆抗体的VH或VL结构域的一个或更多个CDR结构域的至少90%、95%或者99%。在一些实施方案中,重组多肽包括来自4H9.20、4B10.44、3B3.14、4F1.7、8C2.9、2A3.1、5C3.2、2H10.12、6D1.22、6C4.15、6C10.19、5D5.4和/或7H4.25单克隆抗体的VH或VL结构域的二、三、四、五、六个或者更多个CDR结构域。
在一些实施方案中,重组多肽包含i)来自4H9.20的可变轻链的CDR1、CDR2、和/或CDR3;和/或ii)来自4H9.20的可变重链的CDR1、CDR2、和/或CDR3。在一些实施方式中,重组多肽包括i)来自5D5.4的可变轻链的CDR1、CDR2、和/或CDR3;和/或ii)来自5D5.4的可变重链的CDR1、CDR2、和/或CDR3。在一些实施方式中,重组多肽包括i)来自4B10.44的可变轻链的CDR1、CDR2、和/或CDR3;和/或ii)来自4B10.44的可变重链的CDR1、CDR2、和/或CDR3。在一些实施方式中,重组多肽包括i)来自3B3.14的可变轻链的CDR1、CDR2、和/或CDR3;和/或ii)来自3B3.14的可变重链的CDR1、CDR2、和/或CDR3。在一些实施方式中,重组多肽包括i)来自7H4.25的可变轻链的CDR1、CDR2、和/或CDR3;和/或ii)来自7H4.25的可变重链的CDR1、CDR2、和/或CDR3。在一些实施方式中,重组多肽包括i)来自2A3.1的可变轻链区的CDR1、CDR2、和/或CDR3;和/或ii)来自2A3.1的可变重链区的CDR1、CDR2、和/或CDR3。在一些实施方式中,重组多肽包括i)来自2H10.12的可变轻链的CDR1、CDR2、和/或CDR3;和/或ii)来自2H10.12的可变重链的CDR1、CDR2、和/或CDR3。在一些实施方式中,重组多肽包括i)来自6D1.22的可变轻链的CDR1、CDR2、和/或CDR3;和/或ii)来自6D1.22的可变重链的CDR1、CDR2、和/或CDR3。在一些实施方式中,重组多肽包括i)来自6C4.15的可变轻链的CDR1、CDR2、和/或CDR3;和/或ii)来自6C4.15的可变重链的CDR1、CDR2、和/或CDR3。在一些实施方式中,重组多肽包括i)来自6C10.19的可变轻链的CDR1、CDR2、和/或CDR3;和/或ii)来自6C10.19的可变重链的CDR1、CDR2、和/或CDR3。在一些实施方式中,重组多肽包括i)来自8C2.9的可变轻链的CDR1、CDR2、和/或CDR3;和/或ii)来自8C2.9的可变重链的CDR1、CDR2、和/或CDR3。在一些实施方式中,重组多肽包括i)来自4F1.7的可变轻链的CDR1、CDR2、和/或CDR3;和/或ii)来自4F1.7的可变重链的CDR1、CDR2、和/或CDR3。在表5中可以找到关于这些CDR结构域的序列。
在一些实施方案中,提供一种经纯化的多肽,其包含来自特异性地结合至葡萄球菌Coa多肽结构域1-2的抗体的一个或更多个Coa结合多肽CDR结构域。如上所述,多肽可以包含来自Coa抗体的轻链和/或重链可变区的1、2、3、4、5或6个CDR。表5提供了12种不同的Coa抗体和它们的来自轻链和重链可变区二者的CDR1、CDR2和CDR3序列。在一些实施方案中,多肽包含来自特定抗体的轻链可变区的CDR1、CDR2、和/或CDR3。设想在一些实施方案中多肽具有来自轻链可变区和/或重链可变区的CDR1、CDR2和CDR3,但是CDR1、CDR2和CDR3不必来自同一个抗体。虽然一些多肽具有来自同一抗体或者基于同一抗体的CDR1、CDR2和CDR3,但是考虑到氨基酸序列的重叠,来自一个抗体的CDR1可以被来自或者基于另一个抗体的CDR取代。例如,多肽可以包含来自或者基于4F1.7轻链可变区的CDR1、来自或者基于4F1.7轻链可变区的CDR2,但是具有来自或者基于6C4.15轻链可变区的CDR3。然而,通常设想的是,当单组CDR1、CDR2和CDR3被一起使用时,它们全部来自轻链可变区或者重链可变区,而不是来自两者的混合。
替代地,多肽可以含有与SEQ ID NO:9、15、24、33、40、44、56和49中所列出的整个序列为、至多为或至少为70%、75%、80%、85%、90%、95%、96%、97%、98%、99%、100%(或者其中可导出的任意范围)一致的CDR1序列,其为来自Coa抗体轻链可变区的CDR1序列。替代地或者另外地,多肽可以含有与SEQ ID NO:10、16、21、25和34中列出的整个序列为、至多为或至少为70%、75%、80%、85%、90%、95%、96%、97%、98%、99%、100%(或者其中可导出的任意范围)一致的CDR2序列,其为来自Coa抗体轻链可变区的CDR2序列。替代地或者另外地,多肽可以含有与SEQ ID NO:11、17、22、26、30、35、36、45和57中列出的整个序列为、至多为或至少为70%、75%、80%、85%、90%、95%、96%、97%、98%、99%、100%(或者其中可导出的任意范围)一致的CDR3序列,其为来自Coa抗体轻链可变区的CDR3序列。替代地或者另外地,多肽可以含有与SEQ ID NO:12、18、27、37、41、46、50、53和58中所述的整个序列为、至多为或至少为70%、75%、80%、85%、90%、95%、96%、97%、98%、99%、100%(或者其中可导出的任意范围)一致的CDR1序列,其为来自Coa抗体重链可变区的CDR1序列。替代地或者另外地,多肽可以含有与SEQ ID NO:13、19、28、31、38、43、47、51、54和59中所述的整个序列为、至多为或至少为着70%、75%、80%、85%、90%、95%、96%、97%、98%、99%、100%(或者其中可导出的任意范围)一致的CDR2序列,其为来自Coa抗体重链可变区的CDR2序列。替代地或者另外地,多肽可以含有与SEQ ID NO:14、20、23、29、32、39、42、48、52、55和60所述的全部序列有着70%、75%、80%、85%、90%、95%、96%、97%、98%、99%、100%(或者其中可导出的任意范围)一致的CDR3序列,其为来自Coa抗体重链可变区的CDR3序列。设想在一些实施方案中用SEQ ID NO:61来取代SEQ ID NO:10、16、21、25和34中的任一个。在一些实施方案中,CDR2具有SEQ ID NO:61的序列。
其他的实施方案提供了重组多肽,其包含来自特异性地结合至葡萄球菌Coa多肽结构域1-2的抗体的一个或者更多个CDR结构域和选自免疫球蛋白、纤连蛋白或者金黄色葡萄球菌蛋白Z的多肽的支架区。还还设想可以将任意多肽附接、融合或缀合至试剂或物质、这样的治疗部分或可检测部分。
在一些方面,重组多肽有效地偶联至特异性地结合第二葡萄球菌蛋白的重组多肽。
在其他实施方案中,多肽是包含以下的抗体:(a)包含所述VH结构域、人源铰链区、和来自IgGl、IgG2、IgG3或者IgG4亚型的CH1、CH2和CH3区的重链;和(b)包含所述VL结构域和人源κCL或者人源λCL的轻链。
一些实施方案提供了特异性地结合至葡萄球菌Coa多肽的经纯化的单克隆抗体,其中经纯化的单克隆抗体是5A10、8E2、3A6、7E2、3F6、1F10、6D11、3D11、5A11、1B10、4C1、2F2、8D4、7D11、2C3、4C5、6B2、4D5、2B8、1H7、6C10.19或者6C4.15单克隆抗体。
在一些方面,经纯化的多肽不由为4H9.20、5D5.4、4B10.44、3B3.14、7H4.25、2A3.1、2H10.12、6D1.22、6C4.15、6C10.19、8C2.9和4F1.7的鼠源单克隆抗体组成。在其他实施方案中,经纯化的多肽不是经分离的鼠源单克隆抗体。
其他实施方案提供了包含一种或者更多种Coa结合多肽的药物组合物。在一些实施方案中,药物组合物提供了在密闭容器中的单一单位剂量的经纯化多肽。药物组合物可以至少包含第二抗菌剂,其包括但不限于抗生素、葡萄球菌疫苗组合物或者特异性地结合至第二葡萄球菌蛋白的多肽。
一些实施方案提供了多核苷酸,其包含编码Coa结合多肽的核酸序列。
其他实施方案提供了表达载体,其包含编码有效地连接至表达调控序列的Coa结合多肽的核酸序列。一些实施方案提供了包含表达载体的宿主细胞。
实施方案还提供了一种制备Coa结合多肽的方法,其包括在宿主细胞中表达编码有效地连接至表达调控序列的多肽的核酸序列。
实施方案还提供了Coa抗体在用于处理细菌和/或葡萄球菌感染的方法和组合物中的用途。在一些实施方案中,组合物制造用于细菌感染、特别地葡萄球菌感染的治疗性和/或预防性处理的药物。此外,在一些实施方案中提供可以用来处理(例如,限制葡萄球菌脓肿形成和/或持久存在于对象中)或者预防细菌感染的方法和组合物。
一些方面涉及减少葡萄球菌感染或者脓肿形成的方法,其包括向患有或疑似患有葡萄球菌感染的患者施用有效量的特异性地结合Coa多肽的一种或者更多种抗体。抗体可以是经纯化的多克隆抗体、经纯化的单克隆抗体、重组多肽、或者它们的片段。在一些方面抗体是人源化的或人类的。在更进一步的方面抗体是重组抗体片段。在一些方面单克隆抗体包括5A10、8E2、3A6、7E2、3F6、1F10、6D11、3D11、5A11、1B10、4C1、2F2、8D4、7D11、2C3、4C5、6B2、4D5、2B8、1H7、6C10.19或者6C4.15中的一个或更多个。抗体可以以0.1μg/kg、0.5μg/kg、1μg/kg、5μg/kg、10μg/kg、50μg/kg、100μg/kg到5μg/kg、10μg/kg、50μg/kg、100μg/kg、500μg/kg的剂量或者0.1mg/kg、0.5mg/kg、1mg/kg、5mg/kg、10mg/kg、50mg/kg、100mg/kg到5mg/kg、10mg/kg、50mg/kg、100mg/kg、500mg/kg的剂量,或者其中可导出的任意范围的剂量施用。重组抗体片段可以有效地偶联至第二重组抗体片段。在一些方面,第二重组抗体片段结合第二葡萄球菌蛋白。方法可以还包括施用结合第二葡萄球菌蛋白的第二重组抗体。在一些方面,方法还包括施用抗生素。
实施方案涉及单克隆抗体多肽、具有一个或者更多个其片段的多肽和编码它们的多核苷酸。在一些方面多肽可以包含Coa特异性抗体的重链可变区和/或轻链可变区的全部或部分。在更进一步的方面,多肽可以包含对应于来自Coa特异性抗体的可变轻链和/或可变重链的第一、第二和/或第三互补决定区(CDR)的氨基酸序列。
在更进一步的方面,实施方案提供了一个产生实施方案的单克隆抗体的杂交瘤细胞系。在实施方案中,杂交瘤细胞系是产生5A10、8E2、3A6、7E2、3F6、1F10、6D11、3D11、5A11、1B10、4C1、2F2、8D4、7D11、2C3、4C5、6B2、4D5、2B8、1H7、6C10.19或者6C4.15单克隆抗体的细胞系。在进一步的方面,在人源化抗体或其变体中可以包含来自MAb的轻链和/或重链可变区的1、2和/或3个CDR。
一些方面涉及处理患有或疑似患有葡萄球菌感染的对象的方法,其包括向患有或疑似患有葡萄球菌感染的患者施用有效量的特异性地结合Coa多肽的纯化抗体或者多肽。
在进一步的方面,方法涉及处理有葡萄球菌感染风险的对象,其包括在感染葡萄球菌之前向有葡萄球菌感染风险的患者施用有效量的特异性地结合Coa多肽的抗体。
一些实施方案涉及包含特异性结合上述肽片段的经分离的和/或重组的抗体或者多肽的抗体或结合多肽组合物。在一些方面抗体或者多肽具有与本文中提供的任何单克隆抗体的全部或部分为、至少为、或至多为80%、85%、90%、95%、96%、97%、98%、99%或者100%一致的序列。
在另外的实施方案中,提供包含一种或者更多种本文中讨论的多肽或者抗体或者抗体片段的药物组合物。这种组合物可以包含或者可以不包含另外的活性成分。
在一些实施方案中,提供一种药物组合物,其基本上由包含本文中讨论的一种或者更多种抗体或者抗体片段的多肽组成。设想组合物可以含有非活性成分。
其他方面涉及包含有效抗菌量的特异性地结合至上述肽的抗体和药学上可接受的载体的药物组合物。
术语“提供”根据其通常意义用来表示“供应或者供使用”。在一些实施方案中,通过施用包含本文中描述的抗体或其片段的组合物直接提供蛋白质。
对象通常会患有(例如,诊断为持续的葡萄球菌感染)、会疑似患有、或者会有风险患有感染葡萄球菌感染。组合物以实现处理或者预防葡萄球菌感染的预期目的有效的量包含Coa结合多肽。术语“结合多肽”指特异性地结合至靶标分子的多肽,例如抗体对抗原的结合。结合多肽可以但不需要来自于免疫球蛋白基因或者免疫球蛋白基因的片段。更具体地,有效量意思是提供抵抗、改善或者缓解感染所必要的活性成分的量。在更具体的方面,有效量预防、减轻或者改善疾病或者感染的症状或者延长正在被医治主体处理的对象的生命存活期。有效量的确定在本领域技术人员的能力范围内,尤其是根据本发明文中提供的详细公开的情况下如此。对于本文所述方法中使用的任何制剂,从体外、细胞培养和/或动物模型试验可以初始估算有效量或剂量。例如,在动物模型中可以配制剂量以实现期望的反应。这类信息可以用来更准确地确定在人类中有用的剂量。
组合物可以包含结合Coa的抗体。抗体可以是抗体片段、人源化抗体、单克隆抗体、单链抗体等。在一些方面,Coa抗体是通过在对象中提供导致产生结合Coa的抗体的Coa肽或抗原或表位而引起的。Coa抗体通常以药学上可接受的组合物配制。Coa抗体组合物可以还包含至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或者19个或更多个葡萄球菌抗原或其免疫原性片段。葡萄球菌抗原包括但不局限于Eap、Ebh、Emp、EsaB、EsaC、EsxA、EsxB、IsdA、IsdB、SdrC、SdrD、SdrE、ClfA、ClfB、Coa、Hla(例如、H35突变体)、IsdC、SasF、vWa、SpA和其衍生物(参见2009年4月3日提交的美国临时申请序号61/166432;2009年4月20日提交的61/170779;和2009年10月6日提交的61/103196;其每一个都通过引用以其全文并入本文)、vWh(一种52kDa的玻璃体结合蛋白(WO 01/60852))、Aaa(GenBank CAC80837)、Aap(GenBank登录号AJ249487)、Ant(GenBank登录号NP_372518)、自溶素氨基葡糖苷酶、自溶素酰胺酶、Cna、胶原蛋白结合蛋白(US6288214)、EFB(FIB)、弹性蛋白结合蛋白(EbpS)、EPB、FbpA、纤维蛋白原结合蛋白(US6008341)、纤连蛋白结合蛋白(US5840846)、FnbA、FnbB、GehD(US 2002/0169288)、HarA、HBP、免疫显性的ABC转运蛋白、IsaA/PisA、层粘连蛋白受体、脂肪酶GehD、MAP、Mg2+转运蛋白、MHC II类似物(US5648240)、MRPII、核苷磷酸化酶(Npase)、RNA III激活蛋白(RAP)、SasA、SasB、SasC、SasD、SasK、SBI、SdrF(WO 00/12689)、SdrG/Fig(WO 00/12689)、SdrH(WO 00/12689)、SEA外毒素(WO 00/02523)、SEB外毒素(WO 00/02523)、SitC和Ni ABC转运蛋白、SitC/MntC/唾液结合蛋白(US5801234)、SsaA、SSP-1、SSP-2和/或玻璃体结合蛋白(参见PCT公开WO2007/113222、WO2007/113223、WO2006/032472、WO2006/032475、WO2006/032500,其每一个都通过引用以其全文并入本文)的全部或片段。葡萄球菌抗原或者免疫原性片段或者节段可以和Coa抗体同时施用。葡萄球菌抗原或者免疫原性片段和Coa抗体可以在相同或不同的组合物中使用且可以同时或不同时施用。组合物可以包含结合来自多种金黄色葡萄球菌菌株的Coa多肽的多种(例如2、3、4或者更多种)Coa抗体。
Coa抗体组合物可以还包含至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或者19个或更多个(或其中可导的任何范围的)葡萄球菌抗原或其免疫原性片段的抗体、抗体片段或抗体亚片段。这类抗体、抗体片段或抗体亚片段所涉及的葡萄球菌抗原包括但不限于Eap、Ebh、Emp、EsaB、EsaC、EsxA、EsxB、IsdA、IsdB、SdrC、SdrD、SdrE、ClfA、ClfB、Coa、Hla(例如、H35突变体)、IsdC、SasF、vWa、SpA和其衍生物(参见2009年4月3日提交的美国临时申请序号61/166432;2009年4月20日提交的61/170779;和2009年10月6日提交的61/103196,其每一个都通过引用以其全文并入本文)、vWh(一种52kDa的玻璃体结合蛋白(WO01/60852))、Aaa(GenBank CAC80837)、Aap(GenBank登录号AJ249487)、Ant(GenBank登录号NP_372518)、自溶素氨基葡糖苷酶、自溶素酰胺酶、Cna、胶原蛋白结合蛋白(US6288214)、EFB(FIB)、弹性蛋白结合蛋白(EbpS)、EPB、FbpA、纤维蛋白原结合蛋白(US6008341)、纤连蛋白结合蛋白(US5840846)、FnbA、FnbB、GehD(US 2002/0169288)、HarA、HBP、免疫显性的ABC转运蛋白、IsaA/PisA、层粘连蛋白受体、脂肪酶GehD、MAP、Mg2+转运蛋白、MHC II类似物(US5648240)、MRPII、核苷磷酸化酶、RNA III激活蛋白(RAP)、SasA、SasB、SasC、SasD、SasK、SBI、SdrF(WO 00/12689)、SdrG/Fig(WO 00/12689)、SdrH(WO 00/12689)、SEA外毒素(WO00/02523)、SEB外毒素(WO 00/02523)、SitC和Ni ABC转运蛋白、SitC/MntC/唾液结合蛋白(US5801234)、SsaA、SSP-1、SSP-2和/或玻璃体结合蛋白(见PCT公开WO2007/113222、WO2007/113223、WO2006/032472、WO2006/032475、WO2006/032500,其每一个都通过引用以其全文并入本文)的全部或其片段。其他葡萄球菌抗原或其免疫原性片段的抗体、抗体片段或者抗体亚片段可以和Coa抗体同时施用。抗体、抗体片段或者抗体亚片段与其他葡萄球菌抗原或免疫原性片段可以在相同或不同组合物中施用至Coa抗体,且可以同时或不同时施用。
实施方案包括含有或不含有细菌的组合物。组合物可以包含或可以不包含减弱毒性的或者有活力的或者完好的葡萄球菌属细菌。在一些方面,组合物包含非葡萄球菌属细菌,或者不含有葡萄球菌属细菌。在一些实施方案中,细菌组合物包含经分离的或者重组表达的Coa抗体或者编码该抗体的核酸。在更进一步的方面,Coa抗体是多聚化的,例如,二聚体、三聚体、四聚体等。
在一些方面,肽或者抗原或者表位可以以1、2、3、4、5、6、7、8、9、10个或者更多个多肽节段或者肽模拟物的多聚物出现。
术语“经分离的”可以指基本上不含以下成分的核酸或者多肽:它们的原始来源的细胞物质、细菌物质、病毒物质或者培养基(利用重组DNA技术产生时),或者化学前体或其他化学物质(化学合成时)。此外,经分离的化合物指一种可以作为经分离的化合物向对象施用的化合物;换言之,如果化合物粘附到柱子或者嵌入琼脂糖凝胶中,则不可以简单地认为该化合物是“经分离的”。此外,“经分离的核酸片段”或者“经分离的肽”为不是作为片段天然存在的和/或通常未处于功能状态下的核酸或蛋白片段。
组合物例如抗体、肽、抗原或者免疫原可以缀合或者共价地或非共价地连接到其他基团,例如佐剂、蛋白、肽、支持物、荧光基团或者标记物。术语“缀合”或者“免疫缀合”在广义上用于定义一个基团与另一试剂的有效缔合,并不意在仅指任何类型的有效缔合,并且特别地不限于化学“缀合”。特别设想重组的融合蛋白。
术语“Coa抗体”指的是特异性地结合来自葡萄球菌属细菌的Coa蛋白的抗体。在一些实施方案中抗体可以结合来自特定葡萄球菌属细菌菌株的特殊Coa蛋白。
在进一步的方面,组合物可以向对象施用多于一次,可以施用1、2、3、4、5、6、7、8、9、10、15、20或更多次(或者其中可导出的任何范围)。组合物的施用包括但不限于口服施用、胃肠外施用、皮下施用和静脉内施用或者其各种组合施用,包括吸入或抽吸。
组合物通常对人类对象施用,但是设想对能够提供对抗葡萄球菌属细菌的治疗益处的其他动物施用,特别是牛、马、山羊、绵羊、禽类和其他家养动物。在另外的方面,葡萄球菌属细菌是金黄色葡萄球菌。在更进一步的方面,方法和组合物可以用于预防、减轻、减少或处理组织或腺体的感染。其他方法还包括但不限于预防性降低未显示感染迹象的对象中的细菌负荷,特别是疑似或有风险被目标细菌定殖的那些对象,例如,在住院、治疗和/或康复期间感染或会有风险或易于感染的患者。
更进一步的实施方案包括用于为对象提供对抗葡萄球菌属细菌的保护性或治疗性组合物的方法,其包括对对象施用有效量的包含(i)Coa抗体;或(ii)编码Coa抗体的核酸分子的组合物,或者(iii)与本文中所述的细菌蛋白的任何组合或排列施用Coa抗体。
实施例部分的实施方案应理解为适用于本发明的所有方面的实施方案,包括组合物和方法。
术语“或”在权利要求中的使用用于表示“和/或”,除非明确地说明是仅指替代选择或替代选择是相互排斥的,尽管本公开支持仅指替代选择和“和/或”的定义。还设想使用术语“或”所列出的任何事物也可以特别地排除在外。
本申请全文中,术语“约”用于表示包含所使用的装置或方法的标准差的数值。
根据存在已久的专利法,当在权利要求书或说明书中单数名词和词语“包括”一起使用时表示一个或更多个,除非明确地说明。
如本说明书和权利要求书所用,词语“包含”、“具有”、“包括”或“含有”是包括性的或开放式的,并且不排除另外的、未列举的要素或方法步骤。
本发明的其他目的、特征和优点通过下面的详细描述会变得明显。然而,应该理解,在表明本发明具体实施方案时的详细说明和具体实施例仅通过举例说明的方式给出,这是因为在本发明的精神和范围内的各种变化和修改通过该详细说明对本领域技术人员会变得明显。
附图说明
为了得到并且可以具体地理解本发明的上述特征、优点和目的以及会变得清楚的其他方面,在附图中说明更具体的描述和以上简要概括的本发明的一些实施方案。这些附图形成说明书的一部分。然而应注意,附图举例说明本发明的一些实施方案,因此不应被认为是限定其范围。
图1A–1B:金黄色葡萄球菌Newman凝结酶(CoaNM)的一级结构和被一些Coa特异性单克隆抗体靶向的区域的示图。图1A示出了金黄色葡萄球菌Newman的凝结酶(CoaNM)的一级结构的示图,其为通过N-端的His6标记从大肠杆菌中纯化的。CoaNM包含涉及凝血酶原结合的D1和D2结构域、连接子(L)结构域和重复(R)结构域,重复(R)结构域由结合纤维蛋白原的27个氨基酸残基肽序列的串联重复序列组成。除了CoaNM之外,利用N端的His6标记纯化D1Coa、D2Coa、D12Coa、LCoa和RCoa结构域以及缺失1-18位氨基酸的D1Coa结构,即D1Δ1-18。图1B示出了被Coa特异性单克隆抗体5D5、8C2、6C10、3B3、6C4和7H4靶向的凝固酶的区域的示图。
图2A-2B:Mab 5D5.4破坏Coa·凝血酶原活性。(A)利用显色底物S-2238测量Coa·凝血酶原酶活性。在与Mab 5D5.4或者(ATCC登录号___)多克隆经纯化的α-Coa的预孵育后,活性降低。采用单因素方差分析和随后的事后Dunnett多重比较试验来评估统计分析。(B)通过ELISA测量CoaNM和人类凝血酶原的缔合并且用增加浓度的Mab5D5.4或者对照IgG1来干扰。与同种型对照相比,*P<0.05,**P<0.01。
图3A-3B:凝固-抵消抗体的保护值。将单克隆抗体5D5.4、7H4.25(ATCC登录号___)或者IgG1同种型对照(A)或者8C2.9或者IgG2a同种型对照(B)以5mg每千克体重的浓度注射进入初次接受试验的BALB/c小鼠的腹腔。通过静脉注射金黄色葡萄球菌Newman等位基因突变体vwb(2×108CFU)攻击被动免疫过的小鼠,并对动物的存活率进行超过10天的监测。
图4:Mab 5D5.4对不同Coa血清型的临床分离株的感染的交叉保护。将单克隆抗体5D5.4或者IgG1同种型对照以5mg每千克体重的浓度注射进入初次接受试验的BALB/c小鼠的腹腔。通过静脉注射金黄色葡萄球菌菌株(A)N315(1×108CFU)或者(B)MW2(2×108CFU)攻击被动免疫过的小鼠,并对动物的存活率进行超过10天的监测。
图5A-D:小鼠接受腹腔注射5D5.4或者IgG1同种型对照,随后用致死剂量的金黄色葡萄球菌Newman(Coa III型)(图5A)、N315(Coa II型)(图5B)、CowanI(Coa IV型)(图5C)、或MW2(Coa VII型)(图5D)感染,监测超过十天的观察期以评估它们的保护作用。对于用菌株Newman攻击的动物,5D5.4处理导致死亡时间的延迟(IgG1对5D5.4,P<0.01)、N315(IgG1对5D5.4,P<0.05)、CowanI(IgG1对5D5.4,P<0.05)或MW2(IgG1对5D5.4,P<0.05)。
图6A-6D:识别CTCoa的单克隆抗体。(A-B)通过ELISA测量CTCoa和人类纤维蛋白原的缔合,并且用增加浓度的Mab 3B3.14或者对照IgG1(A)或者Mab 6C4.15或者对照IgG2b(B)来干扰。与同种型对照相比,*P<0.05,**P<0.01,***P<0.001。(C-D)将单克隆抗体3B3.14或者IgG1对照(C)或者6C4.15或者IgG2b(D)以5mg每千克体重的浓度注射到初次接受试验的BALB/c小鼠的腹腔。通过静脉注射金黄色葡萄球菌菌株vwb攻击被动免疫过的小鼠,并对动物的存活率进行超过10天的监测。
图7A-D:小鼠接受腹腔注射3B3.14或者IgG1同种型对照,随后用致死剂量的金黄色葡萄球菌临床分离株USA300(Coa III型)(图7A)、N315(Coa II型)(图7B)、CowanI(CoaIV型)(图7C)、或者MW2(Coa VII型)(图7D)感染,监测超过十天的观察期以评估它们的保护作用。3B3.14不保护小鼠对抗野生型Newman(IgG1对3B3.14p>0.05,图7A)、N315(IgG1对3B3.14 p.0.05,图7B)、或者MW2(IgG1对3B3.14 p.0.05,图7D)的攻击。3B3.14提供在用菌株CowanI攻击后死亡时间的适度延迟(IgG1对3B3.14 p<0.001;图7C)。
图8:来自USA300(SEQ ID NO:1)、N315(SEQ ID NO:2)、MRSA252(SEQ ID NO:4)、MW2(SEQ ID NO:3)、和WIS(SEQ ID NO:5)的Coa序列的比对。
具体实施方式
金黄色葡萄球菌是人类皮肤和鼻孔的共生体,并且是血流、皮肤和软组织感染的主要原因(Klevens等人,2007)。葡萄球菌疾病死亡率近期急剧的增长是因为对抗生素通常不敏感的耐甲氧西林的金黄色葡萄球菌(MRSA)菌株的传播(Kennedy等人,2008)。在大型回顾研究中,在美国MRSA感染的发病率为所有入院中的4.6%(Kennedy等人,2007)。在美国用于94300个受MRSA感染的个体的年度医疗保健费用超过24亿美元(Kennedy等人,2007)。目前的MRSR传染病已经引发了必须通过开发预防性疫苗来解决的公共健康危机(Boucher和Corey,2008)。迄今为止,还没有FDA批准的预防金黄色葡萄球菌的疫苗。
在葡萄球菌败血症的发病机制中,凝固酶(Coa)是重要的毒力因子。通过Coa由纤维蛋白原到纤维蛋白的转化:凝血酶原复合物使金黄色葡萄球菌能够逃避免疫防御并在全身扩散。小鼠脓毒症模型中对于Coa的体液免疫是保护性的。先前的工作表明,N-端和C-端都有保护性表位,而且有类型特异性免疫力,这可归因于菌株中的Coa的N-端的基因变异。
发明人在此描述了结合葡萄球菌凝结酶的抗体和其抗原结合决定簇。特别地,产生了对抗Coa和特征为基于对蛋白单个结构域的亲和力及其干扰凝固的一组单克隆抗体。基于体外特征,在小鼠脓毒症模型中测试了若干单克隆抗体的保护,结果是鉴别了N-端保守部分的保护性表位。重要的是,在施用至动物时,靶向该表位的抗体能够在用剧毒的金黄色葡萄球菌的攻击后减少葡萄球菌败血症。因为这些分子能够阻断Coa的凝血酶原活化作用,所以这类抗体也可以提高宿主在葡萄球菌感染后的免疫应答。因此,实施方案中的Coa结合分子提供了治疗和预防葡萄球菌疾病的新的和有效的途径。
I.凝固酶多肽
实施方案的一些方面涉及凝固酶(Coa)多肽。图1A中提供了金黄色葡萄球菌Newman的Coa(CoaNM)的一级结构的图示。来自八种金黄色葡萄球菌菌株的Coa的核酸序列由如下的SEQ ID NO:1-8提供:USA300(SEQ ID NO:1)、N315(SEQ ID NO:2)、MW2(SEQ ID NO:3)、MRSA252(SEQ ID NO:4)、WIS(SEQ ID NO:5)、MU50(SEQ ID NO:6)、85/2082(SEQ ID NO:7)、和Newman(SEQ ID NO:8)。图6中提供了来自USA300(SEQ ID NO:1)、N315(SEQ ID NO:2)、MRSA252(SEQ ID NO:4)、MW2(SEQ ID NO:3)、和WIS(SEQ ID NO:5)的Coa序列的比对。
凝固酶通过其N-端结构域D1和D2与宿主凝血酶原相互作用。D1和D2的三个螺旋束具有结构相似性,但是在序列水平上是很低保守的[66]。前150个氨基酸包含D1结构域[68]。Coa的氨基-末端四肽插入到凝血酶原的激活袋中并且与凝血酶原Asp194形成盐桥[66]。Coa和凝血酶原之间的两个高亲和力结合的相互作用的第一个通过D1中的疏水表面凹槽与凝血酶原的148环发生[66]。SC150-282包含D2结构域[68]。第二个高亲和力结合的相互作用在凝血酶原外部位I的Tyr76的侧链和D2α螺旋之间发生[66]。Coa在溶液中形成二聚体,每个单体结合一个分子的凝血酶原[66]。由凝血酶原和D1D2结构域(SC1-325)的重组构建体形成的复合物能够通过与凝血酶原上的底物结合外部位不同的相互作用结合纤维蛋白原[133]。
Coa的另外两个结构域是较少充分理解的。在D2后,存在具有未知功能的高度保守的连接子(L)区域[77]。C-末端附近是27个氨基酸肽的串联重复序列的区域,重复序列的数量在不同菌株之间不同[77]。据认为重复区域是与纤维蛋白原具有高亲和力结合的原因[133,214]。
在所有的金黄色葡萄球菌的染色体上都发现了编码Coa(coa)的基因,然而它是最易变的蛋白质之一,有十二种已知的类型(Watanabe等人2005,Watanabe等人2009)。Coa等位基因中变异性的大多数存在于D1和D2结构域中。连接子区域相对保守,在血清型中有86.7%的一致性(Watanabe等人2005)。值得注意的是,成熟Coa的氨基末端(即信号肽酶切割位点后的前七个残基)、激活凝血酶原和在所有分析的菌株中这些残基都是保守的[68]。27残基肽的C-端串联重复序列在数量上从五到九变化,但是在血清型中有大于90%的一致性(Watanabe等人2005)。识别SC1-282中的表位的抗体对于阻抑Coa-凝血酶原复合体的酶活性是必需的。在体内,针对C-末端重复序列的抗体也能提供保护[215],但是保护机制尚不清楚。
Coa多肽可以用作亚单位疫苗且可以引起体液免疫应答并提供对抗金黄色葡萄球菌攻击的保护性免疫。在一些实施方案中预期了靶向多种金黄色葡萄球菌菌株中Coa变体的多价疫苗。在以Molly McAdow、Andrea DeDent、Alice Cheng、Carla Emolo、DominiqueMissiakas、Olaf Schneewind的名义于2012年4月26日提交的发明名称为“葡萄球菌凝结酶抗原和其使用方法”的美国临时专利申请中讨论了该实施方案,其在此通过引用以其全文并入。
II.蛋白质的组合物
蛋白质可以是重组的,或体外合成的。或者,非重组的或重组的蛋白质可以是从细菌中分离的。还预期了可以在组合物和方法中应用含有这种变异体的细菌。因此,不需要分离蛋白质。
术语“功能上等同的密码子”在本文中用来指编码相同氨基酸的密码子,例如用于精氨酸或丝氨酸的六个密码子,还指编码生物学上等同的氨基酸的密码子(参见以下的密码子表)。
密码子表
还应理解氨基酸和核酸序列可以包含额外的残基,例如分别包含额外的N端或C端氨基酸,或5'或3'序列,但仍基本上如前所述在本文所公开的序列之一中,只要序列符合上述标准(包括当涉及蛋白表达时生物蛋白活性的维持)即可。末端序列的添加特别地应用于例如可以包含位于编码区的5'部分或3'部分的侧面的各种非编码序列的核酸序列。
替代变异体通常含有在蛋白质内一个或更多个位点处一个氨基酸与另一个的交换,并可以设计为调整多肽的一种或更多种性质,损失或不损失其他功能或性质。替代可以是保守性的,即用一个相似形状和电荷的氨基酸取代一个氨基酸。保守性替换在本领域是众所周知的,包括例如以下的变化:丙氨酸到丝氨酸;精氨酸到赖氨酸;天冬酰胺到谷氨酰胺或组氨酸;天冬氨酸盐到谷氨酸盐;半胱氨酸到丝氨酸;谷氨酰胺到天冬酰胺;谷氨酸盐到天冬氨酸盐;甘氨酸到脯氨酸;组氨酸到天冬酰胺或谷氨酸;异亮氨酸到亮氨酸或缬氨酸;亮氨酸到缬氨酸或异亮氨酸;赖氨酸到精氨酸;蛋氨酸到亮氨酸或异亮氨酸;苯丙氨酸到酪氨酸;亮氨酸或蛋氨酸;丝氨酸到苏氨酸;苏氨酸到丝氨酸;色氨酸到酪氨酸;酪氨酸到色氨酸或苯丙氨酸;以及缬氨酸到异亮氨酸或亮氨酸。或者,替代可以是非保守性的,使得影响多肽的功能或活性。非保守性的改变通常涉及用化学上不同的残基来替代残基,例如用极性或带电荷的氨基酸替代非极性的或不带电荷的氨基酸,反之亦然。
以下是基于改变蛋白质的氨基酸以产生等效的或甚至改善的第二代分子的讨论。例如,一些氨基酸可以被蛋白质结构中的其他氨基酸替代,而没有可观察到的与结构、例如抗体的抗原结合区或底物分子上的结合位点相互作用的结合能力的损失。由于正是蛋白质的相互作用的能力和本性限定蛋白质的生物功能活性,所以在蛋白质序列中和在其基础DNA编码序列中可以进行一些氨基酸替代,但仍然产生具有相似性质的蛋白质。因此本发明人预期,在基因的DNA序列中可以进行各种变化,而没有可观察到的其生物效用或活性的损失。
在进行这类变化时,可以考虑氨基酸的亲水指数。在本领域中普遍地理解亲水氨基酸指数在提供蛋白质相互作用的生物功能中的重要性(Kyte和Doolittle,1982)。已经接受的是,氨基酸的相对亲水特性促成生成的蛋白质的二级结构,所述二级结构进而限定蛋白质与其他分子如酶、底物、受体、DNA、抗体、抗原等的相互作用。
在本领域中还理解基于亲水性可以有效地进行相似氨基酸的替代。通过引用并入本文的美国专利4554101阐明了蛋白质由其邻近氨基酸的亲水性决定的最大局部平均亲水性与蛋白质的生物学性质相关。应理解氨基酸可以被具有相似亲水性值的另一个氨基酸替代,并仍生产生物学上等效且免疫学上等效的蛋白质。
如以上所概述的,氨基酸替换通常基于氨基酸侧链取代基的相对相似性,例如其疏水性、亲水性、电荷、大小等。考虑到各种前述特性的示例性替换是众所周知的,并且包括:精氨酸和赖氨酸;谷氨酸盐和天冬氨酸盐;丝氨酸和苏氨酸;谷氨酰胺和天冬酰胺;以及缬氨酸、亮氨酸和异亮氨酸。
预期在组合物中,每毫升有约0.001mg至约10mg的总的多肽、肽和/或蛋白质。因此,组合物中蛋白质的浓度可以为约、至少约或至多约0.001、0.010、0.050、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10.0mg/ml或更高(或者其中可推出的任何范围)。其中,约、至少约或至多约1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、100%可以是结合Coa的抗体,并可以与本文所述的其他葡萄球菌蛋白或蛋白结合抗体组合使用。
A.多肽和多肽生产
实施方案涉及用于本文所述的各个方面的多肽、肽和蛋白质及其免疫原性片段。例如,分析特定的抗体关于抵消或抑制葡萄球菌感染,或在抵消或抑制葡萄球菌感染中使用特定的抗体。在具体的实施方案中,根据惯用技术也可以在溶液中或在固体支撑体上合成本文所述的蛋白质的全部或部分。各种自动的合成器是可商购的,并可以根据已知的方案来使用。参见例如Stewart和Young,(1984);Tam等人,(1983);Merrifield,(1986);以及Barany和Merrifield(1979),每一个都通过引用并入本文。或者,可以采用重组DNA技术,其中将编码肽或多肽的核苷酸序列插入到表达载体中,转化或转染进入合适的宿主细胞,并在适合于表达的条件下培养。
一个实施方案包括基因转移到细胞、包括微生物以用于蛋白质的生产和/或提呈的用途。可以将感兴趣的蛋白质的基因转移到合适的宿主细胞中,然后在合适的条件下培养细胞。可以采用几乎编码任何多肽的核酸。在本文中讨论了重组表达载体的产生和其中包含的元素。或者,待生产的蛋白质可以是通常由用于蛋白质生产的细胞合成的内源性蛋白质。
在一些方面免疫原性Coa片段基本上包含从金黄色葡萄球菌中分离的Coa蛋白的D1和/或D2结构域的全部。
在免疫原性组合物中还包含由葡萄球菌蛋白或葡萄球菌蛋白(例如Coa)的免疫原性片段组成的融合蛋白。或者,实施方案还包括葡萄球菌蛋白或其免疫原性片段的各个融合蛋白,作为具有异源序列、例如T细胞表位或纯化标记提供者的融合蛋白,所述T细胞表位或纯化标记例如为:β-半乳糖苷酶,谷胱甘肽-S-转移酶,绿色荧光蛋白(GFP),表位标记如FLAG、myc标记、聚组氨酸,或病毒表面蛋白如流感病毒血凝素,或细菌蛋白如破伤风类毒素、白喉类毒素、CRM197。
B.抗体和抗体样分子
在一些方面,可以获得或生产对Coa具有特异性的一种或更多种抗体或抗体样分子(例如包含抗体CDR结构域的多肽)。在具体的实施方案中,可以获得或生产对Coa的D1和/或D2结构域具有特异性的一种或更多种抗体或抗体样分子(例如包含抗体CDR结构域的多肽)。这些抗体可以在本文所述的各种诊断和治疗应用中使用。
如本文所使用的,术语“抗体”旨在广义上指任何免疫学结合剂,例如IgG、IgM、IgA、IgD和IgE以及包含保留抗原结合活性的抗体CDR区的多肽。因此,术语“抗体”用来指具有抗原结合区的任何抗体样分子,并包括抗体片段如Fab'、Fab、F(ab')2,单结构域抗体(DAB),Fv,scFv(单链Fv)和具有抗体CDR的多肽,显示CDR的支架域(例如Anticalin)或纳米抗体。例如,纳米抗体可以是来自骆驼状IgG2或IgG3或来自这种骆驼状Ig的CDR显示框架的抗原特异性VHH(例如重组的VHH)。用于制备和使用各种基于抗体的构建体或片段的技术在本领域中是众所周知的。用于制备和表征抗体的方法在本领域中也是周知的(参见例如,抗体:实验室手册,冷泉港实验室,1988;其通过引用并入本文)。
还预期“微型抗体”或“微抗体”用于实施方案。微抗体是sFv多肽链,其包含在其C末端通过铰链区与sFv分开的低聚结构域,Pack等人(1992)。低聚结构域包含可以通过额外的二硫键进一步稳定化的自缔合的α-螺旋,例如亮氨酸拉链。低聚结构域被设计为适合于跨膜的矢量折叠,所述矢量折叠是一种被认为有助于体内多肽折叠成为功能结合蛋白的过程。通常微抗体使用本领域中周知的重组方法来产生。参见例如,Pack等人(1992);Cumber等人(1992)。
在实施方案中还预期了抗体样结合模拟肽。Liu等人(2003)描述了“抗体样结合模拟肽”(ABiP),其是作为简化的抗体并具有更长的血清半衰期以及较不麻烦的合成方法的优点的肽。
用于抗原结合肽的替代支架如CDR也是可用的,并可以用于产生根据实施方案的Coa结合分子。通常,本领域技术人员知道如何确定在其上移植了至少一个由原始抗体产生的CDR的蛋白质支架的类型。更特别地,已知待选择的这类支架必须满足最大数目的以下标准(Skerra,2000):良好的系统发育保守;已知的三维结构(例如通过晶体照相术、NMR波谱或本领域技术人员已知的任何其他技术);小尺寸;很少或没有转录后的修饰;和/或易于生产、表达和纯化。
这类蛋白质支架的起源可以是但不限于选自以下结构:纤连蛋白和优选地纤连蛋白III型第10结构域,脂质运载蛋白,anticalin(Skerra,2001),由金黄色葡萄球菌的蛋白A的结构域B产生的蛋白Z,硫氧还原蛋白A或具有重复的基序如“锚蛋白重复”(Kohl等,2003)、“犰狳重复”、“富亮氨酸重复”和“三角形四肽重复”的蛋白质。例如,Anticalin或脂质运载蛋白衍生物是对各种靶标分子具有亲和性和特异性并且可以用作SpA结合分子的一类结合蛋白。美国专利公开20100285564号、20060058510号、20060088908号、20050106660号和PCT公开WO2006/056464号中描述了这类蛋白,它们通过引用并入本文。
来源于毒素,例如来自蝎子、昆虫、植物、软体动物等的毒素的支架,和神经元NO合酶的蛋白质抑制剂(PIN)也可以用于一些方面。
公认单克隆抗体具有一些优点,例如重现性和大规模生产。实施方案包括人类、小鼠、猴、大鼠、仓鼠、兔和鸡源的单克隆抗体。
还预期“人源化的”抗体,同样预期带有人类恒定区和/或可变区的结构域的来自小鼠、大鼠或其他物种的嵌合抗体、双特异性抗体、重组的和改造的抗体及其片段。如本文中所使用的,术语“人源化的”免疫球蛋白是指包含人类框架区和来自非人类(通常为小鼠或大鼠)免疫球蛋白的一个或更多个CDR的免疫球蛋白。提供CDR的非人类免疫球蛋白被称为“供体”,提供框架的人类免疫球蛋白被称为“受体”。“人源化的抗体”是包含人源化的轻链免疫球蛋白和人源化的重链免疫球蛋白的抗体。
1.用于产生抗体的方法
用于产生抗体(例如单克隆抗体和/或单克隆抗体)的方法在本领域中是已知的。简单地说,多克隆抗体通过用根据实施方案的Coa多肽或其部分使动物免疫并收集来自该经免疫的动物的抗血清来制备。
大范围的动物种类可以用于生产抗血清。通常,用于生产抗血清的动物为兔、小鼠、大鼠、仓鼠、豚鼠或山羊。动物的选择可以根据操作的简便、成本或期望的血清量来决定,如本领域技术人员已知的。会理解,抗体还可以通过感兴趣的免疫球蛋白重链和轻链序列的转基因哺乳动物或植物的产生和以可回收的形式从中生产抗体来转基因地生产。关于哺乳动物中的转基因生产,抗体可以在山羊、牛和其他哺乳动物的奶中生产和回收。参见例如美国专利号5827690、5756687、5750172和5741957。
如在本领域中周知的,特定免疫原组合物的免疫原性可以通过使用被称为佐剂的免疫应答的非特异性刺激剂来增强。合适的佐剂包括任何可接受的免疫刺激化合物,例如细胞因子、趋化因子、辅助因子、毒素、原质团、合成的组合物或编码这类佐剂的载体。
根据实施方案可以使用的佐剂包括但不限于IL-1、IL-2、IL-4、IL-7、IL-12、-干扰素、GMCSP、BCG、氢氧化铝、MDP化合物如thur-MDP和nor-MDP、CGP(MTP-PE)、脂质A和单磷酰脂A(MPL)。还预期RIBI,其在2%鲨烯/吐温80乳液中含有从细菌提取的三种组分:MPL、海藻糖二霉菌酸酯(TDM)和细胞壁骨架(CWS)。甚至可以使用MHC抗原。示例性佐剂可以包括弗氏完全佐剂(complete Freund's adjuvant)(一种含有杀灭的结核杆菌的免疫应答的非特异性刺激剂)、弗氏不完全佐剂(incomplete Freund's adjuvant)和/或氢氧化铝佐剂。
除了佐剂之外,还期望共同施用生物应答调节剂(BRM),其已经显示为上调T细胞免疫或下调抑制细胞活性。这类BRM包括但不限于西咪替丁(Cimetidine)(CIM;1200mg/d)(Smith/Kline,PA);低剂量的环磷酰胺(CYP;300mg/m2)(Johnson/Mead,NJ),细胞因子,例如-干扰素、IL-2或IL-12,或者编码涉及免疫辅助功能的蛋白质的基因,例如B-7。
在抗体的生产中所使用的免疫原组合物的量根据免疫原的本性以及用于免疫的动物而变化。可以使用各种途径来施用免疫原,包括但不限于皮下的、肌肉内的、真皮内的、表皮内的、静脉内的和腹膜内的途径。抗体的生产可以通过在免疫后的各个点对免疫动物的血液进行采样来监测。
还可以提供第二加强剂量(例如以注射提供)。重复加强和滴定的过程直至达到合适的滴度。当获得期望水平的免疫原性时,可以从经免疫的动物取血,分离血清并储存,和/或可以将动物用于产生MAb。
对于兔多克隆抗体的生产,可以通过耳血管或通过心脏穿刺从动物取血。允许将移取的血液凝固,然后离心以从全血和血凝块中分离血清组分。血清可以以原样用于各种应用,或者可以通过众所周知的方法,例如使用结合至固体基质的另一抗体、肽的亲和色谱,或通过使用例如蛋白A或蛋白G色谱等来纯化期望的抗体部分。
MAb可以通过使用众所周知的技术容易地制备,例如在美国专利4196265中所举例的那些,其通过引用并入本文。通常,该技术涉及利用选定的免疫原组合物,例如经纯化的或部分纯化的蛋白、多肽、肽或结构域使合适的动物免疫,所述免疫原组合物为野生型或突变的组合物。以对刺激生产抗体的细胞有效的方式施用免疫组合物。
用于产生单克隆抗体(MAb)的方法通常沿着与用于制备多克隆抗体的方法相同的路线开始。在一些实施方案中,啮齿动物,例如小鼠和大鼠用于产生单克隆抗体。在一些实施方案中,兔、绵羊或青蛙细胞用于产生单克隆抗体。大鼠的使用是众所周知的,并可以提供一些优点(Goding,1986,第60到61页)。小鼠(例如BALB/c小鼠)是常规使用的,并通常给出高百分比的稳定融合。
通常如以上所述,用抗原注射动物。抗原可以与佐剂如弗氏完全或不完全佐剂混合。利用相同抗原或编码抗原的DNA的加强施用可以以大约两周的时间间隔进行。
在免疫后,选择具有生产抗体的潜力的体细胞、具体地B淋巴细胞(B细胞)以用于MAb产生方案。这些细胞可以从活检的脾脏、扁桃体或淋巴结中获得,或从外周血样品中获得。一般地,脾脏细胞是处于正在分化浆母细胞阶段的生产抗体的细胞的丰富来源。通常,外周血细胞可以容易地获得,这是因为外周血可容易得到。
在一些实施方案中,一组动物会被免疫,然后将摘除具有最高抗体滴度的动物的脾脏,并通过注射器使脾脏匀浆化来获得脾脏淋巴细胞。通常,经免疫的小鼠的脾脏含有大约5×107到2×108个淋巴细胞。
然后将经免疫动物的产生抗体的B淋巴细胞与无限增殖的骨髓瘤细胞融合,所述无限增殖的骨髓瘤细胞通常是与被免疫的动物相同物种的细胞。适合用于在杂交瘤生产融合过程中使用的骨髓瘤细胞优选为非产生抗体的,具有高的融合效率和使其不能在特定的选择性培养基中生长的酶缺陷,所述选择性培养基仅支持期望的融合细胞(杂交瘤)的生长。
可以使用大量骨髓瘤细胞中的任何一种,如本领域技术人员已知的(引用Goding,第65到66页,1986;Campbell,第75到83页,1984)。例如,当被免疫的动物是小鼠时,可以使用P3 X63/Ag8、X63 Ag8.653、NS1/1.Ag 41、Sp210 Ag14、FO、NSO/U、MPC 11、MPC11 X45 GTG1.7和S194/5XX0 Bul;对于大鼠,可以使用R210.RCY3、Y3 Ag 1.2.3、IR983F和4B210;而关于人类细胞融合,U 266、GM1500 GRG2、LICR LON HMy2和UC729 6均是有用的。参见Yoo等人(2002)关于骨髓瘤表达系统的讨论。
一种鼠类骨髓瘤细胞是NS-1骨髓瘤细胞系(也被称为P3-NS-1-Ag4-1),其可以通过要求细胞系保藏号GM3573从NIGMS人类基因突变细胞贮藏处(Human Genetic MutantCell Repository)容易地得到。可以使用的另一小鼠骨髓瘤细胞系是8氮鸟嘌呤抗性小鼠鼠类骨髓瘤SP2/0非产病毒细胞系。
用于产生生产抗体的脾脏细胞或淋巴结细胞和骨髓瘤细胞的杂交体的方法通常包括以2:1的比例混合体细胞与骨髓瘤细胞,但是在促进细胞膜融合的试剂(化学或电的)的存在下所述比例可以分别从约20:1变到约1:1。Kohler和Milstein(1975;1976)已经描述了使用仙台(Sendai)病毒的融合方法,且Gefter等人(1977)描述了使用聚乙二醇(PEG)如37%(v/v)PEG的那些方法。使用电诱导的融合方法也是合适的(Goding,第71-74页,1986)。
融合过程通常以低频率即约1×10-6到1×10-8产生可存活的杂交体。然而,这不造成问题,这是因为通过在选择性培养基中培养可将存活的、经融合的杂交体与亲代、未融合的细胞(特别是一般会继续无限地分裂的未融合骨髓瘤细胞)中区别开。选择性培养基通常是含有在组织培养基中阻断核苷酸的从头合成的试剂的培养基。示例性且优选的试剂是氨蝶呤、甲氨蝶呤和氮丝氨酸。氨蝶呤和甲氨蝶呤阻断嘌呤和嘧啶的从头合成,而氮丝氨酸仅阻断嘌呤合成。当使用氨蝶呤和甲氨蝶呤时,用次黄嘌呤和胸苷补充培养基作为核苷酸的来源(HAT培养基)。当使用氮丝氨酸时,用次黄嘌呤补充培养基。
优选的选择培养基是HAT。仅能够进行核苷酸补救途径的细胞能够在HAT培养基中存活。骨髓瘤细胞在补救途径的关键酶如次黄嘌呤磷酸核糖转移酶(HPRT)方面是有缺陷的,因此它们不能存活。B细胞可以进行该途径,但是它们在培养中具有有限的寿命,并通常在大约两周内死亡。因此,可以在选择性培养基中存活的唯一细胞是由骨髓瘤和B细胞形成的那些杂交体。
该培养提供杂交瘤群体,从所述杂交瘤群体中选择特定的杂交瘤。通常,杂交瘤的选择通过以下进行:通过在微量滴定板中以单克隆稀释液来培养细胞,然后测试单个克隆的上清液(在约两至三周后)的期望反应性。分析应该是灵敏的、简单的和快速的,例如放射性免疫分析、酶免疫分析、细胞毒性分析、噬菌斑分析、斑点免疫结合分析等。
然后将所选择的杂交瘤系列稀释,并克隆为产生单个抗体的细胞系,所述克隆然后可以无限地繁殖以提供MAb。细胞系可以以两种基本的方式用于MAb生产。首先,可以将杂交瘤的样品注射(通常注射到腹膜腔内)到用于为初始融合提供体细胞和骨髓瘤细胞的组织相容型动物类型中(例如同系的小鼠)。任选地,在注射之前用碳氢化合物,尤其是油,例如姥鲛烷(四甲基十五烷)事先准备动物。经注射的动物长出肿瘤,所述肿瘤分泌由经融合的细胞杂交体生产的特异性单克隆抗体。然后可以抽取动物的体液,例如血清或腹水液以提供高浓度的MAb。其次,可以在体外培养单个的细胞系,其中MAb自然地被分泌到培养基中,从所述培养基中可以容易地获得高浓度的MAb。
另外,来自生产细胞系的抗体(或其其他部分)的表达可以使用大量已知的技术来增强。例如,谷氨酰胺合成酶和DHFR基因表达系统是用于在一定条件下增强表达的通用方法。使用常规技术,例如有限稀释克隆和微滴(Microdrop)技术可以鉴定高表达的细胞克隆。在欧洲专利0 216 846号、0 256 055号和0 323 997号以及欧洲专利申请89303964.4号的全部或部分中讨论了GS系统。
如果需要,通过两者中任一手段生产的MAb可以使用过滤、离心和各种色谱方法,例如HPLC或亲和色谱来进一步纯化。单克隆抗体的片段可以从通过如下方法生产的单克隆抗体中获得:所述方法包括利用酶如胃蛋白酶或木瓜蛋白酶的消化,和/或通过用化学还原裂解二硫键。或者,可以使用自动化的肽合成器来合成单克隆抗体片段。
还预期可以使用分子克隆方法来产生单克隆抗体。在一个实施方案中,由从免疫动物的脾脏中分离的RNA制备组合的免疫球蛋白噬菌粒库,并通过使用表达抗原的细胞和对照细胞的筛选来选择表达合适抗体的噬菌粒。该方法相对于传统杂交瘤技术的优点是单轮可以生产和筛选大约104倍的抗体,且由H链和L链组合产生新的特异性,这进一步增加发现合适抗体的机会。
另一实施方案涉及生产抗体,例如如在美国专利6091001号中所发现的,其描述了利用Cre介导的位点特异性重组,由包含经修饰的免疫球蛋白基因座的细胞基因组序列生产表达抗体的细胞的方法。方法涉及首先利用同源靶向载体转染生产抗体的细胞,所述同源靶向载体包含脂氧合酶位点和与第一DNA序列同源的靶向序列,所述第一DNA同源序列邻近将被转变成修饰区域的基因组免疫球蛋白基因座的区域,所以将第一脂氧合酶位点经由位点特异性同源重组插入到基因组序列中。然后,利用脂氧合酶靶向载体转染细胞,所述脂氧合酶靶向载体包含适合于利用完整的脂氧合酶位点的Cre介导的重组的第二脂氧合酶位点和将免疫球蛋白基因座区域转变为修饰区域的修饰序列。该转变通过使脂氧合酶位点与Cre在活体内相互作用来进行,使得修饰序列经由Cre介导的脂氧合酶位点的位点特异重组插入到基因组序列中。
或者,单克隆抗体片段可以使用自动的肽合成器或通过大肠杆菌(E.coli)中的全长基因或基因片段的表达来合成。
C.抗体和多肽缀合物
实施方案提供对抗Coa蛋白的抗体和抗体样分子,即与至少一种试剂相连以形成抗体缀合物或有效负荷的多肽和肽。为了提高作为诊断剂或治疗剂的抗体分子的功效,通常连接或共价结合或复合至少一种期望的分子或部分。这种分子或部分可以为但不限于至少一种效应分子或报道分子。效应分子包括具有期望活性如细胞毒性活性的分子。已经附接到抗体的效应分子的非限制性实例包括毒素、治疗酶、抗体、放射性标记的核苷酸等。相比之下,报道分子定义为可以使用分析检测到的任何部分。已经缀合到抗体的报道分子的非限制性实例包括酶、放射性标记、半抗原、荧光标记、磷光分子、化学发光分子、生色团、发光分子、光亲和分子、着色的颗粒或配体如生物素。
抗体缀合物的一些实例为其中抗体连接到可检测到的标记的那些缀合物。“可检测的标记”为由于其特殊的功能性质和/或化学特性可以被检测到的化合物和/或元素,其使用使得它们附接到的抗体能够被检测到和/或如果需要的话进一步定量。
抗体缀合物通常优选地作为诊断剂使用。抗体诊断通常分为两类,即在体外诊断如各种免疫分析中使用的那些,和/或在活体内诊断方案中使用的通常被称为“抗体导向成像”的那些。许多合适的成像剂在本领域中是已知的,用于将它们附接到抗体的方法也是已知的(参见例如美国专利5021236号、4938948号和4472509号,每一个都通过引用并入本文)。使用的成像部分可以是顺磁离子;放射性同位素;荧光染料;NMR可检测到的物质;X射线成像。
在顺磁离子的情况下,可以举例说明地提及离子如铬(III)、锰(II)、铁(III)、铁(II)、钴(II)、镍(II)、铜(II)、钕(III)、钐(III)、镱(III)、钆(III)、钒(III)、铽(III)、镝(III)、钬(III)和/或铒(III),其中钆为特别优选的。在其他情况如X射线成像中有用的离子包括但不限于镧(III)、金(III)、铅(II)以及尤其是铋(III)。
在用于治疗和/或诊断应用的放射性同位素情况下,可以使用211砹、14碳、51铬、36氯、57钴、58钴、67铜、152铕、67镓、3氢、123碘、125碘、131碘、111铟、59铁、32磷、186铼、188铼、75硒、35硫、99m锝和/或90钇。125碘通常在一些实施方案中使用,99m锝和/或111铟也由于其低的能量和适合于远程检测而通常使用。放射性标记的单克隆抗体可以根据本领域中众所周知的方法来生产。例如,单克隆抗体可以通过与碘化钠和/或碘化钾以及化学氧化剂、例如次氯酸钠或酶氧化剂、例如乳过氧化物酶接触进行碘化。单克隆抗体可以通过配体交换过程来用99m锝标记,例如通过用亚锡盐溶液还原高锝酸盐,将还原的锝螯合到Sephadex柱上并将抗体施加到该柱。或者,可以使用直接标记技术,例如通过培养高锝酸盐、还原剂如SnCl2、缓冲溶液如钠钾磷酸盐溶液和抗体。通常用于将以金属离子存在的放射性同位素结合到抗体的中间官能团是二乙烯三胺五乙酸(DTPA)或乙二胺四乙酸(EDTA)。
在预期用作缀合物的荧光标记中包括Alexa 350、Alexa 430、AMCA、BODIPY 630/650、BODIPY650/665、BODIPY-FL、BODIPY-R6G、BODIPY-TMR、BODIPY-TRX、瀑布蓝(CascadeBlue)、Cy3、Cy5、6-FAM、异硫氰酸荧光素、HEX、6-JOE、俄勒冈绿(Oregon Green)488、俄勒冈绿500、俄勒冈绿514、海水蓝(Pacific Blue)、REG、罗丹明绿、罗丹明红、肾造影剂、ROX、四甲基罗丹明(TAMRA)、TET、四甲基罗丹明/或德克萨斯红等。
抗体缀合物包括打算主要在体外使用的那些,其中抗体连接到与生色底物接触时会产生有色产物的第二结合配体和/或酶(酶标记)。合适的酶的实例包括但不限于脲酶、碱性磷酸酶、(辣根)过氧化氢酶或葡萄糖氧化酶。优选的第二结合配体是生物素和/或亲和素以及链霉亲和素化合物。这类标记的使用对本领域技术人员来说是众所周知的,并且例如在美国专利3817837、3850752、3939350、3996345、4277437、4275149和4366241中进行描述;每一个都通过引用并入本文。
分子至抗体的位点特异性附着的另一已知方法包括抗体与基于半抗原的亲和标记的反应。基本上,基于半抗原的亲和标记与抗原结合位点中的氨基酸反应,从而破坏该位点并阻断特异性抗原反应。然而,这可能不是有利的,这是因为其导致通过抗体缀合物的抗原结合的损失。
含有叠氮基的分子也可以用于通过由低强度紫外线产生的反应性氮宾中间体形成与蛋白质的共价键(Potter&Haley,1983)。特别地,嘌呤核苷酸的2-叠氮基和8-叠氮基类似物已经用作位点导向光学探针以确定在天然细胞提取物中的核苷酸结合蛋白(Owens&Haley,1987;Atherton等,1985)。2-叠氮基和8-叠氮基核苷酸还已经用于确定经纯化的蛋白质的核苷酸结合域的位置(Khatoon等人,1989;King等人,1989;和Dholakia等,1989),并可以用作抗体结合剂。
用于将抗体附着或缀合到其缀合物部分的几个方法在本领域中是已知的。一些附着方法涉及使用金属螯合复合物,所述金属螯合复合物采用例如附着到抗体的有机螯合剂,如二乙烯三胺五乙酸酸酐(DTPA)、二乙烯三胺四乙酸、N-氯-对甲苯磺酰胺和/或四氯-3,6-二苯基甘脲-3(美国专利4472509号和4938948号,每个都通过引用并入本文)。单克隆抗体还可以在偶联剂如戊二醛或高碘酸盐的存在下与酶反应。具有荧光素标记物的缀合物在这些偶联剂的存在下或通过与异硫氰酸盐反应来制备。在美国专利4938948号中,乳腺肿瘤的成像使用单克隆抗体来实现,可检测得到的成像部分使用连接剂,例如对羟基苯甲亚胺酸甲酯或N-琥珀酰亚胺基-3-(4-羟基苯基)丙酸酯结合到抗体。
在一些实施方案中,预期使用不改变抗体结合位点的反应条件通过在免疫球蛋白的Fc区域中选择性地引入巯基使免疫球蛋白衍生化。公开了根据该方法生产的抗体缀合物以显示改善的寿命、特异性和灵敏度(美国专利5196066号,通过引用并入本文)。在文献中也已经公开了效应分子或报道分子的位点特异性附着,其中报道了分子或效应分子缀合到Fc区域中的碳水化合物残基(O'Shannessy等,1987)。已经报道该方法生产在诊断和治疗方面有前景的抗体,其目前处于临床评价中。
在一些实施方案中,将抗Coa的抗体连接到半导体纳米晶,例如美国专利6048616号、5990479号、5690807号、5505928号、5262357号(其全部都以以其全文并入本文)以及PCT公开99/26299号(1999年5月27日公开)中所述的那些。特别地,在生物和化学分析中用作半导体纳米晶的示例性材料包括但不限于上述那些,包括II-VI族、III-V族和IV族半导体,例如ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe、GaN、GaP、GaAs、GaSb、InP、InAs、InSb、AlS、AlP、AlSb、PbS、PbSe、Ge和Si及其三元或四元混合物。用于将半导体纳米晶连接到抗体的方法在美国专利6630307号和6274323号中进行描述。
III.核酸
在一些实施方案中,存在编码本文所述的蛋白质、多肽或肽的重组多核苷酸。预期的多核苷酸序列包括编码Coa的抗体或其Coa结合部分的那些。
如在本申请中所使用的,术语“多核苷酸”是指重组的或已经从总的基因组核酸中分离的核酸分子。包括在术语“多核苷酸”内的是寡核苷酸(在长度上具有100个或更少的残基的核酸),重组载体,包括例如质粒、粘粒、噬菌粒、病毒等。在一些方面,多核苷酸包括基本上从其天然存在的基因或蛋白编码序列中分离出来的调控序列。多核苷酸可以是单链的(编码链或反义链)或双链的,并可以是RNA、DNA(基因组DNA、cDNA或合成DNA)、其类似物或其组合。另外的编码或非编码序列可以但是不必存在于多核苷酸内。
在这方面,术语“基因”、“多核苷酸”或“核酸”用来指编码蛋白质、多肽或肽的核酸(包括适当的转录、转译后修饰或定位所需要的任何序列)。如本领域技术人员会理解的,该术语包括基因组序列、表达盒、cDNA序列和表达或可以适合于表达蛋白质、多肽、结构域、肽、融合蛋白和突变体的更小的改造核酸节段。编码多肽的全部或部分的核酸可以含有编码这种多肽的全部或部分的连续核酸序列。还预期特定的多肽可以由核酸进行编码,所述核酸含有具有稍微不同的氨基酸序列的变体但尽管如此其编码相同或基本上相似的蛋白质(参见上文)。
在具体的实施方案中,存在分离的核酸节段和包含核酸序列的重组载体,所述核酸序列编码与Coa结合的多肽(例如抗体或其片段)。术语“重组的”可以与多肽或特异性多肽的名称一起使用,这通常是指由已经在体外操作的核酸分子或为这种分子的复制产物的核酸分子所生产的多肽。
与编码序列本身的长度无关,核酸节段可以与其他核酸序列如启动子、多腺苷酸化信号、额外的限制酶位点、多克隆位点、其他编码节段等组合使用,使得其总长度可以明显地变化。因而预期可以采用几乎任何长度的核酸片段,其中总长度优选地受制备以及在计划中的重组核酸方案中的使用的简便性限制。在一些情况下,核酸序列可以利用额外的异源的编码序列编码多肽序列,例如以允许多肽的纯化、转运、分泌、转译后修饰,或提供治疗益处,例如靶向或功效。如以上所讨论的,标记或其他异源的多肽可以添加到经修饰的多肽编码序列,其中“异源的”是指与经修饰的多肽不相同的多肽。
在一些实施方案中,存在与本文所公开的序列具有基本一致性的多肽变异体;使用本文所述方法(例如使用标准参数的BLAST分析)其与本文所提供的多核苷酸序列相比包含至少70%、75%、80%、85%、90%、95%、96%、97%、98%或99%或更高、包括其间的所有值和范围的序列一致性。在一些方面,分离的多核苷酸会包含编码多肽的核苷酸序列,所述多肽在序列的整个长度上与本文所述的氨基酸序列具有至少90%、优选95%及更高的一致性;或包含与所述分离的多核苷酸互补的核苷酸序列。
A.载体
多肽可以由核酸分子进行编码。核酸分子可以是核酸载体的形式。术语“载体”用来指向其中可以插入异源核酸序列用于引入细胞的运载体核酸分子,在细胞中其可以被复制和表达。核酸序列可以是“异源的”,这表示其处于对于其中引入载体的细胞而言或对于其中被并入的核酸而言非原有的环境,这包括与细胞中或核酸中的序列同源但处于其通常未被发现的宿主细胞或核酸内的位置的序列。载体包括DNA、RNA、质粒、粘粒、病毒(噬菌体、动物病毒和植物病毒)和人工染色体(例如YAC)。本领域技术人员应当有能力通过标准重组技术(例如Sambrook等人,2001;Ausubel等人,1996,两者都通过引用并入本文)来构建载体。载体可以在宿主细胞中使用以产生结合Coa的抗体。
术语“表达载体”是指含有对能够被转录的基因产物的至少部分编码的核酸序列的载体。在一些情况下,RNA分子然后被转译为蛋白质、多肽或肽。表达载体可以含有各种“控制序列”,所述“控制序列”是指在特定宿主生物中有效连接的编码序列的转录和可能的转译所需要的核酸序列。除了管理转录和转移的控制序列之外,载体和表达载体还可以含有具有其他功能的核酸序列,并且在本文中进行描述。
“启动子”是控制序列。启动子一般是控制转录的启动和速度的核酸序列的区域。其可以含有遗传因子,在所述遗传因子处调节蛋白和分子可以结合例如RNA聚合酶和其他转录因子。短语“有效地放置”、“有效地连接”、“处于控制之下”和“处于转录控制之下”表示启动子处于正确的功能位置和/或相对于核酸序列的方向,以控制转录启动和序列的表达。启动子可以与或可以不与“增强子”一起使用,所述“增强子”是指涉及核酸序列的转录激活的顺式作用调控序列。
据认为编码多核苷酸的用于控制肽或蛋白质表达的特定的启动子不是决定性的,只要其能够在靶细胞、优选细菌细胞中表达多核苷酸。当靶向人类细胞时,优选将多核苷酸编码区与能够在人类细胞中被表达的启动子相邻放置,并处于启动子的控制之下。一般而言,这种启动子可以包括细菌、人类或病毒的启动子。
编码序列的有效转译还可以被需要用于特定的启动信号。这些信号包括AGT启动密码子或相邻的序列。可能必须提供外源转录控制信号,包括ATG启动密码子。本领域普通技术人员应当容易地能够确定这点,并提供必需的信号。
载体可以包含多克隆位点(MCS),其为含有多个限制酶位点的核酸区域,所述多个限制酶位点中的任何一个可以与标准重组技术一起使用来消化载体。(参见Carbonelli等人,1999;Levenson等人,1998;和Cocea,1997,其通过引用并入本文)。
大多数转录的真核RNA分子会经历RNA剪接以从初级转录物中移除内含子。含有基因组真核序列的载体可能需要供体和/或受体剪接位点以确保用于蛋白表达的转录物的适当加工。(参见Chandler等人,1997,通过引用并入本文)。
载体或构建体通常会包含至少一个终止信号。“终止信号”或“终止子”由DNA序列构成,所述DNA序列涉及通过RNA聚合酶的RNA转录物的特定终止。因此,在一些实施方案中,预期结束RNA转录物的生产的终止信号。终止子对于在体内达到期望的信使水平可能是必要的。在真核系统中,终止子区域还可以包含允许新转录物的位点特异裂解以暴露多腺苷酸化位点的特定DNA序列。这给专门的内源聚合酶发信号以将约200个A残基(polyA)的一段添加到转录物的3'端。用该polyA尾巴修饰的RNA分子显得更稳定,并且可以更有效率地转译。因此,在其他涉及真核生物的实施方案中,优选地终止子包含用于RNA裂解的信号,更优选地终止子信号促进信使的多腺苷酸化。
在表达中,特别是真核表达中,通常会包括多腺苷酸化信号以实现转录物的适当多腺苷酸化。
为了在宿主细胞中繁殖载体,其可以含有一个或更多个复制位点的起点(常被称为“ori”),所述复制位点起点为复制启动位置处的核酸序列。或者,当宿主细胞是酵母时,可以采用自主复制序列(ARS)。
B.宿主细胞
如本文所使用的,术语“细胞”、“细胞系”和“细胞培养”可以互换地使用。所有这些术语还包括其后代,所述后代是任何及全部后代。应理解全部后代由于有意或无意的突变可以不相同。在表达异源核酸序列的情况下,“宿主细胞”是指原核细胞或真核细胞,且其包括能够复制载体或表达由载体编码的异源基因的任何可转化的生物体。宿主细胞可以并且已经用作载体或病毒的受体。宿主细胞可以被“转染”或“转化”,这是指通过其将外源核酸,例如重组蛋白编码序列转移或引入到宿主细胞的过程。转化的细胞包括初级受试细胞及其后代。
一些载体可以允许其在原核细胞和真核细胞两者中被复制和/或表达的控制序列。本领域技术人员会进一步理解培养所有上述宿主细胞以维持它们并允许载体复制的条件。还应理解和知道会允许载体的大规模生产以及由载体编码的核酸及其同源多肽、蛋白质或肽的生产的条件。
C.表达系统
存在包含上述组合物的至少部分或全部的许多表达系统。可以采用基于原核的和/或真核的系统用于实施方案以生产核酸序列或其同源的多肽、蛋白质和肽。许多这类系统是可商购的或可容易获得的。
昆虫细胞/杆状病毒系统可以产生异源核酸节段的高水平的蛋白表达,例如在美国专利5871986、4879236中所述的,两者都通过引用并入本文,且所述系统可以例如从以名称2.0购得和从以名称BACPACKTM杆状病毒表达系统购得。
除了所公开的表达系统之外,表达系统的其他实例包括的COMPLETE CONTROL哺乳动物诱导表达系统,其涉及合成蜕皮素诱导受体或其pET表达系统,即一种大肠杆菌表达系统。诱导型表达系统的另一实例可从获得,其携带T-REXTM(四环素调节表达)系统,一种使用全长CMV启动子的诱导哺乳动物表达系统。还提供称为甲醇毕赤酵母(Pichia methanolica)表达系统的酵母表达系统,其设计用于在甲基营养型酵母甲醇毕赤酵母中高水平地产生重组蛋白。本领域技术人员会知道如何表达载体,例如表达构建体,以产生核酸序列或其同源多肽、蛋白质或肽。
D.基因转移的方法
据认为用于核酸递送以实现组合物表达的合适方法实际上包括通过其可以将核酸(例如DNA,包括病毒载体和非病毒载体)引入到细胞、组织或生物体中的任何方法,如本文所述的或如本应用普通技术人员应当知道的。这类方法包括但不限于DNA的直接递送,例如通过注射(美国专利5994624、5981274、5945100、5780448、5736524、5702932、5656610、5589466和5580859,每一个都通过引用并入本文),包括显微注射(Harland和Weintraub,1985;美国专利5789215,通过引用并入本文);通过电穿孔(美国专利号5384253,通过引用并入本文);通过磷酸钙沉淀(Graham和Van Der Eb,1973;Chen和Okayama,1987;Rippe等人,1990);通过使用DEAE葡聚糖然后使用聚乙二醇(Gopal,1985);通过直接声波加载(Fechheimer等人,1987);通过脂质体介导的转染(Nicolau和Sene,1982;Fraley等人,1979;Nicolau等人,1987;Wong等人,1980;Kaneda等人,1989;Kato等人,1991);通过微粒轰击(PCT公开号WO 94/09699和95/06128;美国专利5610042、5322783、5563055、5550318、5538877和5538880,每一个都通过引用并入本文);通过用碳化硅纤维搅拌(Kaeppler等人,1990;美国专利5302523和5464765,每一个都通过引用并入本文);通过农杆菌介导的转化(美国专利5591616和5563055,每一个都通过引用并入本文);或通过PEG介导的原生质体的转化(Omirulleh等人,1993;美国专利4684611和4952500,每一个都通过引用并入本文);通过干燥/抑制介导的DNA摄取(Potrykus等人,1985)。通过诸如这些的技术的应用,可以持久地或暂时地转化细胞器、细胞、组织或生物体。
IV.处理的方法
如以上所讨论的,使用这些组合物的组合物和方法可以处理患有、疑似患有或有风险进展为感染或相关疾病、特别是与葡萄球菌相关的那些疾病的对象(例如限制细菌负荷或者脓肿的形成或持续)。组合物的一种用途是通过在住院治疗前为受试者接种以预防医院内感染。
如本文所使用的,短语“免疫应答”或其等效物“免疫学应答”是指在受体患者中涉及本发明的蛋白质、肽或多肽的体液应答(抗体介导的)、细胞应答(由抗原特异性T细胞或其分泌产物介导的)或体液和细胞应答两者。处理或治疗可以是由免疫原的施用诱导的主动免疫应答或受抗体、含有抗体的材料或已接触抗原的T细胞的施用所影响的被动治疗。
如本文所使用的“被动免疫力”是指通过包含细胞介体或蛋白介体的免疫效应物(例如结合Coa蛋白的多肽)的施用提供受试者的任何免疫力。抗体组合物可以以被动免疫使用以预防或处理由携带被抗体识别的抗原的生物体造成的感染。抗体组合物可以包含抗体或包含结合各种抗原的抗体CDR结构域的多肽,所述抗原进而可以与各种生物体缔合。抗体组分可以是多克隆抗血清。在一些方面,抗体是从已经用抗原攻击过的动物或第二对象中亲和纯化的。或者,可以使用抗体混合物,其为在相同的、相关的或不同的微生物或生物体如革兰氏阳性菌、革兰氏阴性菌(包括但不限于葡萄球菌细菌)中存在的抗原的单克隆抗体和/或多克隆抗体的混合物。
可以通过对患者施用从具有已知免疫反应性的供体或其他非患者源中获得的免疫球蛋白(Ig)或其片段和/或其他免疫因子来提供患者或对象被动免疫力。在其他方面,可以对对象施用抗原组合物,所述对象然后作为响应组合物的攻击而产生的(“超免疫球蛋白”)球蛋白的来源或供体,所述球蛋白含有对抗葡萄球菌或其他生物体的抗体。如此处理的受试者会捐献血浆,然后可以经由常规的血浆分离方法从所述血浆中获得超免疫球蛋白,并且施用至另一对象以提供对葡萄球菌感染的抗性或者处理葡萄球菌感染。超免疫球蛋白对于免疫缺陷的个体、对于经受侵入性过程的个体特别有用,或者对时间不允许个体响应疫苗接种来生产其自身抗体的情况特别有用。关于与被动免疫力相关的示例性方法和组合物,参见美国专利6936258、6770278、6756361、5548066、5512282、4338298和4748018,其每一个都通过引用以其全文并入本文。
对于本说明书和所附权利要求,术语“表位”和“抗原决定因子”可互换地使用,用来指抗原上B细胞和/或T细胞响应或识别的位点。B细胞表位可以由连续氨基酸或通过蛋白质的三级折叠并置的非连续氨基酸两者形成。由连续氨基酸形成的表位通常在暴露于变性溶剂时保留,而由三级折叠形成的表位通常在用变性溶剂处理时丢失。表位通常以独特的空间构型包含至少3个、通常更多、至少5个或或8到10个氨基酸。确定表位的空间构型的方法包括在Epitope Mapping Protocols(1996)中所述的那些方法。T细胞识别CD8细胞的约9个氨基酸或CD4细胞的约13到15个氨基酸的连续表位。识别表位的T细胞可以通过体外分析来鉴定,所述体外分析测量抗原依赖性增殖,如通过响应于表位而引发的T细胞的3H-胸苷并入(Burke等,1994)、通过抗原依赖性杀灭(细胞毒性的T淋巴细胞分析,Tigges等,1996)或通过细胞因子分泌所确定的。
细胞介导的免疫学应答的存在可以通过增殖分析(CD4(+)T细胞)或CTL(细胞毒性的T淋巴细胞)分析来确定。体液应答和细胞应答对免疫的保护性或治疗性效果的相应贡献可以通过分别从免疫同源动物中分裂IgG和T细胞并测量在第二对象中的保护性或治疗性效果来区分。如本文和权利要求中所使用的,术语“抗体”或“免疫球蛋白”可以互换地使用。
任选地,抗体或优选地抗体的免疫学部分可以与具有其他蛋白质的融合蛋白化学缀合,或表达为具有其他蛋白质的融合蛋白。对于本说明书和所述的权利要求,所有这类融合的蛋白质都包含在抗体或抗体的免疫学部分的定义中。
在一个实施方案中,方法包括对由葡萄球菌病原体导致的疾病或病症的处理。在一些方面,实施方案包括处理葡萄球菌感染如医院获得性院内感染的方法。在一些实施方案中,处理在葡萄球菌抗原的存在下施用。此外,在一些实施例中,处理包括施用对抗细菌感染常用的其他试剂,例如一种或更多种抗生素。
治疗组合物以与剂型相容的方式和以治疗有效量来施用。待施用的量取决于待处理的对象。需要施用的活性成分的确切量取决于医师的判断。用于最初施用和增效的合适方案也是可变的,但是其特征在于最初施用和随后的后续施用。
应用的方式可以广泛地变化。用于施用多肽治疗剂的任何常规方法都是可适用的。据认为这些包括在固态生理学上可接受的载体上或在生理学上可接受的分散体中的口服、通过注射等的肠胃外应用。组合物的剂量会取决于施用的途径,并会根据对象的尺寸和健康而变化。
在一些实例中,期望多次施用组合物,例如2、3、4、5、6或更多次施用。施用可以以1、2、3、4、5、6、7、8到5、6、7、8、9、10、11、12十二周时间间隔(包括其间的所有范围)来进行。
A.抗体和被动免疫
一些方面涉及制备用于预防或处理葡萄球菌感染的抗体的方法,包括利用疫苗使受体免疫和从受体分离抗体、或生产重组抗体的步骤。另一方面是通过这些方法制备并用于处理或预防葡萄球菌感染的抗体。另一方面是包含特异性结合Coa的抗体和药学上接受载体的药物组合物,其可以用于制造用于处理或预防葡萄球菌疾病的药物。另一方面是用于处理或预防葡萄球菌感染的方法,其包括对患者施用有效量的药物制剂的步骤。
用于多克隆抗体生产的接种物通常通过将抗原组合物(例如肽或抗原或Coa的表位或其共有部分)分散在生理学上可容许的稀释剂如生理盐水或适合于人类使用的其他佐剂中以形成水性组合物来制备。对哺乳动物施用免疫刺激量的接种物,然后使接种过的哺乳动物维持足以使抗原组合物诱导保护性抗体的时间。通过众所周知的技术如亲和色谱可以将抗体分离到期望的程度(Harlow和Lane,Antibodies:A Laboratory Manual 1988)。抗体可以包含来自各种常用动物如山羊、灵长动物、驴、猪、马、豚鼠、大鼠或人的抗血清制剂。对动物抽血并回收血清。
抗体可以包含整个抗体、抗体片段或亚片段。抗体可以是任何种类(例如IgG、IgM、IgA、IgD或IgE)的完整免疫球蛋白、嵌合抗体、人类抗体、人源化抗体或具有针对两个或更多个抗原的双特异性的杂交抗体。它们还可以是片段(例如F(ab')2、Fab'、Fab、Fv等,包括杂交的片段)。抗体还包括天然的、合成的或基因改造的蛋白质,其通过以足够的亲和性与特异性抗原结合来起类似抗体的作用。
可以对受体施用疫苗,所述受体然后作为响应来自特异性疫苗的攻击所产生的抗体的来源。如此处理的对象会捐献血浆,从所述血浆可经由常规的血浆分离方法来获得抗体。会对相同或不同的对象施用经分离的抗体,以提供对葡萄球菌感染的抗性或处理葡萄球菌感染。抗体对于处理或预防婴儿、免疫缺陷个体的葡萄球菌疾病特别有用,或对需要处理但是个体没时间产生对疫苗接种的响应的情况特别有用。
一个另外的方面是药物组合物,其包含对免疫原性组合物的至少两种成分起反应的两种或更多种抗体或单克隆抗体(或其片段;优选地人类的或人源化的),其可以用于处理或预防由革兰氏阳性菌、优选葡萄球菌、更优选金黄色葡萄球菌或表皮葡萄球菌造成的感染。
B.组合疗法
组合物和相关方法、特别是结合Coa或肽或其共有肽的抗体对患者/对象的施用还可以与传统治疗的施用组合使用。这些包括但不限于施用抗生素,例如链霉素、环丙沙星、强力霉素、庆大霉素、氯霉素、甲氧苄氨嘧啶、磺胺甲恶唑、氨苄西林、四环素或各种抗生素的组合。
在一个方面,预期治疗与抗菌处理结合使用。或者,治疗可以以从数分钟到数周的时间间隔在其他试剂处理之前或之后进行。在其中其他试剂和/或蛋白质或多核苷酸分别施用的实施方案中,通常会确保在各次递送的时间之间不经过长的时间段,使得治疗组合物会一直能够对对象发挥有利的组合效果。在这类实例中,预期可以在彼此的约12到24小时内、更优选地在彼此的约6到12小时内施用两种用药程式。在一些情形中,可能期望明显地延长用于施用的时间段,然而,其中在各自的施用之间经过数天(2、3、4、5、6或7)或数周(1、2、3、4、5、6、7或8)。
可以采用治疗的各种组合,例如抗生素治疗为“A”,包括结合Coa或肽或其共有肽的抗体的抗体治疗为“B”:
对患者/对象施用抗体组合物会遵循用于施用这类化合物的一般方案,如果有的话考虑组合物的毒性。预期的是在必要的情况下重复处理周期。还预期各种标准的治疗如水疗可以与所述治疗组合施用。
C.一般药物组合物
在一些实施方案中,对对象施用药物组合物。不同的方面可以涉及对对象施用有效量的组合物。在一些实施方案中,可以对患者施用结合Coa或肽或其共有肽的抗体以防止或处理由来自葡萄球菌属的一种或更多种细菌导致的感染。或者,可以将编码一种或更多种这类抗体或多肽或肽的表达载体提供给患者作为预防性处理。另外,这类组合物可以与抗生素组合施用。这类组合物通常会溶解于或分散于药物可接受的载体或水介质。
短语“药学上可接受的”或“药理学上可接受的”是指当对动物或人类施用时不产生副作用、过敏反应或其他不良反应的分子实体和组合物。如本文中所使用的,“药学上可接受的载体”包括任何和所有的溶剂、分散介质、包衣、抗菌剂和抗真菌剂、等渗剂和吸收延迟剂等。这种介质和用于药物活性物质的试剂的使用在本领域中是已知的。除非任何常规介质或试剂与活性成分不相容,否则预期其在免疫原性和治疗性组合物中使用。补充活性成分如其他抗感染剂和疫苗也可以并入到组合物中。
活性化合物可以配制用于肠胃外施用,例如配制用于经由静脉内、肌肉内、皮下或甚至腹膜内途径的注射。通常,这类组合物可以制备为液体溶液基或悬浮剂;也可以制备适用于在注射前添加液体来制备溶液剂或悬浮剂的固体形式;并且制剂还可以是乳化的。
适合于可注射使用的药物形式包括无菌的水溶液剂或分散剂;包含芝麻油、花生油或水性丙二醇的制剂;以及用于临时制备无菌可注射的溶液剂或分散剂的无菌粉末。在所有情况下,剂型必须是无菌的,并且必须为可以容易地注射的程度的流体。其还应是在制造和储存的条件下稳定的,并且必须在防微生物如细菌和真菌的污染作用的条件下保存。
蛋白质组合物可以配制为中性形式或盐形式。药学上可接受的盐包括酸加成盐(与蛋白质的自由氨基形成),其利用无机酸如盐酸或磷酸,或有机酸如乙酸、草酸、酒石酸、扁桃酸等形成。与自由的羧基形成的盐还可以来源于无机碱,例如氢氧化钠、氢氧化钾、氢氧化铵、氢氧化钙或氢氧化铁,和有机碱,例如异丙胺、三甲胺、组胺酸、普鲁卡因等。
药物组合物可以包含溶剂或分散介质,其含有例如水、乙醇、多元醇(例如甘油、丙二醇和液态聚乙二醇等)、其合适的混合物、和植物油。可以通过以下方式来保持适当的流动性:例如通过使用包衣如卵磷脂,在分散剂的情况下通过保持需要的粒径,和通过使用表面活性剂。微生物作用的预防可以通过各种抗菌剂和抗真菌剂如对羟基苯甲酸酯、氯丁醇、苯酚、山梨酸、硫汞撒等来实现。在许多情况下,优选包含等渗剂,例如糖或氯化钠。可注射组合物的持久的吸收可以通过在组合物中使用延迟吸收的试剂如单硬脂酸铝和明胶来实现。
无菌的可注射溶液剂通过以下方法来制备:在适当溶剂中将活性化合物以所需量与以上列举的各种其他成分合并,如果需要的话然后进行过滤除菌或等效的过程。通常,分散剂通过将将各种无菌的活性成分并入到无菌载剂中来制备,所述无菌载剂含有基础分散介质和选自以上列举的那些的所需的其他成分。在用于制备无菌的可注射溶液的无菌散剂的情况下,制备的优选方法为真空干燥和冷冻干燥技术,其从其预先无菌过滤的溶液产生活性成分和任何额外的期望成分的散剂。
组合物的施用通常会经由各种常用途径。这包括但不限于经口、经鼻或口腔含化的施用。或者,施用可以通过正位的、真皮内的、皮下的、肌肉内的、腹膜内的、鼻内的或静脉内的注射。在一些实施方案中,可以吸入疫苗组合物(例如美国专利6651655,其通过引用特别地并入)。这类组合物通常会以药学上可接受的组合物施用,所述药物可接受的组合物包含生理学上可接受的载体、缓冲剂或其他赋形剂。
基于预期的目标来确定治疗性或预防性组合物的有效量。术语“单位剂量”或“剂量”是指适合在对象中使用的物理不连续的单位,各单位含有计算为结合其施用即适当途径和方案产生上述期望的响应的预定量的组合物。根据处理的数量和单位剂量两者的待施用的量取决于期望的保护。
组合物的精确量还取决于医师的判断,并且对每一个体都是独特的。影响剂量的因素包括对象的身体和临床状态、施用的途径、处理的预期目标(症状的缓和或治愈)和特定组合物的效力、稳定性以及毒性。
在配制后,溶液会以与剂型相容的方式和在治疗或预防上有效的量来施用。以各种剂型,例如上述可注射溶液的类型容易地施用制剂。
V.实施例
以下实施例为说明各种实施方案的目的给出,并非意在以任何方式限制本发明。本领域技术人员会很容易地理解本发明很好地适合于实现目的并获得所提及的结果和优点,以及其中固有的目的、结果和优点。本发明的实施例连同本文所描述的方法目前代表优选实施方案,是示例性的,并非意在限制本发明的范围。本领域技术人员会想到如权利要求的范围所限定的涵盖在本发明精神之内的其他用途和其中的变化。
实施例1
在金黄色葡萄球菌疾病期间抵消凝固酶活性的单克隆抗体
Coa Mab的特异性和亲和力。产生对抗CoaNM的Mab并测量其对Coa的亲和力(表1)。还测定了单克隆抗体与不相关蛋白(IsdA)的结合,并且对不显示特异性相互作用的那些不进行进一步的研究。因为vWbp在其N端D1和D2结构域具有与Coa的一些同源性(Bjerketorp等人2004,Watanabe等人2005),所以也测试了Coa单克隆抗体至vWbp的结合。没有Mab显示特异性结合VWpb。
为了确定每个Mab在Coa上的结合位点,在E.coli中克隆并表达了代表D1(D1Coa)的亚结构域、代表D2(D2Coa)的亚结构域、包含整个D1D2结构域和部分连接子结构域的前329个氨基酸(D12Coa)、连接子(LCoa)、重复区域(CTCoa)和缺失前18个氨基酸的D1截短形式(D1Δ1-18)。十一个Mab结合D12Coa,其全部特异性识别D1Coa(表1)。两个Mab结合LCoa,没有Mab结合D2Coa。两个Mab结合CTCoa
ELISA测定的缔合常数(Ka)×10-9M
单克隆抗体对血液凝固的抑制。筛选Coa特异性Mab抑制由金黄色葡萄球菌同基因突变体vwb引起的钙螯合的小鼠血液凝固的能力,所述突变体vwb比野生型更缓慢地凝固血液(Cheng等人)。将经分离的金黄色葡萄球菌Newman vwb突变体(1×106CFU)与Mab(3微摩尔)混合并添加到小鼠血。在定时的时间间隔检测样品的凝固。与用同种型对照孵育的血液相比,一些Mab延长了凝固时间。对凝结时间产生最大延迟的抗体是5D5.4、7H4.25和8C.9(表2)。这三个抗体全都识别D1Coa(表1),与我们先前的观察一致:识别D12Coa的多克隆兔血清延迟了小鼠全血的凝固时间[215],而不是识别CTCoa的那些。识别CTCoa的抗体(6C4.15、3B3.14)和识别LCoa的抗体(6C10.27)不引起葡萄球菌凝固的延迟。
aSEM,与同种型对照相比的平均值的标准误差
Mab 5D5.4防止Coa·凝血酶原复合物的形成。Mab 5D5.4在所有测试的Mab中引起了最显著的凝血抑制,检测其破坏Coa·凝血酶原活性的能力。在添加经纯化的人类凝血酶原和S-2238显色底物之前的重组Coa与5D5.4的混合物导致降低的酶活性(IgG1对5D5.4,P<0.05)(图2A)。值得注意的是,用引起全血凝固延迟的7H4.25和8C2.9的处理在该分析中没有显著降低酶活性(IgG1对7H4.25,P>0.05;IgG2a对8C2.9,P>0.05)(数据未显示)。
为了测试5D5.4是否阻止Coa至凝血酶原的缔合,用Coa包被Maxisorb ELISA板(Nunc),在与人凝血酶原孵育之前与抗体孵育。通过HRP缀合的第二抗体检测凝血酶原的结合。5D5.4在浓度200nM时将凝血酶原至Coa的结合降低为其1/3.3(IgG1对5D5.4,P<0.01)(图2B)。这些结果表明,5D5.4阻止Coa·凝血酶原复合物的形成,这导致降低的酶活性。
Coa的N端处的四个氨基酸激活凝血酶原[66]。为了研究是否任何单克隆抗体都是以依赖N端的形式结合D1,将包含D1Coa结构域但是缺失前18个氨基酸(D1Δ1-18)的重组构建体在E.coli中表达并纯化(图1)。测量识别D1Coa的每个Mab与截短蛋白缔合的缔合常数。除了8C2.9之外的所有Mab在对D1Δ1-18的缔合常数方面具有至少一个对数的降低(表1)。值得注意的是,5D5.4以3.94nM-1的亲和力识别D1Coa,但是以1.03nM-1的亲和力与D1Δ1-18相互作用。这个观察结果结合其对Coa酶活性的直接抑制,支持以下观点:5D5.4识别靠近N端的、在金黄色葡萄球菌的不同菌株的各种Coa血清型中可能为保守的表位。
Coa Mab降低葡萄球菌败血症。先前的结果已经表明类型特异性免疫是由识别D12Coa和抵消Coa活性的抗体造成的[215]。为了测试在体外延迟凝固的Coa Mab是否在体内提供对抗金黄色葡萄球菌的保护性免疫,小鼠接受腹腔内注射单克隆抗体或者同种型对照制剂。六小时后,通过眼窝后注射用金黄色葡萄球菌菌株vwb(2×108CFU)感染小鼠。监测小鼠的存活率超过十天的观察期,通过对数秩检验评估保护(图3)。与IgG1对照相比,两种抗体即Mab 5D5.4和7H4.25提供明显的死亡时间延迟(IgG1对5D5.4,P<0.05;IgG1对7H4.25,P<0.001)(图3A)。在体外延迟凝固的单克隆抗体8C2.9不保护小鼠对抗致死剂量的金黄色葡萄球菌菌株vwb(IgG2a对8C2.9,P=0.06)(图3B)。这些数据与以下假设是一致的:对D1结构域的保护性免疫与凝固活性的抵消相关。然而,体外凝固的干扰不足以获得保护性功效。
Coa Mab的交叉反应性。对Coa的类型特异性免疫来自于识别D1Coa的抵消抗体[215]。然而,Coa的N端的七个氨基酸在Coa类型中是保守的[68]。为了研究所产生的对抗菌株Newman的重组Coa的Mab是否与来自其他血清型的Coa交叉反应,用来自以下流行株的Coa包被Maxisorb ELISA板:USA300(Coa III型)、85/2082(Coa IV型)、N315(Coa II型)、MRSA252(Coa IV型)、MW2(Coa VII型)和WIS(Coa VII型)。测量Mab和这些等位基因的缔合(表3)。大多数抗体对Coa的其他等位基因的亲和力都比对CoaNM的亲和力低。2H10.12、5D5.4、8C2.9、4F1.7和7H4.25识别与CoaNM相同血清型的CoaUSA300,但是具有比CoaNM更低的亲和力(表3)。一些抗体还识别其他金黄色葡萄球菌临床分离株的重组Coa。5D5.4与CoaN315、CoaWIS和CoaMW2相互作用(表3),而7H4.25与所有血清型的Coa相互作用,但是具有低的亲和力(表3)。
为了研究mAb 5D5.4在延迟其他凝固酶血清型的菌株的凝固中是否具有交叉保护作用,将金黄色葡萄球菌Newman、N315、MW2、CowanI和WIS(1×106CFU)的制剂与mAb(终浓度3微摩尔)混合并添加到柠檬酸盐处理过的兔血清中。于37℃孵育血清并实时监控。mAb5D5.4未能延迟任意其他凝固酶血清型菌株的凝结。
研究了候选Mab可以识别在所有Coa血清型中保守的表位的可能性。例如,5D5.4在动物中提供了广泛的保护,而不是在凝血试验中。实际上,小鼠接受腹腔内注射5D5.4或者IgG1同种型对照,然后用致死剂量的金黄色葡萄球菌Newman(Coa III型)、N315(Coa II型)、CowanI(Coa IV型)或者MW2(Coa VII型)感染,并监测超过十天的观察期以评估它们的保护作用(图5)。5D5.4治疗导致受以下菌株攻击的动物的死亡时间的延迟:Newman(IgG1对5D5.4,P<0.01),N315(IgG1对5D5.4,P<0.05),CowanI(IgG1对5D5.4,P<0.05)或MW2(IgG1对5D5.4,P<0.05)。总结起来,这些数据表明,通过识别CoaD1结构域内的保守表位,5D5.4提供了对抗由具有三种在北美最常见的Coa血清型的菌株引起的致死疾病的保护。
单克隆抗体CoaCT在免疫中的作用。Coa的C端结构域在葡萄球菌分离株中显示较少的序列变化[68]。我们分离了识别CTCoa、3B3.14和6C4.15的两种单克隆抗体(表1)。用ELISA研究对抗菌株Newman的CTCoa而产生的Mab是否与来自其他菌株的Coa交叉反应。与我们的预期一致,3B3.14和6C4.15识别CoaUSA300、Coa85/2082、CoaN315、CoaMW2和CoaWIS
识别CTCoa(αCTCoa)的多克隆抗血清阻断CTCoa和凝血酶原之间的相互作用,并且提供对抗致死葡萄球菌疾病的保护[68,215]。因此,感兴趣的是是否任何Mab都具有这些活性。为了测试3B3.14和6C4.15是否抑制Coa与凝血酶原的缔合,用CTCoa包被Maxisorb ELISA板(Nunc),与Mab或同种型对照孵育,然后与人凝血酶原孵育。通过缀合HRP的第二抗体检测凝血酶原结合。3B3.14以1μM的浓度将凝血酶原与Coa的结合降低了54%(IgG1对5D5.4,P<0.001)(图6A)。在这个实验中,6C4.15没有破坏CTCoa与凝血酶原的缔合(图6B)。
为了研究识别CoaCT的Mab在葡萄球菌疾病期间对存活的影响,小鼠接受腹腔内注射3B3.14、6C4.15或者它们的同种型对照,然后用缺失vwb的2×108CFU金黄色葡萄球菌Newman变体攻击小鼠(图6C-6D)。监测超过十天的观察期以评估抗体处理对存活的贡献。用3B3.14或者6C4.15处理没有导致死亡时间的显著延迟(P>0.05)(图6C-6D)。因此,在此所产生的Mab都没有保持兔中已经产生的多克隆αCTCoa抗体的保护值。
CTCoa在金黄色葡萄球菌菌株中相对保守。为了研究抵消该部分Coa的抗体是否会提供对抗一些金黄色葡萄球菌类型引起的葡萄球菌感染的保护,小鼠接受腹腔内注射3B3.14或IgG1同种型对照,随后用致死剂量的金黄色葡萄球菌临床分离株USA300(Coa III型)、N315(Coa II型)、CowanI(Coa IV型)或者MW2(Coa VII型)感染小鼠,并检测十天的观察期以评估它们的保护作用(图7)。3B3.14不保护小鼠对抗野生型Newman(IgG1对3B3.14 p>0.05图7A)、N315(IgG1对3B3.14p.0.05图7B)或MW2(IgG1对3B3.14 p.0.05图7D)的攻击。3B3.14提供在用菌株CowanI攻击后死亡时间的适度延迟(IgG1对3B3.14p<0.001图7C)。
讨论。凝固酶表达已经与金黄色葡萄球菌的毒力相关了近一个世纪[212]。近来,证明了对抗Coa和vWbp而产生的体液免疫应答提供对抗金黄色葡萄球菌攻击的保护(Cheng等人2010,McAdow等人2011,[215])。Coa活性的抵消导致类型特异性免疫应答,同时对CTCoa的免疫应答也提供保护,可推测是通过从循环中除去抗原。在此,鉴定了抵消Coa活性并且显示对其他血清型凝固酶的某些交叉反应的单克隆抗体。在该研究中,生成了对抗来自菌株Newman的Coa的单克隆抗体,并且确定了它们结合至多肽特定结构域的位置。
三种Mab(5D5.4、8C2.9和7H4.25)结合D1Coa并延迟由菌株Newman引起的血液凝固。导致凝固的最大延迟的Mab 5D5.4也破坏Coa·凝血酶原复合物的形成,从而减少将纤维蛋白原转化为纤维蛋白的酶的聚集。Mabs 5D5.4和7H4.25提供对抗由金黄色葡萄球菌菌株vwb引起的致死疾病的保护。
因为Coa的N端氨基酸对于凝血酶原的激活是必需的,所以想知道是否任何单克隆抗体都能识别这个结构域。为了解决这个问题,问及D1Coa的前18个氨基酸对Mab结合是否是必需的。5D5.4对D1Δ1-18的亲和力具有大于一个对数的降低,并且7H4.25不能结合这个结构。这个发现支持了以下假设:这两个单克隆抗体通过特异性干扰Coa N端插入凝血酶元激活口袋的能力来破坏凝结。
如果这个假设成立,Mabs 5D5.4和7H4.25应当识别并抵消克隆自其他金黄色葡萄球菌菌株的重组Coa。这些抗体确实识别从代表当前流行病中其他常见血清型的金黄色葡萄球菌菌株克隆的重组Coa,但是在实验中,它们未能延迟由其他Coa血清型菌株引起的凝固。因此,这些Mab看起来不可能特异性识别氨基末端。然而,5D5.4提供对抗至少两种其他金黄色葡萄球菌菌株的保护。这表明尽管抗体不特异性识别Coa的最保守部分,但是其与Coa的相互作用确实需要保守的残基。
先前证明了涉及Coa的D1D2结构域的抗体产生类型特异性免疫。保护动物对抗多种不同Coa血清型的金黄色葡萄球菌菌株的Mab的识别提供了以下证据:可能可以产生抵消一批葡萄球菌分离株的Coa活性的保护性免疫。
两种单克隆抗体识别CTCoa。两者都对血液凝固没有作用,这与先前的观察一致[215]。其中一个,3B3.14破坏凝血酶原与C末端重复区域的结合。被Mab 3B3.14识别的表位的更精确定位可以揭示Coa的C端如何与纤维蛋白原结合,这至今还没有被研究过。这些Mab的被动转移不保护小鼠对抗葡萄球菌的致死攻击。
在此描述的单克隆抗体为预防葡萄球菌疾病提供了药理学工具。它们还可以作为理解Coa在葡萄球菌发病机理和免疫中的机制的工具。
实施例2
材料和方法
细菌菌株和培养生长。于37℃在胰酶大豆琼脂或肉汤培养基上培养金黄色葡萄球菌菌株。先前描述过菌株vwb的产生(Cheng等人2010)。于37℃在Luria Bertani琼脂或肉汤培养基上培养大肠杆菌菌株DH5α和BL21(DE3)。将氨苄西林(100μg/ml)用于pET15b和pGEX6P-1的选择。
蛋白质纯化。于37℃培养携带表达载体的E.coli BL21(DE3),所述表达载体含有来自金黄色葡萄球菌菌株Newman的coa和其亚结构域,然后用100mM IPTG在室温下诱导过夜。因为Coa在纯化过程中的降解,使用在大肠杆菌DH5α中的pGEX6P-1表达载体来表达来自USA300、N315、MW2、MRSA252、85/2082和WIS的Coa作为GST标记的构建体。诱导之后三个小时,以7000×g离心细胞,悬浮于1×柱缓冲液(0.1M Tris-HCl,pH 7.5,0.5M NaCl),然后在弗氏细胞压碎器中以14000磅/平方英寸溶解。使溶解物经受40000×g的超速离心30分钟。将pET15b构建体的上清液经受Ni-NTA层析,用包含10mM咪唑的柱缓冲液冲洗,然后用500mM咪唑洗脱。对于GST标记的蛋白,使培养物上清液经受谷胱甘肽凝胶层析。为了除去GST标签,用柱缓冲液冲洗后,使包含1mM DTT的PreScission蛋白酶裂解缓冲液流过柱子,然后以制造商提供的单位定义将柱子与PreScission蛋白酶(GE Healthcare)孵育过夜。然后用另外的蛋白酶裂解缓冲液洗脱不含GST标记的游离蛋白。洗脱液用磷酸盐缓冲液(PBS)脱盐。对疫苗制剂,通过添加1:100Triton-X114除去内毒素,然后将溶液冷冻10分钟,于37℃孵育10分钟,然后以13000×g离心。该步骤重复两次。将上清液加载到HiTrap脱盐柱以除去Triton-X114的残留。
对抗凝结酶的抗体的生产。用以1:1乳化在弗氏完全佐剂(DIFCO)中的100μg经纯化Coa的PBS溶液腹腔内地免疫三只八周龄的BALB/c雌性小鼠(Jackson Laboratory,BarHarbor,ME),所述经纯化的Coa是从金黄色葡萄球菌菌株Newman克隆的。在第21天和42天,通过用以1:1乳化在弗氏完全佐剂(DIFCO)中的100μg经纯化的Coa腹腔内注射加强免疫小鼠。在第31天和52天,对小鼠取血并用包被Coa的Nunc MaxiSorp 96孔平底板进行ELISA筛选。初次免疫后79天,用25μg Coa的PBS溶液加强免疫对抗原显示强免疫活性的小鼠。三天以后,收获脾细胞并根据标准方法与小鼠骨髓瘤细胞系SP2/mIL-6融合,SP2/mIL-6是一种分泌白介素6的SP2/0骨髓瘤细胞系的衍生物。用ELISA筛选杂交瘤,然后通过有限稀释亚克隆抗原特异性克隆,以产生从单个细胞产生的分泌单克隆抗体的杂交瘤细胞。从细胞系的培养物上清液中纯化抗体,并以1mg·ml-1的浓度储存在PBS中。
Coa亲和力绘图。为确定Coa特异性Mab的结合亲和力,用0.1M碳酸氢钠中20nM浓度的Coa变体包被Nunc MaxiSorp 96孔板。用3%BSA的PBS溶液封闭板,然后与不同浓度的Mab的PBS-吐温溶液孵育。利用第二抗体-HRP缀合物和化学荧光检测以结合至自由抗体的浓度的比例测量Mab结合各个Coa变体的亲和力。利用这个数据,计算抗体对抗原的缔合常数(表1)。此外,为了测试对抗Coa而产生的抗体的特异性,用经亲和纯化的vWbp和IsdA包被ELISA板(NUNC Maxisorp)。
通过ELISA阻止蛋白相互作用。用重组的Coa变体(20nM溶于1倍的包被缓冲液)包被MaxSorb 96-孔ELISA板过夜。封闭之后,将孔用在20nM到1μM浓度范围的Mab孵育。然后将孔用100nM人纤维蛋白原或20nM人凝血酶原孵育。添加以1:1000稀释的对抗各个蛋白的绵羊抗人抗体,其后添加以1:10000稀释的缀合HRP的山羊抗绵羊抗体。利用OpEIA Kit(BDLifesciences)将孔显影,并且测量在450nm处的吸光度。利用GraphPad Prism使用双尾学生t检验进行统计分析。
凝固分析。将过夜培养的葡萄球菌菌株以1:100稀释进入新鲜TSB,于37℃培养至它们达到OD600 0.4。离心一毫升培养物,清洗葡萄球菌并悬浮于1mL无菌PBS以生成1×108CFU/mL的悬浮液。收集来自从初次接受试验的BALB/c小鼠的全血,添加柠檬酸钠至终浓度1%(w/v)。为了评估在抗体存在下细菌的血液凝固活性,将10μL贮存的细菌培养物与含有30μM抗体的10μL PBS在无菌塑料试管(BD Falcon)中混合,并孵育十五分钟。向各个无菌塑料试管(BD Falcon)添加80μL抗凝固的小鼠血液。在37℃孵育试管,在一定的时间间隔通过倾斜试管成45°角来核实血液凝固。所有实验以至少两次独立实验重复。
凝固酶活性测量。在室温下将5×10-8M凝血酶原(Innovative Research)与等摩尔量的功能性Coa预孵育10分钟,然后添加S-2238(一种化学发光底物)达到在100μl PBS的总反应缓冲液中1mM的终浓度。在紫外分光光度计中测量10分钟内450nm处吸收度的变化,以时间的函数绘图,并拟合成线性曲线。将曲线的斜率(dA/dt)理解为S-2238水解的速率,并由此反映酶功能。在以5×10-9M添加的单克隆抗体存在下重复试验,并将数据标准化为没有抑制的平均值。所有的实验以一式三份进行。
被动免疫下的鼠败血症。在用金黄色葡萄球菌攻击前6小时,将PBS中经亲和纯化的抗体以5mg·kg-1实验动物体重的浓度注射进入BALB/c小鼠(6周龄,雌性,Charles RiverLaboratories)的腹腔。金黄色葡萄球菌菌株vwb的过夜培养物按1:100稀释到新鲜TSB中,于37℃培养2小时。将葡萄球菌沉淀、洗涤,然后悬浮于PBS至期望的浓度。使用以下接种物:vwb,2×108CFU;N315,1×108CFU;MW2,2×108CFU。通过将等份样品分散在TSA上涂布然后列举琼脂板上形成的菌落来确认接种物。通过腹腔内注射每千克体重100mg·mL-1的氯胺酮和20mg·mL-1甲苯噻嗪麻醉小鼠。通过眶内注射100μL葡萄球菌(vide supra)悬浮液感染小鼠。监测小鼠的存活率。用GraphPad Prism使用双尾对数秩检验进行数据分析。所有小鼠实验都是遵从实验方案评估根据制度指南进行,并由芝加哥大学生物安全学会委员会(IBC)和动物关爱和使用学会委员会(IACUC)的批准。
实施例3
COA MAB重链和轻链氨基酸序列比对和分析
对不同抗体的轻链和重链可变区进行测序。在以下表5中提供抗体中这些区域的CDR。经由IMGT vquest比对mAb序列后,鉴别了CDR,利用Clustal Omega比对重链和轻链CDR1、CDR2和CDR3的氨基酸序列。序列比对和分析后,呈现了一小部分信息主题。基于可用的全序列(重链和轻链),没有mAb显示为在序列上一致,尽管确实出现了具有相似序列的mAb家族。其中包括4F1.7、2A3.1、2H10.12,其主要的序列差异存在于重链和轻链的CDR3。7H4.25、4H9.20、4B10.44在轻链内具有精确的CDR序列匹配,但是他们的轻链不同。基于序列相似性出现的有趣的一组是结合蛋白的C端结构域的3B3.14和6C4.15,它们在轻链中具有相同的CDR1,但是重链不同。代替地,结合D1结构域、抑制Coa至凝血酶原的结合、并“在体内实验”具有保护性的的5D5.4与所有其他的重链和轻链都有很大不同。
表5
续表5
参考文献
以下参考文献在一定程度上提供示例性程序或对本文所述那些的其他细节补充,其通过引用特别地并入本文。
1.Ryan KJ,Ray CG,Sherris JC,editors(2004)Sherris medicalmicrobiology:an introduction to infectious diseases.第四版.New York:McGraw-Hill.xiii,第979页。
2.Lowy FD(1998)Staphylococcus aureus infections.The New Englandjournal of medicine 339:520-532。
3.Boucher HW,Corey GR(2008)Epidemiology of methicillin-resistantStaphylococcus aureus.Clinical infectious diseases:an official publication ofthe Infectious Diseases Society of America 46 Suppl 5:S344-349。
4.Chu VH,Crosslin DR,Friedman JY,Reed SD,Cabell CH,等人(2005)Staphylococcus aureus bacteremia in patients with prosthetic devices:costsand outcomes.The American journal of medicine 118:1416。
5.Kallen AJ,Brunkard J,Moore Z,Budge P,Arnold KE,等人(2009)Staphylococcus aureus community-acquired pneumonia during the 2006 to 2007influenza season.Annals of emergency medicine 53:358-365。
6.Kang J,Sickbert-Bennett EE,Brown VM,Weber DJ,Rutala WA(2011)Relative frequency of health care-associated pathogens by infection site at auniversity hospital from 1980 to 2008.American journal of infection control.
7.Gravenkemper CF,Brodie JL,Kirby WM(1965)Resistance of Coagulase-Positive Staphylococci to Methicillin and Oxacillin.Journal of bacteriology89:1005-1010.
8.Saravolatz LD,Pohlod DJ,Arking LM(1982)Community-acquiredmethicillin-resistant Staphylococcus aureus infections:a new source fornosocomial outbreaks.Annals of internal medicine 97:325-329.
9.Herold BC,Immergluck LC,Maranan MC,Lauderdale DS,Gaskin RE,等人(1998)Community-acquired methicillin-resistant Staphylococcus aureus inchildren with no identified predisposing risk.JAMA:the journal of theAmerican Medical Association 279:593-598.
10.Noble WC,Virani Z,Cree RG(1992)Co-transfer of vancomycin and otherresistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcusaureus.FEMS microbiology letters 72:195-198.
11.Weigel LM,Clewell DB,Gill SR,Clark NC,McDougal LK,等人(2003)Genetic analysis of a high-level vancomycin-resistant isolate ofStaphylococcus aureus.Science 302:1569-1571.
12.McAleese FM,Foster TJ(2003)Analysis of mutations in theStaphylococcus aureus clfB promoter leading to increasedexpression.Microbiology 149:99-109.
13.Sievert DM,Rudrik JT,Patel JB,McDonald LC,Wilkins MJ,等人(2008)Vancomycin-resistant Staphylococcus aureus in the United States,2002-2006.Clinical infectious diseases:an official publication of the InfectiousDiseases Society of America 46:668-674.
14.Ferry T,Perpoint T,Vandenesch F,Etienne J(2005)Virulencedeterminants in Staphylococcus aureus and their involvement in clinicalsyndromes.Current infectious disease reports 7:420-428.
15.Hartleib J,Kohler N,Dickinson RB,Chhatwal GS,Sixma JJ,等人(2000)Protein A is the von Willebrand factor binding protein on Staphylococcusaureus.Blood 96:2149-2156.
16.Clarke SR,Foster SJ(2006)Surface adhesins of Staphylococcusaureus.Advances in microbial physiology 51:187-224.
17.Schneewind O,Fowler A,Faull KF(1995)Structure of the cell wallanchor of surface proteins in Staphylococcus aureus.Science 268:103-106.
18.Mazmanian SK,Liu G,Ton-That H,Schneewind O(1999)Staphylococcusaureus sortase,an enzyme that anchors surface proteins to the cellwall.Science 285:760-763.
19.Mazmanian SK,Liu G,Jensen ER,Lenoy E,Schneewind O(2000)Staphylococcus aureus sortase mutants defective in the display of surfaceproteins and in the pathogenesis of animal infections.Proceedings of theNational Academy of Sciences of the United States of America 97:5510-5515.
20.McAdow M,Kim HK,Dedent AC,Hendrickx AP,Schneewind O,等人(2011)Preventing Staphylococcus aureus sepsis through the inhibition of itsagglutination in blood.PLoS pathogens 7:e1002307.
21.Cheng AG,Kim HK,Burts ML,Krausz T,Schneewind O,等人(2009)Geneticrequirements for Staphylococcus aureus abscess formation and persistence inhost tissues.The FASEB journal:official publication of the Federation ofAmerican Societies for Experimental Biology 23:3393-3404.
22.Mazmanian SK,Skaar EP,Gaspar AH,Humayun M,Gornicki P,等人(2003)Passage of heme-iron across the envelope of Staphylococcus aureus.Science299:906-909.
23.Weidenmaier C,Kokai-Kun JF,Kristian SA,Chanturiya T,Kalbacher H,等人(2004)Role of teichoic acids in Staphylococcus aureus nasal colonization,amajor risk factor in nosocomial infections.Nature medicine 10:243-245.
24.Lee JC,Betley MJ,Hopkins CA,Perez NE,Pier GB(1987)Virulencestudies,in mice,of transposon-induced mutants of Staphylococcus aureusdiffering in capsule size.The Journal of infectious diseases 156:741-750.
25.Lin WS,Cunneen T,Lee CY(1994)Sequence analysis and molecularcharacterization of genes required for the biosynthesis of type 1 capsularpolysaccharide in Staphylococcus aureus.Journal of bacteriology 176:7005-7016.
26.Baddour LM,Lowrance C,Albus A,Lowrance JH,Anderson SK,等人(1992)Staphylococcus aureus microcapsule expression attenuates bacterial virulencein a rat model of experimental endocarditis.The Journal of infectiousdiseases 165:749-753.
27.Tuchscherr LP,Buzzola FR,Alvarez LP,Caccuri RL,Lee JC,等人(2005)Capsule-negative Staphylococcus aureus induces chronic experimental mastitisin mice.Infection and immunity 73:7932-7937.
28.Na'was T,Hawwari A,Hendrix E,Hebden J,Edelman R,等人(1998)Phenotypic and genotypic characterization of nosocomial Staphylococcus aureusisolates from trauma patients.Journal of clinical microbiology 36:414-420.
29.Paul-Satyaseela M,van Belkum A,Shivannavar CT,Gaddad SM(2004)Carriage of capsulated strains of Staphylococcus aureus:a population-basedstudy performed in Gulbarga,South India.Epidemiology and infection 132:831-838.
30.Melles DC,Taylor KL,Fattom AI,van Belkum A(2008)Serotyping ofDutch Staphylococcus aureus strains from carriage and infection.FEMSimmunology and medical microbiology 52:287-292.
31.Lattar SM,Tuchscherr LP,Caccuri RL,Centron D,Becker K,等人(2009)Capsule expression and genotypic differences among Staphylococcus aureusisolates from patients with chronic or acute osteomyelitis.Infection andimmunity 77:1968-1975.
32.Sutter DE,Summers AM,Keys CE,Taylor KL,Frasch CE,等人(2011)Capsular serotype of Staphylococcus aureus in the era of community-acquiredMRSA.FEMS immunology and medical microbiology 63:16-24.
33.Gonzalez MR,Bischofberger M,Pernot L,van der Goot FG,Freche B(2008)Bacterial pore-forming toxins:the(w)hole story?Cellular and molecularlife sciences:CMLS 65:493-507.
34.Wilke GA,Bubeck Wardenburg J(2010)Role of a disintegrin andmetalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellularinjury.Proceedings of the National Academy of Sciences of the United Statesof America 107:13473-13478.
35.Inoshima I,Inoshima N,Wilke GA,Powers ME,Frank KM,等人(2011)AStaphylococcus aureus pore-forming toxin subverts the activity of ADAM10 tocause lethal infection in mice.Nature medicine.
36.Powers ME,Kim HK,Wang Y,Bubeck Wardenburg J(2012)ADAM10 MediatesVascular Injury Induced by Staphylococcus aureus alpha-Hemolysin.The Journalof infectious diseases.
37.Kantyka T,Shaw LN,Potempa J(2011)Papain-like proteases ofStaphylococcus aureus.Advances in experimental medicine and biology 712:1-14.
38.de Haas CJ,Veldkamp KE,Peschel A,Weerkamp F,Van Wamel WJ,等人(2004)Chemotaxis inhibitory protein of Staphylococcus aureus,a bacterialantiinflammatory agent.The Journal of experimental medicine 199:687-695.
39.Rooijakkers SH,Ruyken M,Roos A,Daha MR,Presanis JS,等人(2005)Immune evasion by a staphylococcal complement inhibitor that acts on C3convertases.Nature immunology 6:920-927.
40.Thammavongsa V,Kern JW,Missiakas DM,Schneewind O(2009)Staphylococcus aureus synthesizes adenosine to escape host immuneresponses.The Journal of experimental medicine 206:2417-2427.
41.Palmqvist N,Patti JM,Tarkowski A,Josefsson E(2004)Expression ofstaphylococcal clumping factor A impedes macrophage phagocytosis.Microbes andinfection/Institut Pasteur 6:188-195.
42.Peterson PK,Verhoef J,Sabath LD,Quie PG(1977)Effect of protein Aon staphylococcal opsonization.Infection and immunity 15:760-764.
43.Goodyear CS,Silverman GJ(2004)Staphylococcal toxin inducedpreferential and prolonged in vivo deletion of innate-like Blymphocytes.Proceedings of the National Academy of Sciences of the UnitedStates of America 101:11392-11397.
44.Kim HK,Cheng AG,Kim HY,Missiakas DM,Schneewind O(2010)Nontoxigenicprotein A vaccine for methicillin-resistant Staphylococcus aureus infectionsin mice.The Journal of experimental medicine 207:1863-1870.
45.Wang Z,Wilhelmsson C,Hyrsl P,Loof TG,Dobes P,等人(2010)Pathogenentrapment by transglutaminase--a conserved early innate immunemechanism.PLoS pathogens 6:e1000763.
46.Loof TG,Morgelin M,Johansson L,Oehmcke S,Olin AI,等人(2011)Coagulation,an ancestral serine protease cascade,exerts a novel function inearly immune defense.Blood.
47.Krarup A,Wallis R,Presanis JS,Gal P,Sim RB(2007)Simultaneousactivation of complement and coagulation by MBL-associated serine protease2.PloS one 2:e623.
48.Loeb L(1903)The Influence of certain Bacteria on the Coagulationof the Blood.The Journal of medical research 10:407-419.
49.Cheng AG,McAdow M,Kim HK,Bae T,Missiakas DM,等人(2010)Contributionof coagulases towards Staphylococcus aureus disease and protectiveimmunity.PLoS pathogens 6.
50.Adams RL,Bird RJ(2009)Review article:Coagulation cascade andtherapeutics update:relevance to nephrology.Part 1:Overview of coagulation,thrombophilias and history of anticoagulants.Nephrology 14:462-470.
51.Gailani D,Renne T(2007)Intrinsic pathway of coagulation andarterial thrombosis.Arteriosclerosis,thrombosis,and vascular biology 27:2507-2513.
52.Procyk R,Blomback B(1990)Disulfide bond reduction in fibrinogen:calcium protection and effect on clottability.Biochemistry 29:1501-1507.
53.Kollman JM,Pandi L,Sawaya MR,Riley M,Doolittle RF(2009)Crystalstructure of human fibrinogen.Biochemistry 48:3877-3886.
54.Blomback B,Hessel B,Hogg D,Therkildsen L(1978)A two-stepfibrinogen--fibrin transition in blood coagulation.Nature 275:501-505.
55.Yang Z,Mochalkin I,Doolittle RF(2000)A model of fibrin formationbased on crystal structures of fibrinogen and fibrin fragments complexed withsynthetic peptides.Proceedings of the National Academy of Sciences of theUnited States of America 97:14156-14161.
56.Lorand L(2000)Sol Sherry Lecture in Thrombosis:research on clotstabilization provides clues for improving thrombolytictherapies.Arteriosclerosis,thrombosis,and vascular biology 20:2-9.
57.Delvaeye M,Conway EM(2009)Coagulation and innate immune responses:can we view them separately?Blood 114:2367-2374.
58.Walker JB,Nesheim ME(1999)The molecular weights,mass distribution,chain composition,and structure of soluble fibrin degradation productsreleased from a fibrin clot perfused with plasmin.The Journal of biologicalchemistry 274:5201-5212.
59.Rijken DC,Lijnen HR(2009)New insights into the molecularmechanisms of the fibrinolytic system.Journal of thrombosis and haemostasis:JTH 7:4-13.
60.Lord ST(2011)Molecular mechanisms affecting fibrin structure andstability.Arteriosclerosis,thrombosis,and vascular biology 31:494-499.
61.Konings J,Govers-Riemslag JW,Philippou H,Mutch NJ,Borissoff JI,等人(2011)Factor XIIa regulates the structure of the fibrin clot independentlyof thrombin generation through direct interaction with fibrin.Blood.
62.Ariens RA,Philippou H,Nagaswami C,Weisel JW,Lane DA,等人(2000)Thefactor XIII V34L polymorphism accelerates thrombin activation of factor XIIIand affects cross-linked fibrin structure.Blood 96:988-995.
63.Andersen MD,Kjalke M,Bang S,Lautrup-Larsen I,Becker P,等人(2009)Coagulation factor XIII variants with altered thrombin activationrates.Biological chemistry 390:1279-1283.
64.Wolberg AS(2010)Plasma and cellular contributions to fibrinnetwork formation,structure and stability.Haemophilia:the official journal ofthe World Federation of Hemophilia 16 Suppl 3:7-12.
65.Mutch NJ,Engel R,Uitte de Willige S,Philippou H,Ariens RA(2010)Polyphosphate modifies the fibrin network and down-regulates fibrinolysis byattenuating binding of tPA and plasminogen to fibrin.Blood 115:3980-3988.
66.Friedrich R,Panizzi P,Fuentes-Prior P,Richter K,Verhamme I,等人(2003)Staphylocoagulase is a prototype for the mechanism of cofactor-inducedzymogen activation.Nature 425:535-539.
67.Kroh HK,Panizzi P,Bock PE(2009)Von Willebrand factor-bindingprotein is a hysteretic conformational activator of prothrombin.Proceedingsof the National Academy of Sciences of the United States of America 106:7786-7791.
68.Watanabe S,Ito T,Takeuchi F,Endo M,Okuno E,等人(2005)Structuralcomparison of ten serotypes of staphylocoagulases in Staphylococcusaureus.Journal of bacteriology 187:3698-3707.
69.Kawabata S,Morita T,Iwanaga S,Igarashi H(1985)Staphylocoagulase-binding region in human prothrombin.Journal of biochemistry 97:325-331.
70.Cheung AI,Projan SJ,Edelstein RE,Fischetti VA(1995)Cloning,expression,and nucleotide sequence of a Staphylococcus aureus gene(fbpA)encoding a fibrinogen-binding protein.Infection and immunity 63:1914-1920.
71.Phonimdaeng P,O'Reilly M,O'Toole PW,Foster TJ(1988)Molecularcloning and expression of the coagulase gene of Staphylococcus aureus 8325-4.Journal of general microbiology 134:75-83.
72.Bjerketorp J,Jacobsson K,Frykberg L(2004)The von Willebrandfactor-binding protein(vWbp)of Staphylococcus aureus is a coagulase.FEMSmicrobiology letters 234:309-314.
73.Bjerketorp J,Nilsson M,Ljungh A,Flock JI,Jacobsson K,等人(2002)Anovel von Willebrand factor binding protein expressed by Staphylococcusaureus.Microbiology 148:2037-2044.
74.Chapman GH,Berens C,Peters A,Curcio L(1934)Coagulase and HemolysinTests as Measures of the Pathogenicity of Staphylococci.Journal ofbacteriology 28:343-363.
75.Spink WW,Vivino JJ(1942)The Coagulase Test for Staphylococci andIts Correlation with the Resistance of the Organisms to the BactericidalAction of Human Blood.The Journal of clinical investigation 21:353-356.
76.Ekstedt RD,Yotis WW(1960)Studies on staphylococci.II.Effect ofcoagulase on the virulence of coagulase negative strains.Journal ofbacteriology 80:496-500.
77.Phonimdaeng P,O'Reilly M,Nowlan P,Bramley AJ,Foster TJ(1990)Thecoagulase of Staphylococcus aureus 8325-4.Sequence analysis and virulence ofsite-specific coagulase-deficient mutants.Molecular microbiology4:393-404.
78.Baddour LM,Tayidi MM,Walker E,McDevitt D,Foster TJ(1994)Virulenceof coagulase-deficient mutants of Staphylococcus aureus in experimentalendocarditis.Journal of medical microbiology 41:259-263.
79.Moreillon P,Entenza JM,Francioli P,McDevitt D,Foster TJ,等人(1995)Role of Staphylococcus aureus coagulase and clumping factor in pathogenesisof experimental endocarditis.Infection and immunity 63:4738-4743.
80.Stutzmann Meier P,Entenza JM,Vaudaux P,Francioli P,Glauser MP,等人(2001)Study of Staphylococcus aureus pathogenic genes by transfer andexpression in the less virulent organism Streptococcus gordonii.Infection andimmunity 69:657-664.
81.Sawai T,Tomono K,Yanagihara K,Yamamoto Y,Kaku M,等人(1997)Role ofcoagulase in a murine model of hematogenous pulmonary infection induced byintravenous injection of Staphylococcus aureus enmeshed in agarbeads.Infection and immunity 65:466-471.
82.Haraldsson I,Jonsson P(1984)Histopathology and pathogenesis ofmouse mastitis induced with Staphylococcus aureus mutants.Journal ofcomparative pathology 94:183-196.
83.Jonsson P,Lindberg M,Haraldsson I,Wadstrom T(1985)Virulence ofStaphylococcus aureus in a mouse mastitis model:studies of alpha hemolysin,coagulase,and protein A as possible virulence determinants with protoplastfusion and gene cloning.Infection and immunity 49:765-769.
84.Seki K,Ogasawara M,Sakurada J,Murai M,Masuda S(1989)Alteredvirulence of a pleiotropic Staphylococcus aureus mutant with a lowproducibility of coagulase and other factors in mice.Microbiology andimmunology 33:981-990.
85.Johnstone JM,Smith DD(1956)Coagulase activity in vivo.Nature 178:982-983.
86.Lam GT,Sweeney FJ,Jr.,Witmer CM,Wise RI(1963)Abscess-FormingFactor(S)Produced by Staphylococcus Aureus.I.Collodion Bag ImplantationTechnique.Journal of bacteriology 86:611-615.
87.Lam GT,Sweeney FJ,Jr.,Witmer CM,Wise RI(1963)Abscess-FormingFactor(S)Produced by Staphylococcus Aureus.Ii.Abscess Formation and Immunityby a Staphylococcus and Its Mutants.Journal of bacteriology 86:87-91.
88.Cawdery M,Foster WD,Hawgood BC,Taylor C(1969)The role of coagulasein the defence of Staphylococcus aureus against phagocytosis.British journalof experimental pathology 50:408-412.
89.Kapral FA(1966)Clumping of Staphylococcus aureus in the peritonealcavity of mice.Journal of bacteriology 92:1188-1195.
90.Yeaman MR,Norman DC,Bayer AS(1992)Platelet microbicidal proteinenhances antibiotic-induced killing of and postantibiotic effect inStaphylococcus aureus.Antimicrobial agents and chemotherapy 36:1665-1670.
91.Fitzgerald JR,Foster TJ,Cox D(2006)The interaction of bacterialpathogens with platelets.Nature reviews Microbiology 4:445-457.
92.Ni Eidhin D,Perkins S,Francois P,Vaudaux P,Hook M,等人(1998)Clumping factor B(ClfB),a new surface-located fibrinogen-binding adhesin ofStaphylococcus aureus.Molecular microbiology 30:245-257.
93.O'Brien L,Kerrigan SW,Kaw G,Hogan M,Penades J,等人(2002)Multiplemechanisms for the activation of human platelet aggregation by Staphylococcusaureus:roles for the clumping factors ClfA and ClfB,the serine-aspartaterepeat protein SdrE and protein A.Molecular microbiology 44:1033-1044.
94.Niemann S,Spehr N,Van Aken H,Morgenstern E,Peters G,等人(2004)Soluble fibrin is the main mediator of Staphylococcus aureus adhesion toplatelets.Circulation 110:193-200.
95.Much H(1908)eine Vorstufe des Fibrinfermentes in Kulturen vonStaphylokokkus aureus.Biochem Z 14:143-155.
96.Birch-Hirschfeld L(1934)die Agglutination von Staphylokokkendurch Bestandteile desKlinische Woschenschrift 13:331.
97.Cadness-Graves B.WR,Harper C.J.,Miles A.A.(1943)Slide test forcoagulase-positive staphylococci.Lancet 2:736-738.
98.Berger F(1943)Clumping of pathogenic staphylococci inplasma.Journal of Pathology and Bacteriology 55.
99.Duthie ES(1954)Evidence for two forms of staphylococcalcoagulase.Journal of general microbiology 10:427-436.
100.McDevitt D,Francois P,Vaudaux P,Foster TJ(1994)Molecularcharacterization of the clumping factor(fibrinogen receptor)of Staphylococcusaureus.Molecular microbiology 11:237-248.
101.Que YA,Haefliger JA,Francioli P,Moreillon P(2000)Expression ofStaphylococcus aureus clumping factor A in Lactococcus lactis subsp.cremorisusing a new shuttle vector.Infection and immunity 68:3516-3522.
102.Umeda A,Ikebuchi T,Amako K(1980)Localization of bacteriophagereceptor,clumping factor,and protein A on the cell surface of Staphylococcusaureus.Journal of bacteriology 141:838-844.
103.Jensen K(2007)A normally occurring Staphylococcus antibody inhuman serum.APMIS:acta pathologica,microbiologica,et immunologicaScandinavica 115:533-539;discussion 540-531.
104.Deisenhofer J,Jones TA,Huber R,Sjodahl J,Sjoquist J(1978)Crystallization,crystal structure analysis and atomic model of the complexformed by a human Fc fragment and fragment B of protein A from Staphylococcusaureus.Hoppe-Seyler's Zeitschrift fur physiologische Chemie359:975-985.
105.Graille M,Stura EA,Corper AL,Sutton BJ,Taussig MJ,等人(2000)Crystal structure of a Staphylococcus aureus protein A domain complexed withthe Fab fragment of a human IgM antibody:structural basis for recognition ofB-cell receptors and superantigen activity.Proceedings of the NationalAcademy of Sciences of the United States of America 97:5399-5404.
106.O'Seaghdha M,van Schooten CJ,Kerrigan SW,Emsley J,Silverman GJ,等人(2006)Staphylococcus aureus protein A binding to von Willebrand factor A1domain is mediated by conserved IgG binding regions.The FEBS journal 273:4831-4841.
107.Projan SJ,Nesin M,Dunman PM(2006)Staphylococcal vaccines andimmunotherapy:to dream the impossible dream?Current opinion in pharmacology6:473-479.
108.Shinefield H,Black S,Fattom A,Horwith G,Rasgon S,等人(2002)Use ofa Staphylococcus aureus conjugate vaccine in patients receivinghemodialysis.The New England journal of medicine 346:491-496.
109.Fattom A,Fuller S,Propst M,Winston S,Muenz L,等人(2004)Safety andimmunogenicity of a booster dose of Staphylococcus aureus types 5and 8capsular polysaccharide conjugate vaccine(StaphVAX)in hemodialysispatients.Vaccine 23:656-663.
110.Kuklin NA,Clark DJ,Secore S,Cook J,Cope LD,等人(2006)A novelStaphylococcus aureus vaccine:iron surface determinant B induces rapidantibody responses in rhesus macaques and specific increased survival in amurine S.aureus sepsis model.Infection and immunity 74:2215-2223.
111.Harro C,Betts R,Orenstein W,Kwak EJ,Greenberg HE,等人(2010)Safetyand immunogenicity of a novel Staphylococcus aureus vaccine:results from thefirst study of the vaccine dose range in humans.Clinical and vaccineimmunology:CVI 17:1868-1874.
112.Kernodle DS(2011)Expectations regarding vaccines and immunetherapies directed against Staphylococcus aureus alpha-hemolysin.The Journalof infectious diseases 203:1692-1693;author reply 1693-1694.
113.DeDent A,Kim HK,Missiakas D,Schneewind O(2012)ExploringStaphylococcus aureus pathways to disease for vaccine development.Seminars inimmunopathology 34:317-333.
114.Balaban N,Goldkorn T,Nhan RT,Dang LB,Scott S,等人(1998)Autoinducer of virulence as a target for vaccine and therapy againstStaphylococcus aureus.Science 280:438-440.
115.Arrecubieta C,Matsunaga I,Asai T,Naka Y,Deng MC,等人(2008)Vaccination with clumping factor A and fibronectin binding protein A toprevent Staphylococcus aureus infection of an aortic patch in mice.TheJournal of infectious diseases 198:571-575.
116.Bubeck Wardenburg J,Schneewind O(2008)Vaccine protection againstStaphylococcus aureus pneumonia.The Journal of experimental medicine 205:287-294.
117.Gong R,Hu C,Xu H,Guo A,Chen H,等人(2010)Evaluation of clumpingfactor A binding region A in a subunit vaccine against Staphylococcus aureus-induced mastitis in mice.Clinical and vaccine immunology:CVI 17:1746-1752.
118.Josefsson E,Hartford O,O'Brien L,Patti JM,Foster T(2001)Protection against experimental Staphylococcus aureus arthritis byvaccination with clumping factor A,a novel virulence determinant.The Journalof infectious diseases 184:1572-1580.
119.Kim HK,DeDent A,Cheng AG,McAdow M,Bagnoli F,等人(2010)IsdA andIsdB antibodies protect mice against Staphylococcus aureus abscess formationand lethal challenge.Vaccine 28:6382-6392.
120.Nilsson IM,Patti JM,Bremell T,Hook M,Tarkowski A(1998)Vaccinationwith a recombinant fragment of collagen adhesin provides protection againstStaphylococcus aureus-mediated septic death.The Journal of clinicalinvestigation 101:2640-2649.
121.Kennedy AD,Bubeck Wardenburg J,Gardner DJ,Long D,Whitney AR,等人(2010)Targeting of alpha-hemolysin by active or passive immunizationdecreases severity of USA300skin infection in a mouse model.The Journal ofinfectious diseases 202:1050-1058.
122.Stranger-Jones YK,Bae T,Schneewind O(2006)Vaccine assembly fromsurface proteins of Staphylococcus aureus.Proceedings of the National Academyof Sciences of the United States of America 103:16942-16947.
123.Kim HK,Kim HY,Schneewind O,Missiakas D(2011)Identifyingprotective antigens of Staphylococcus aureus,a pathogen that suppresses hostimmune responses.FASEB journal:official publication of the Federation ofAmerican Societies for Experimental Biology 25:3605-3612.
124.Watanabe S,Ito T,Sasaki T,Li S,Uchiyama I,等人(2009)Geneticdiversity of staphylocoagulase genes(coa):insight into the evolution ofvariable chromosomal virulence factors in Staphylococcus aureus.PloS one 4:e5714.
125.McCarthy AJ,Lindsay JA(2010)Genetic variation in Staphylococcusaureus surface and immune evasion genes is lineage associated:implicationsfor vaccine design and host-pathogen interactions.BMC microbiology 10:173.
126.Klevens RM,Edwards JR,Gaynes RP,System NNIS(2008)The impact ofantimicrobial-resistant,health care-associated infections on mortality in theUnited States.Clin Infect Dis 47:927-930.
127.Rogers DE,Melly MA(1965)Speculations on the immunology ofstaphylococcal infections.Annals of the New York Academy of Sciences 128:274-284.
128.Goodyear CS,Silverman GJ(2003)Death by a B cell superantigen:Invivo VH-targeted apoptotic supraclonal B cell deletion by a StaphylococcalToxin.The Journal of experimental medicine 197:1125-1139.
129.Field HI,Smith,H.W.(1945)Coagulase test for staphylococci.J CompPathol 55:63.
130.Smith W,Hale JH,Smith MM(1947)The role of coagulase instaphylococcal infections.British journal of experimental pathology 28:57-67.
131.Kinoshita M,Kobayashi N,Nagashima S,Ishino M,Otokozawa S,等人(2008)Diversity of staphylocoagulase and identification of novel variants ofstaphylocoagulase gene in Staphylococcus aureus.Microbiology and immunology52:334-348.
132.Duthie ES,Lorenz LL(1952)Staphylococcal coagulase:mode of actionand antigenicity.J Gen Microbiol 6:95-107.
133.Panizzi P,Friedrich R,Fuentes-Prior P,Richter K,Bock PE,等人(2006)Fibrinogen substrate recognition by staphylocoagulase.(pro)thrombincomplexes.The Journal of biological chemistry 281:1179-1187.
134.Tager M,Drummond MC(1965)Staphylocoagulase.Annals of the New YorkAcademy of Sciences 128:92-111.
135.Baba T,Bae T,Schneewind O,Takeuchi F,Hiramatsu K(2007)Genomesequence of Staphylococcus aureus strain Newman and comparative analysis ofstaphylococcal genomes.J Bacteriol 190:300-310.
136.Albus A,Arbeit RD,Lee JC(1991)Virulence of Staphylococcus aureusmutants altered in type 5capsule production.Infection and immunity 59:1008-1014.
137.Rothfork JM,Dessus-Babus S,Van Wamel WJ,Cheung AL,Gresham HD(2003)Fibrinogen depletion attenuates Staphyloccocus aureus infection bypreventing density-dependent virulence gene up-regulation.Journal ofimmunology 171:5389-5395.
138.Silberman S,Bernik MB,Potter EV,Kwaan HC(1973)Effects of Ancrod(Arvin)in mice:studies of plasma fibrinogen and fibrinolytic activity.Britishjournal of haematology 24:101-113.
139.Bae T,Schneewind O(2006)Allelic replacement in Staphylococcusaureus with inducible counter-selection.Plasmid 55:58-63.
140.Schneewind O,Mihaylova-Petkov D,Model P(1993)Cell wall sortingsignals in surface proteins of gram-positive bacteria.The EMBO journal12:4803-4811.
141.Schneewind O,Model P,Fischetti VA(1992)Sorting of protein A tothe staphylococcal cell wall.Cell 70:267-281.
142.Harvey RP,Degryse E,Stefani L,Schamber F,Cazenave JP,等人(1986)Cloning and expression of a cDNA coding for the anticoagulant hirudin fromthe bloodsucking leech,Hirudo medicinalis.Proceedings of the National Academyof Sciences of the United States of America 83:1084-1088.
143.Markwardt F(1955)Untersuchungen√°ber Hirudin:naturwiss.F.
144.Klevens RM,Morrison MA,Nadle J,Petit S,Gershman K,等人(2007)Invasive methicillin-resistant Staphylococcus aureus infections in the UnitedStates.JAMA:the journal of the American Medical Association298:1763-1771.
145.DeBord KL,Anderson DM,Marketon MM,Overheim KA,DePaolo RW,等人(2006)Immunogenicity and protective immunity against bubonic and pneumonicplague by immunization of mice with the recombinant V10antigen,a variant ofLcrV.Infect Immun 74:4910-4914.
146.Panizzi P,Friedrich R,Fuentes-Prior P,Kroh HK,Briggs J,等人(2006)Novel fluorescent prothrombin analogs as probes of staphylocoagulase-prothrombin interactions.The Journal of biological chemistry281:1169-1178.
147.Kennedy AD,Otto M,Braughton KR,Whitney AR,Chen L,等人(2008)Epidemic community-associated methicillin-resistant Staphylococcus aureus:recent clonal expansion and diversification.Proceedings of the NationalAcademy of Sciences of the United States of America 105:1327-1332.
148.Mainiero M,Goerke C,Geiger T,Gonser C,Herbert S,等人(2010)Differential target gene activation by the Staphylococcus aureus two-component system saeRS.Journal of bacteriology 192:613-623.
149.Geoghegan JA,Ganesh VK,Smeds E,Liang X,Hook M,等人(2010)Molecularcharacterization of the interaction of staphylococcal microbial surfacecomponents recognizing adhesive matrix molecules(MSCRAMM)ClfA and Fbl withfibrinogen.The Journal of biological chemistry 285:6208-6216.
150.Josefsson E,Higgins J,Foster TJ,Tarkowski A(2008)Fibrinogenbinding sites P336 and Y338 of clumping factor A are crucial forStaphylococcus aureus virulence.PloS one 3:e2206.
151.Palma M,Wade D,Flock M,Flock JI(1998)Multiple binding sites inthe interaction between an extracellular fibrinogen-binding protein fromStaphylococcus aureus and fibrinogen.The Journal of biological chemistry273:13177-13181.
152.Heilmann C,Herrmann M,Kehrel BE,Peters G(2002)Platelet-bindingdomains in 2 fibrinogen-binding proteins of Staphylococcus aureus identifiedby phage display.The Journal of infectious diseases 186:32-39.
153.Hussain M,Becker K,von Eiff C,Schrenzel J,Peters G,等人(2001)Identification and characterization of a novel 38.5-kilodalton cell surfaceprotein of Staphylococcus aureus with extended-spectrum binding activity forextracellular matrix and plasma proteins.Journal of bacteriology 183:6778-6786.
154.Streitfeld MM,Sallman B,Shoelson SM(1959)Staphylocoagulaseinhibition by pooled human gamma-globulin.Nature 184(Suppl 21):1665-1666.
155.Studier FW,Rosenberg AH,Dunn JJ,Dubendorff JW(1990)Use of T7 RNApolymerase to direct expression of cloned genes.Methods in enzymology 185:60-89.
156.Chambers HF,Deleo FR(2009)Waves of resistance:Staphylococcusaureus in the antibiotic era.Nature reviews Microbiology 7:629-641.
157.Fowler VG,Jr.,Miro JM,Hoen B,Cabell CH,Abrutyn E,等人(2005)Staphylococcus aureus endocarditis:a consequence of medical progress.JAMA:thejournal of the American Medical Association293:3012-3021.
158.DeLeo FR,Otto M,Kreiswirth BN,Chambers HF(2010)Community-associated meticillin-resistant Staphylococcus aureus.Lancet375:1557-1568.
159.Foster TJ(2005)Immune evasion by staphylococci.Nature reviewsMicrobiology 3:948-958.
160.Walsh EJ,Miajlovic H,Gorkun OV,Foster TJ(2008)Identification ofthe Staphylococcus aureus MSCRAMM clumping factor B(ClfB)binding site in thealphaC-domain of human fibrinogen.Microbiology 154:550-558.
161.Cheng AG,DeDent AC,Schneewind O,Missiakas D(2011)A play in fouracts:Staphylococcus aureus abscess formation.Trends in microbiology19:225-232.
162.Doolittle RF(2003)Structural basis of the fibrinogen-fibrintransformation:contributions from X-ray crystallography.Blood reviews17:33-41.
163.Kolle W,Otto,R.(1902)Die Differenzierung der Staphylokokkenmittelst der Agglutination.Z Hygiene 41.
164.Hawiger J,Timmons S,Strong DD,Cottrell BA,Riley M,等人(1982)Identification of a region of human fibrinogen interacting withstaphylococcal clumping factor.Biochemistry 21:1407-1413.
165.McDevitt D,Francois P,Vaudaux P,Foster TJ(1995)Identification ofthe ligand-binding domain of the surface-located fibrinogen receptor(clumpingfactor)of Staphylococcus aureus.Molecular microbiology 16:895-907.
166.McDevitt D,Nanavaty T,House-Pompeo K,Bell E,Turner N,等人(1997)Characterization of the interaction between the Staphylococcus aureusclumping factor(ClfA)and fibrinogen.European journal of biochemistry/FEBS247:416-424.
167.Strong DD,Laudano AP,Hawiger J,Doolittle RF(1982)Isolation,characterization,and synthesis of peptides from human fibrinogen that blockthe staphylococcal clumping reaction and construction of a synthetic clumpingparticle.Biochemistry 21:1414-1420.
168.Ganesh VK,Rivera JJ,Smeds E,Ko YP,Bowden MG,等人(2008)Astructural model of the Staphylococcus aureus ClfA-fibrinogen interactionopens new avenues for the design of anti-staphylococcal therapeutics.PLoSpathogens 4:e1000226.
169.Hair PS,Echague CG,Sholl AM,Watkins JA,Geoghegan JA,等人(2010)Clumping factor A interaction with complement factor I increases C3b cleavageon the bacterial surface of Staphylococcus aureus and decreases complement-mediated phagocytosis.Infection and immunity 78:1717-1727.
170.Hall AE,Domanski PJ,Patel PR,Vernachio JH,Syribeys PJ,等人(2003)Characterization of a protective monoclonal antibody recognizingStaphylococcus aureus MSCRAMM protein clumping factor A.Infection andimmunity 71:6864-6870.
171.Weems JJ,Jr.,Steinberg JP,Filler S,Baddley JW,Corey GR,等人(2006)Phase II,randomized,double-blind,multicenter study comparing the safety andpharmacokinetics of tefibazumab to placebo for treatment of Staphylococcusaureus bacteremia.Antimicrobial agents and chemotherapy50:2751-2755.
172.Bae T,Banger AK,Wallace A,Glass EM,Aslund F,等人(2004)Staphylococcus aureus virulence genes identified by bursa aurealismutagenesis and nematode killing.Proceedings of the National Academy ofSciences of the United States of America 101:12312-12317.
173.Kaida S,Miyata T,Yoshizawa Y,Kawabata S,Morita T,等人(1987)Nucleotide sequence of the staphylocoagulase gene:its unique COOH-terminal8tandem repeats.Journal of biochemistry 102:1177-1186.
174.Palma M,Nozohoor S,Schennings T,Heimdahl A,Flock JI(1996)Lack ofthe extracellular 19-kilodalton fibrinogen-binding protein fromStaphylococcus aureus decreases virulence in experimental woundinfection.Infection and immunity 64:5284-5289.
175.Hawiger J,Hammond DK,Timmons S(1975)Human fibrinogen possessesbinding site for staphyococci on Aalpha and Bbeta polypeptide chains.Nature258:643-645.
176.Hijikata-Okunomiya A,Kataoka N(2003)Argatroban inhibitsstaphylothrombin.Journal of thrombosis and haemostasis:JTH 1:2060-2061.
177.Vanassche T,Verhaegen J,Peetermans WE,Hoylaerts MF,Verhamme P(2010)Dabigatran inhibits Staphylococcus aureus coagulase activity.Journal ofclinical microbiology 48:4248-4250.
178.Hauel NH,Nar H,Priepke H,Ries U,Stassen JM,等人(2002)Structure-based design of novel potent nonpeptide thrombin inhibitors.Journal ofmedicinal chemistry 45:1757-1766.
179.Baba T,Takeuchi F,Kuroda M,Yuzawa H,Aoki K,等人(2002)Genome andvirulence determinants of high virulence community-acquired MRSA.Lancet 359:1819-1827.
180.Kuroda M,Ohta T,Uchiyama I,Baba T,Yuzawa H,等人(2001)Whole genomesequencing of meticillin-resistant Staphylococcus aureus.Lancet357:1225-1240.
181.Liu C,Bayer A,Cosgrove SE,Daum RS,Fridkin SK,等人(2011)Clinicalpractice guidelines by the infectious diseases society of america for thetreatment of methicillin-resistant Staphylococcus aureus infections in adultsand children:executive summary.Clinical infectious diseases:an officialpublication of the Infectious Diseases Society of America 52:285-292.
182.Walsh CT(1993)Vancomycin resistance:decoding the molecularlogic.Science 261:308-309.
183.Fowler VG,Jr.,Boucher HW,Corey GR,Abrutyn E,Karchmer AW,等人(2006)Daptomycin versus standard therapy for bacteremia and endocarditiscaused by Staphylococcus aureus.The New England journal of medicine 355:653-665.
184.Diep BA,Gill SR,Chang RF,Phan TH,Chen JH,等人(2006)Completegenome sequence of USA300,an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus.Lancet367:731-739.
185.Donahue JP,Patel H,Anderson WF,Hawiger J(1994)Three-dimensionalstructure of the platelet integrin recognition segment of the fibrinogengamma chain obtained by carrier protein-driven crystallization.Proceedings ofthe National Academy of Sciences of the United States of America 91:12178-12182.
186.Ware S,Donahue JP,Hawiger J,Anderson WF(1999)Structure of thefibrinogen gamma-chain integrin binding and factor XIIIa cross-linking sitesobtained through carrier protein driven crystallization.Protein science:apublication of the Protein Society 8:2663-2671.
187.DeDent A,Bae T,Missiakas DM,Schneewind O(2008)Signal peptidesdirect surface proteins to two distinct envelope locations of Staphylococcusaureus.The EMBO journal 27:2656-2668.
188.Panizzi P,Friedrich R,Fuentes-Prior P,Bode W,Bock PE(2004)Thestaphylocoagulase family of zymogen activator and adhesion proteins.Cellularand molecular life sciences:CMLS 61:2793-2798.
189.Hale JH,Smith W(1945)The influence of coagulase on thephagocytosis of staphylococci.Br J Exp Pathol 26:209-216.
190.Smith DD,Johnstone JM(1956)Coagulase activity in vivo.Nature178:982-983.
191.Kanemitsu K,Yamamoto H,Takemura,Kaku M,Shimada J(2001)Relatednessbetween the coagulase gene 3'-end region and coagulase serotypesamongStaphylococcus aureus strains.Microbiol Immunol 45:23-27.
192.Enright MC,Day NPJ,Davies CE,Peacock SJ,Spratt BG(2000)Multilocussequence typing for characterization of methicillin-resistant andmethicillin-susceptible clones of Staphylococcus aureus.J Clin Microbiol38:1008-1015.
193.Panizzi P,Nahrendorf M,Figueiredo JL,Panizzi J,Marinelli B,等人(2011)In vivo detection of Staphylococcus aureus endocarditis by targetingpathogen-specific prothrombin activation.Nat Med 17:1142-1146.
194.Patel G,Jenkins SG,Mediavilla JR,Kreiswirth BN,Radbill B,等人(2011)Clinical and Molecular Epidemiology of Methicillin-ResistantStaphylococcus aureus among Patients in an Ambulatory HemodialysisCenter.Infection control and hospital epidemiology:the official journal ofthe Society of Hospital Epidemiologists of America 32:881-888.
195.Tager M,Hales HB(1948)Properties of coagulase-reacting factor,andrelation to blood clotting components.Journal of immunology 60:1-9.
196.Lominski I,Roberts GB(1946)A substance in human serum inhibitingstaphylocoagulase.The Journal of pathology and bacteriology58:187-199.
197.Lominski I(1949)Susceptibility and resistance to staphylococcalinfection.Journal of general microbiology 3:ix.
198.Lominski I,Smith DD,Scott AC,Arbuthnott JP,Gray S,等人(1962)Immunisation against experimental staphylococcal infection with coagulase-rich preparations.Lancet 1:1315-1318.
199.Boake WC(1956)Antistaphylocoagulase in experimentalstaphylococcal infections.Journal of immunology 76:89-96.
200.Rammelkamp CH,Hezebicks MM,Dingle JH(1950)Specific Coagulases ofStaphylococcus Aureus.The Journal of experimental medicine91:295-307.
201.Duthie ES(1952)Variation in the antigenic composition ofstaphylococcal coagulase.Journal of general microbiology 7:320-326.
202.Harrison KJ(1964)The Protection of Rabbits against Infection withStaphylococci by Immunisation with Staphylocoagulase Toxin or Toxoid.TheJournal of pathology and bacteriology 87:145-150.
203.Rammelkamp Jr CH,Lebovitz JJ(1956)Immunity,epidemiologyandantimicrobial resistance.The role of coagulase in staphylococcalinfections.Ann NY Acad Sci 65:144-151.
204.Harrison KJ(1963)Clinical trial of coagulase and alpha-hemolysintoxoids in chronic furunculosis.Br Med J 2:149-152.
205.Koreen L,Ramaswamy SV,Graviss EA,Naidich S,Musser JM,等人(2004)spa typing method for discriminating among Staphylococcus aureus isolates:implications for use of a single marker to detect genetic micro-andmacrovariation.J Clin Microbiol 42:792-799.
206.Lancefield RC(1928)The antigenic complex of Streptococcushemolyticus.I.Demonstration of a type-specific substance in extracts ofStreptococcus hemolyticus.J Exp Med 47:91-103.
207.Lancefield R(1962)Current knowledge of type-specific M antigensof group A streptococci.J Immunol 89:307-313.
208.Mora M,Bensi G,Capo S,Falugi F,Zingaretti C,等人(2005)Group AStreptococcus produce pilus-like structures containing protective antigensand Lancefield T antigens.Proc Natl Acad Sci USA 102:15641-15646.
209.Nuccitelli A,Cozzi R,Goutlay LJ,Donnarumma D,Necchi F,等人(2011)Astructure-based approach to rationally design a chimeric protein for aneffective vaccine against Group B Streptococcus infections.Proc Natl Acad SciUSA 108:10278-10283.
210.Schneewind O,Missiakas D(2011)Structural vaccinology to thwartantigenic variation in microbial pathogens.Proc Natl Acad Sci USA108:10029-10030.
211.Tenover FC,Tickler IA,Goering RV,Kreiswirth BN,Mediavilla JR,等人(2012)Characterization of nasal and blood culture isolates of methicillin-resistant Staphylococcus aureus from patients in the United States.AntimicrobAgents Chemother 56:1324-1330.
212.McAdow M,Missiakas DM,Schneewind O(2012)Staphylococcus aureusSecretes Coagulase and von Willebrand Factor Binding Protein to Modify theCoagulation Cascade and Establish Host Infections.Journal of innate immunity4:141-148.
213.Vanassche T,Verhaegen J,Peetermans WE,J VANR,Cheng A,等人(2011)Inhibition of staphylothrombin by dabigatran reduces Staphylococcus aureusvirulence.Journal of thrombosis and haemostasis:JTH 9:2436-2446.
214.Palma M,Shannon O,Quezada HC,Berg A,Flock JI(2001)Extracellularfibrinogen-binding protein,Efb,from Staphylococcus aureus blocks plateletaggregation due to its binding to the alpha-chain.The Journal of biologicalchemistry 276:31691-31697.
215.McAdow MD,A.C.;Emolo,C.;Cheng,A.G.;Kreiswirth,B.;Missiakas,D.M.;Schneewind,O.(2012)Coagulases as determinants of protective immune responsesagainst Staphylococcus aureus.In preparation.
216.Kuehnert MJ,Kruszon-Moran D,Hill HA,McQuillan G,McAllister SK,等人(2006)Prevalence of Staphylococcus aureus nasal colonization in the UnitedStates,2001-2002.The Journal of infectious diseases 193:172-179.
217.Kluytmans J,van Belkum A,Verbrugh H(1997)Nasal carriage ofStaphylococcus aureus:epidemiology,underlying mechanisms,and associatedrisks.Clinical microbiology reviews 10:505-520.
218.Camargo IL,Gilmore MS(2008)Staphylococcus aureus--probing forhost weakness?Journal of bacteriology 190:2253-2256.
219.Plotkin SA,Orenstein WA,editors(2004)Vaccines.4thed.Philadelphia,Pa.:Saunders.xxi,1662 p.p.
220.Levine MM,editor(2010)New generation vaccines.4th ed.New York:Informa Healthcare USA.xxvii,1011 p.p.
221.Zajdel M,Wagrzynowicz Z,Jeljaszewicz J(1975)Action ofstaphylothrombin on bovine fibrinogen.Thrombosis research 6:501-510.
222.Soulier JP,Prou-Wartelle O(1967)Study of thrombin-coagulase.Thrombosis et diathesis haemorrhagica 17:321-334.
223.Kawabata S,Morita T,Iwanaga S,Igarashi H(1985)Difference inenzymatic properties between alpha-thrombin-staphylocoagulase complex andfree alpha-thrombin.Journal of biochemistry 97:1073-1078.
224.Kawabata S,Morita T,Iwanaga S,Igarashi H(1985)Enzymaticproperties of staphylothrombin,an active molecular complex formed betweenstaphylocoagulase and human prothrombin.Journal of biochemistry98:1603-1614.
225.Hendrix H,Lindhout T,Mertens K,Engels W,Hemker HC(1983)Activationof human prothrombin by stoichiometric levels of staphylocoagulase.TheJournal of biological chemistry 258:3637-3644.
226.Kopec M,Wegrzynowicz Z,Budzynski AZ,Jeljaszewicz J,Latallo ZS,等人(1967)Formation and properties of fibrin clots resulting fromstaphylocoagulase(SC)action.Thrombosis et diathesis haemorrhagica18:475-486.
227.Crawley JT,Zanardelli S,Chion CK,Lane DA(2007)The central role ofthrombin in hemostasis.Journal of thrombosis and haemostasis:JTH 5Suppl1:95-101.
228.Vanassche T,Kauskot A,Verhaegen J,Peetermans WE,van Ryn J,等人(2012)Fibrin formation by staphylothrombin facilitates Staphylococcus aureus-induced platelet aggregation.Thrombosis and haemostasis 107.
229.Huber-Lang M,Sarma JV,Zetoune FS,Rittirsch D,Neff TA,等人(2006)Generation of C5a in the absence of C3:a new complement activationpathway.Nature medicine 12:682-687.
230.Deivanayagam CC,Wann ER,Chen W,Carson M,Rajashankar KR,等人(2002)A novel variant of the immunoglobulin fold in surface adhesins ofStaphylococcus aureus:crystal structure of the fibrinogen-binding MSCRAMM,clumping factor A.The EMBO journal 21:6660-6672.
231.Lack CH(1948)Staphylokinase;an activator of plasmaprotease.Nature 161:559.
232.Sakharov DV,Lijnen HR,Rijken DC(1996)Interactions betweenstaphylokinase,plasmin(ogen),and fibrin.Staphylokinase discriminates betweenfree plasminogen and plasminogen bound to partially degraded fibrin.TheJournal of biological chemistry 271:27912-27918.
233.Kwiecinski J,Josefsson E,Mitchell J,Higgins J,Magnusson M,等人(2010)Activation of plasminogen by staphylokinase reduces the severity ofStaphylococcus aureus systemic infection.The Journal of infectiousdiseases202:1041-1049.
234.Karesh A(2009)Pediatric Focused Safety Review:
Argatroban.Pediatric Advisory Committee Meeting.
235.Walsh S(2010)FDA approves Pradaxa to prevent stroke in peoplewith atrial fibrillation.
236.Rammelkamp CH(1948)Serologic Test for StaphylococcalInfections.American Journal of Medicine 4:782-782.
237.Etz H,Minh DB,Henics T,Dryla A,Winkler B,等人(2002)Identificationof in vivo expressed vaccine candidate antigens from Staphylococcusaureus.Proceedings of the National Academy of Sciences of the United Statesof America 99:6573-6578.
美国专利3,817,837
美国专利3,850,752
美国专利3,939,350
美国专利3,996,345
美国专利4,196,265
美国专利4,275,149
美国专利4,277,437
美国专利4,338,298
美国专利4,366,241
美国专利4,472,509
美国专利4,472,509
美国专利4,554,101
美国专利4,684,611
美国专利4,748,018
美国专利4,879,236
美国专利4,938,948
美国专利4,938,948
美国专利4,952,500
美国专利5,021,236
美国专利5,196,066
美国专利5,262,357
美国专利5,302,523
美国专利5,310,687
美国专利5,322,783
美国专利5,384,253
美国专利5,464,765
美国专利5,505,928
美国专利5,512,282
美国专利5,538,877
美国专利5,538,880
美国专利5,548,066
美国专利5,550,318
美国专利5,563,055
美国专利5,580,859
美国专利5,589,466
美国专利5,591,616
美国专利5,610,042
美国专利5,648,240
美国专利5,656,610
美国专利5,690,807
美国专利5,702,932
美国专利5,736,524
美国专利5,741,957
美国专利5,750,172
美国专利5,756,687
美国专利5,780,448
美国专利5,789,215
美国专利5,801,234
美国专利5,827,690
美国专利5,840,846
美国专利5,871,986
美国专利5,945,100
美国专利5,981,274
美国专利5,990,479
美国专利5,994,624
美国专利6,008,341
美国专利6,048,616
美国专利6,091,001
美国专利6,274,323
美国专利6,288,214
美国专利6,630,307
美国专利6,651,655
美国专利6,756,361
美国专利6,770,278
美国专利6,793,923
美国专利6,936,258
美国专利序列号61/103,196
美国专利序列号61/166,432
美国专利序列号61/170,779
美国专利公开号2002/0169288
美国专利公开号20050106660
美国专利公开号20060058510
美国专利公开号20060088908
美国专利公开号20100285564
Atherton等人,Biol.of Reproduction,32:155-171,1985.
Atkins等人,Mol.Immunol.,45:1600-1611,2008.
Ausubel等人,In:Current Protocols in Molecular Biology,John,Wiley&Sons,Inc,New York,1996.
Baba等人,J.Bacteriol.,190:300-310,2007.
Baba等人,Lancet,359:1819-1827,2002.
Barany和Merrifield,In:The Peptides,Gross and Meienhofer(Eds.),Academic Press,NY,1-284,1979.
Boucher和Corey,Clin.Infect.Dis.,46(5):S344-349,2008.
Burke等人,J.Inf.Dis.,170:1110-1119,1994.
Burman等人,J.Biol.Chem.,283:17579-17593,2008.
Campbell,In:Monoclonal Antibody Technology,Laboratory Techniques inBiochemistry and Molecular Biology,Burden and Von Knippenberg(Eds.),Elseview,Amsterdam,13:71-74/75-83,1984.
Carbonelli等人,FEMS Microbiol.Lett.,177(1):75-82,1999.
Cary等人,Mol.Immunol.,36:769-776,1999.
Chandler等人,Proc.Natl.Acad.Sci.USA,94(8):3596-601,1997.
Chen and Okayama,Mol.Cell Biol.,7(8):2745-2752,1987.
Cheng等人,FASEB J.,23:3393-3404,2009.
Cocea,Biotechniques,23(5):814-816,1997.
Cumber等人,J.Immunology,149B:120-126,1992.
de Bono等人,J.Mol.Biol.,342(1):131-143,2004.
DeDent等人,Semin.Immunopathol.,34:317-333,2012.
Dholakia等人,J.Biol.Chem.,264,20638-20642,1989.
Emorl and Gaynes,Clin.Microbiol.Rev.,6:428-442,1993.
Epitope Mapping Protocols In:Methods in Molecular Biology,Vol.66,Morris(Ed.),1996,
欧洲专利0 216 846
欧洲专利0 256 055
欧洲专利0 323 997
欧洲专利申请号89303964.4
Fechheimer,等人,Proc Natl.Acad.Sci.USA,84:8463-8467,1987.
Fischetti,Clin.Microbiol.Rev.,2:285-314,1989.
Fraley等人,Proc.Natl.Acad.Sci.USA,76:3348-3352,1979.
Gefter等人,Somatic Cell Genet.,3:231-236,1977.
Goding,In:Monoclonal Antibodies:Principles and Practice,第二版,Academic Press,Orlando,Fl,pp 60-61,71-74,1986.
Goding,In:Monoclonal Antibodies:Principles and Practice,第二版,Academic Press,Orlando,Fl,pp 65,66,1986.
Goodyear and Silverman,J.Exp.Med.,197:1125-1139,2003.
Gopal,Mol.Cell Biol.,5:1188-1190,1985.
Graham和Van Der Eb,Virology,52:456-467,1973.
Harland和Weintraub,J.Cell Biol.,101(3):1094-1099,1985.
Harlow等人,Antibodies:A Laboratory Manual,Cold Spring HarborLaboratory,Cold Spring Harbor,N.Y.,Chapter 8,1988.
Haupt等人,PloS Pathog.,4:e1000250,2008.
Hollingshead等人,Infect.Immun.,55:3237-3239,1987.
Jones and Fischetti,J.Exp.Med.,167:1114-1123,1988.
Jones等人,J.Exp.Med.,164:1226-1238,1986.
Kaeppler等人,Plant Cell Rep.,8:415–418,1990.
Kaneda等人,Science,243:375-378,1989.
Kato等人,J.Biol.Chem.,266:3361-3364,1991.
Kennedy等人,Proc.Natl.Acad.Sci.,USA,105(4):1327-1332,2008.
Khatoon等人,Ann.of Neurology,26,210-219,1989.
Kim等人,FASEB J.,25:3605-3612,2011.
Kim等人,J.Exp.Med.,207:1863-1870,2010a.
Kim等人,Vaccine,28:6382-6392,2010b.
King等人,J.Biol.Chem.,269,10210-10218,1989.
Klevens等人,JAMA,298:1763-1771,2007.
Kohl等人,Proc.Natl.Acad.Sci.,USA,100(4):1700-1705,2003.
Kohler和Milstein,Eur.J.Immunol.,6:511-519,1976.
Kohler和Milstein,Nature,256:495-497,1975.
Kyte和Doolittle,J.Mol.Biol.,157(1):105-132,1982.
Lancefield,J.Exp.Med.,47:91-103,1928.
Lancefield,J.Immunol.,89:307-313,1962.
Lee,Trends Microbiol.,4(4):162-166,1996.
Levenson等人,Hum.Gene Ther.,9(8):1233-1236,1998.
Liu等人Cell Mol.Biol.,49(2):209-216,2003.
McCarthy和Lindsay,BMC Microbiology,10:173,2010.
Merrifield,Science,232(4748):341-347,1986.
Nicolau和Sene,Biochim.Biophys.Acta,721:185-190,1982.
Nicolau等人,Methods Enzymol.,149:157-176,1987.
Nimmerjahn和Ravetch,Nat.Rev.Immunol.,8(1):34-47,2008.
Omirulleh等人,Plant Mol.Biol.,21(3):415-28,1993.
O'Shannessy等人,J.Immun.Meth.,99,153-161,1987.
Owens和Haley,J.Biol.Chem.,259:14843-14848,1987.
Pack等人,Biochem.,31:1579-1584,1992.
PCT申请号PCT/US11/42845
PCT公开号WO 00/02523
PCT公开号WO 00/12132
PCT公开号WO 00/12689
PCT公开号WO 00/15238
PCT公开号WO 01/60852
PCT公开号WO 2006/032472
PCT公开号WO 2006/032475
PCT公开号WO 2006/032500
PCT公开号WO 2007/113222
PCT公开号WO 2007/113223
PCT公开号WO 2011/005341
PCT公开号WO 94/09699
PCT公开号WO 95/06128
PCT公开号WO 98/57994
PCT公开号WO 2006/056464
PCT公开号WO 99/26299
Phillips等人,Proc.Natl.Acad.Sci.,USA,78:4689-4693,1981.
Potrykus等人,Mol.Gen.Genet.,199(2):169-177,1985.
Potter和Haley,Methods Enzymol,91:613-633,1983.
Rippe,等人,Mol.Cell Biol.,10:689-695,1990.
Robbins等人,Adv.Exp.Med.Biol.,397:169-182,1996.
Sambrook等人,In:Molecular cloning,Cold Spring Harbor LaboratoryPress,Cold Spring Harbor,NY,2001.
Scott等人,J.Exp.Med.,164:1641-1651,1986.
Silverman和Goodyear,Nat.Rev.Immunol.,6:465-475,2006.
Skerra,J.Biotechnol.,74(4):257-75,2001.
Skerra,J.Mol.Recogn.,13:167-187,2000.
Smith等人,Mol.Microbiol.,83:789-804,2012.
Stewart和Young,In:Solid Phase Peptide Synthesis,第二版,PierceChemical Co.,1984.
Stranger-Jones等人,Proc.Natl.Acad.Sci.,USA,103:16942-16947,2006.
Tam等人,J.Am.Chem.Soc.,105:6442,1983.
Tigges等人,J.Immunol.,156(10):3901-3910,1996.
Ton-That等人,Proc.Natl.Acad.Sci.,USA,96:12424-12429,1999.
Wong等人,Gene,10:87-94,1980.
Yoo等人,J.Immunol.Methods,261(1-2):1-20,2002.
Zhang等人,Microbiology,144:985-991,1998.
Zhang等人,Microbiology,145:177-183,1999.

Claims (14)

1.包含Coa结合抗体的组合物用于制造用于抑制或治疗确定患有葡萄球菌感染或具有葡萄球菌感染风险的患者中的葡萄球菌感染的药剂的用途,所述Coa结合抗体特异性地结合至葡萄球菌Coa多肽的结构域1-2或重复区域(R),其中所述Coa结合抗体包含各自与5D5.4、7H4.25、3B3.14或者8C2.9单克隆抗体的六个CDR结构域的相应CDR结构域一致的六个CDR结构域,
其中5D5.4单克隆抗体包含分别具有SSVSSSY、STS和QQYHRSPPT序列的轻链CDR1、CDR2和CDR3结构域,并包含分别具有GASITTSY、ISYSGNT和AATYYDFNYDGYLDV序列的重链CDR1、CDR2和CDR3结构域,
其中7H4.25单克隆抗体包含分别具有QSVDYNGISY、AAS和HQSIEDPRT序列的轻链CDR1、CDR2和CDR3结构域,并包含分别具有GFNIKDIY、IDPADGHS和SRSGAI序列的重链CDR1、CDR2和CDR3结构域,
其中3B3.14单克隆抗体包含分别具有QSIVHSNGNTY、KVS和FQGSHVPLT序列的轻链CDR1、CDR2和CDR3结构域,并包含分别具有GYTFTSFD、IFPGDGSS和VKNHGGWSFDV序列的重链CDR1、CDR2和CDR3结构域,
其中8C2.9单克隆抗体包含分别具有QSLLNSRARKNY、WAS和KQSYNLWT序列的轻链CDR1、CDR2和CDR3结构域,并包含分别具有GFTFSNYY、IKSNGVST和VRHDGYYFAY序列的重链CDR1、CDR2和CDR3结构域。
2.根据权利要求1所述的用途,其中所述Coa结合抗体包含单克隆抗体。
3.根据权利要求1所述的用途,其中所述Coa结合抗体是重组的和/或是人源化抗体或嵌合抗体。
4.根据权利要求1所述的用途,其中所述Coa结合抗体是重组的单结构域抗体。
5.根据权利要求1所述的用途,其中所述Coa结合抗体是重组融合蛋白。
6.根据权利要求1所述的用途,其中所述Coa结合抗体包含与5D5.4、7H4.25或者3B3.14单克隆抗体的相应六个CDR结构域100%一致的六个CDR结构域。
7.根据权利要求1到6中任一项所述的用途,其还包括施用抗生素或葡萄球菌疫苗组合物。
8.一种经纯化的嵌合抗体,其结合至葡萄球菌Coa多肽的结构域1-2或重复区域(R),所述经纯化的嵌合抗体包含各自与3B3.14、8C2.9、5D5.4或者7H4.25单克隆抗体的六个CDR结构域的相应CDR结构域一致的六个CDR结构域,
其中5D5.4单克隆抗体包含分别具有SSVSSSY、STS和QQYHRSPPT序列的轻链CDR1、CDR2和CDR3结构域,并包含分别具有GASITTSY、ISYSGNT和AATYYDFNYDGYLDV序列的重链CDR1、CDR2和CDR3结构域,
其中7H4.25单克隆抗体包含分别具有QSVDYNGISY、AAS和HQSIEDPRT序列的轻链CDR1、CDR2和CDR3结构域,并包含分别具有GFNIKDIY、IDPADGHS和SRSGAI序列的重链CDR1、CDR2和CDR3结构域,
其中3B3.14单克隆抗体包含分别具有QSIVHSNGNTY、KVS和FQGSHVPLT序列的轻链CDR1、CDR2和CDR3结构域,并包含分别具有GYTFTSFD、IFPGDGSS和VKNHGGWSFDV序列的重链CDR1、CDR2和CDR3结构域,
其中8C2.9单克隆抗体包含分别具有QSLLNSRARKNY、WAS和KQSYNLWT序列的轻链CDR1、CDR2和CDR3结构域,并包含分别具有GFTFSNYY、IKSNGVST和VRHDGYYFAY序列的重链CDR1、CDR2和CDR3结构域。
9.根据权利要求8所述的经纯化的嵌合抗体,其中所述抗体包含与5D5.4、3B3.14或者7H4.25单克隆抗体的六个相应CDR结构域100%一致的六个CDR结构域。
10.根据权利要求8到9中任一项所述的经纯化的嵌合抗体,其中所述抗体是人源化抗体或嵌合抗体。
11.根据权利要求8所述的经纯化的嵌合抗体,其中所述抗体与3B3.14、8C2.9、5D5.4或7H4.25单克隆抗体竞争结合葡萄球菌Coa多肽。
12.根据权利要求8所述的经纯化的嵌合抗体,其中所述抗体是重组的。
13.根据权利要求12所述的经纯化的嵌合抗体,其中重组抗体是重组融合蛋白。
14.根据权利要求12所述的经纯化的嵌合抗体,其中重组抗体是单结构域抗体。
CN201380033151.0A 2012-04-26 2013-03-15 与金黄色葡萄球菌疾病期间抵消凝固酶活性的抗体相关的组合物和方法 Active CN104703622B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261638797P 2012-04-26 2012-04-26
US61/638,797 2012-04-26
PCT/US2013/031927 WO2013162751A1 (en) 2012-04-26 2013-03-15 Compositions and methods related to antibodies that neutralize coagulase activity during staphylococcus aureus disease

Publications (2)

Publication Number Publication Date
CN104703622A CN104703622A (zh) 2015-06-10
CN104703622B true CN104703622B (zh) 2017-05-24

Family

ID=49483735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380033151.0A Active CN104703622B (zh) 2012-04-26 2013-03-15 与金黄色葡萄球菌疾病期间抵消凝固酶活性的抗体相关的组合物和方法

Country Status (10)

Country Link
US (2) US9701738B2 (zh)
EP (1) EP2841101B1 (zh)
JP (2) JP6251730B2 (zh)
CN (1) CN104703622B (zh)
AU (1) AU2013252888B2 (zh)
BR (1) BR112014026808A2 (zh)
CA (1) CA2910320A1 (zh)
HK (1) HK1207321A1 (zh)
NZ (1) NZ702282A (zh)
WO (1) WO2013162751A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181329B2 (en) * 2007-08-31 2015-11-10 The University Of Chicago Methods and compositions related to immunizing against Staphylococcal lung diseases and conditions
ES2806945T3 (es) * 2012-04-26 2021-02-19 Univ Chicago Antígenos de coagulasa estafilocócica y métodos para su uso
CA2937054C (en) * 2014-01-24 2023-02-14 William R. Church Antibody specific to staphylococcus aureus, therapeutic method and detection method using same
US11214600B2 (en) 2016-02-12 2022-01-04 The University Of Chicago Compositions and methods related to antibodies that neutralize coagulase activity during Staphylococcus aureus disease
US11557372B2 (en) * 2017-06-30 2023-01-17 Nec Corporation Prediction device, gene estimation device, prediction method, and non-transitory recording medium

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL154598B (nl) 1970-11-10 1977-09-15 Organon Nv Werkwijze voor het aantonen en bepalen van laagmoleculire verbindingen en van eiwitten die deze verbindingen specifiek kunnen binden, alsmede testverpakking.
US3817837A (en) 1971-05-14 1974-06-18 Syva Corp Enzyme amplification assay
US3939350A (en) 1974-04-29 1976-02-17 Board Of Trustees Of The Leland Stanford Junior University Fluorescent immunoassay employing total reflection for activation
US3996345A (en) 1974-08-12 1976-12-07 Syva Company Fluorescence quenching with immunological pairs in immunoassays
US4196265A (en) 1977-06-15 1980-04-01 The Wistar Institute Method of producing antibodies
US4277437A (en) 1978-04-05 1981-07-07 Syva Company Kit for carrying out chemically induced fluorescence immunoassay
US4275149A (en) 1978-11-24 1981-06-23 Syva Company Macromolecular environment control in specific receptor assays
US4338298A (en) 1980-04-04 1982-07-06 Endowment And Research Foundation At Montana State University Vaccine for passive immunization against enteric colibacillosis and method of use
US4366241A (en) 1980-08-07 1982-12-28 Syva Company Concentrating zone method in heterogeneous immunoassays
US4554101A (en) 1981-01-09 1985-11-19 New York Blood Center, Inc. Identification and preparation of epitopes on antigens and allergens on the basis of hydrophilicity
US4957939A (en) 1981-07-24 1990-09-18 Schering Aktiengesellschaft Sterile pharmaceutical compositions of gadolinium chelates useful enhancing NMR imaging
NL8200523A (nl) 1982-02-11 1983-09-01 Univ Leiden Werkwijze voor het in vitro transformeren van planteprotoplasten met plasmide-dna.
US4748018A (en) 1984-02-07 1988-05-31 Stolle Research & Development Corp. Method of passive immunization of mammals using avian antibody
US4472509A (en) 1982-06-07 1984-09-18 Gansow Otto A Metal chelate conjugated monoclonal antibodies
US4879236A (en) 1984-05-16 1989-11-07 The Texas A&M University System Method for producing a recombinant baculovirus expression vector
WO1986005807A1 (en) 1985-04-01 1986-10-09 Celltech Limited Transformed myeloma cell-line and a process for the expression of a gene coding for a eukaryotic polypeptide employing same
US4938948A (en) 1985-10-07 1990-07-03 Cetus Corporation Method for imaging breast tumors using labeled monoclonal anti-human breast cancer antibodies
GB8601597D0 (en) 1986-01-23 1986-02-26 Wilson R H Nucleotide sequences
US5750172A (en) 1987-06-23 1998-05-12 Pharming B.V. Transgenic non human mammal milk
GB8717430D0 (en) 1987-07-23 1987-08-26 Celltech Ltd Recombinant dna product
US4952500A (en) 1988-02-01 1990-08-28 University Of Georgia Research Foundation, Inc. Cloning systems for Rhodococcus and related bacteria
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
SE8901687D0 (sv) 1989-05-11 1989-05-11 Alfa Laval Agri Int Fibronectin binding protein as well as its preparation
US5302523A (en) 1989-06-21 1994-04-12 Zeneca Limited Transformation of plant cells
US7705215B1 (en) 1990-04-17 2010-04-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US5550318A (en) 1990-04-17 1996-08-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US5322783A (en) 1989-10-17 1994-06-21 Pioneer Hi-Bred International, Inc. Soybean transformation by microparticle bombardment
US5633076A (en) 1989-12-01 1997-05-27 Pharming Bv Method of producing a transgenic bovine or transgenic bovine embryo
US5484956A (en) 1990-01-22 1996-01-16 Dekalb Genetics Corporation Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin
JPH049249A (ja) 1990-04-27 1992-01-14 Kusuda:Kk 塗型剤吹き付け機
US5384253A (en) 1990-12-28 1995-01-24 Dekalb Genetics Corporation Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes
AU2515992A (en) 1991-08-20 1993-03-16 Genpharm International, Inc. Gene targeting in animal cells using isogenic dna constructs
US5610042A (en) 1991-10-07 1997-03-11 Ciba-Geigy Corporation Methods for stable transformation of wheat
US5262357A (en) 1991-11-22 1993-11-16 The Regents Of The University Of California Low temperature thin films formed from nanocrystal precursors
US5505928A (en) 1991-11-22 1996-04-09 The Regents Of University Of California Preparation of III-V semiconductor nanocrystals
NZ251621A (en) 1992-03-26 1996-04-26 Microcarb Inc Polyclonal antibodies to shiga-like toxins
EP0604662B1 (en) 1992-07-07 2008-06-18 Japan Tobacco Inc. Method of transforming monocotyledon
US5702932A (en) 1992-07-20 1997-12-30 University Of Florida Microinjection methods to transform arthropods with exogenous DNA
EP0652965A1 (en) 1992-07-27 1995-05-17 Pioneer Hi-Bred International, Inc. An improved method of agrobacterium-mediated transformation of cultured soybean cells
GB9222888D0 (en) 1992-10-30 1992-12-16 British Tech Group Tomography
DK0804070T3 (da) 1993-03-09 2000-08-07 Genzyme Corp Fremgangsmåde til isolering af proteiner fra mælk
US6048616A (en) 1993-04-21 2000-04-11 Philips Electronics N.A. Corp. Encapsulated quantum sized doped semiconductor particles and method of manufacturing same
US5827690A (en) 1993-12-20 1998-10-27 Genzyme Transgenics Corporatiion Transgenic production of antibodies in milk
US5648240A (en) 1994-05-24 1997-07-15 Texas A&M University MHC II analog from Staphylococcus aureus
US5656610A (en) 1994-06-21 1997-08-12 University Of Southern California Producing a protein in a mammal by injection of a DNA-sequence into the tongue
US6008341A (en) 1994-08-22 1999-12-28 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin S. aureus fibrinogen binding protein gene
US5871986A (en) 1994-09-23 1999-02-16 The General Hospital Corporation Use of a baculovirus to express and exogenous gene in a mammalian cell
US5736524A (en) 1994-11-14 1998-04-07 Merck & Co.,. Inc. Polynucleotide tuberculosis vaccine
US6770278B1 (en) 1994-12-02 2004-08-03 Central Biomedia, Inc. Methods of making and using immunoglobulin (Ig) compositions
US5548066A (en) 1994-12-02 1996-08-20 Central Biomedia, Inc. Failure of passive transfer immune serum and method of making same
US6091001A (en) 1995-03-29 2000-07-18 Abgenix, Inc. Production of antibodies using Cre-mediated site-specific recombination
US5690807A (en) 1995-08-03 1997-11-25 Massachusetts Institute Of Technology Method for producing semiconductor particles
EP0857214A1 (en) 1995-10-16 1998-08-12 Smithkline Beecham Plc Novel saliva binding protein
US5780448A (en) 1995-11-07 1998-07-14 Ottawa Civic Hospital Loeb Research DNA-based vaccination of fish
CA2255669A1 (en) 1996-05-16 1997-11-20 The Texas A & M University System Collagen binding protein compositions and methods of use
US5945100A (en) 1996-07-31 1999-08-31 Fbp Corporation Tumor delivery vehicles
US5981274A (en) 1996-09-18 1999-11-09 Tyrrell; D. Lorne J. Recombinant hepatitis virus vectors
US6610293B1 (en) 1997-06-16 2003-08-26 The Henry M. Jackson Foundation For The Advancement Of Military Medicine Opsonic and protective monoclonal and chimeric antibodies specific for lipoteichoic acid of gram positive bacteria
DE19742706B4 (de) 1997-09-26 2013-07-25 Pieris Proteolab Ag Lipocalinmuteine
US6756361B1 (en) 1997-10-14 2004-06-29 Nabi Enterococcus antigens and vaccines
US5994624A (en) 1997-10-20 1999-11-30 Cotton Incorporated In planta method for the production of transgenic plants
US6322901B1 (en) 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US5990479A (en) 1997-11-25 1999-11-23 Regents Of The University Of California Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
DE69940157D1 (en) 1998-07-10 2009-02-05 U S Medical Res Inst Of Infect Anthrax-impfstoff
CA2341177A1 (en) 1998-08-31 2000-03-09 Inhibitex, Inc. Staphylococcal immunotherapeutics via donor selection and donor stimulation
WO2000012689A1 (en) 1998-08-31 2000-03-09 The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Polypeptides and polynucleotides from coagulase-negative staphylococci
CA2344166C (en) 1998-09-14 2008-11-18 Nabi Compositions of .beta.-glucans and specific igiv
US6936258B1 (en) 1999-03-19 2005-08-30 Nabi Biopharmaceuticals Staphylococcus antigen and vaccine
WO2000068692A1 (en) 1999-05-07 2000-11-16 Quantum Dot Corporation A method of detecting an analyte using semiconductor nanocrystals
US6651655B1 (en) 2000-01-18 2003-11-25 Quadrant Technologies Limited Inhaled vaccines
SE0000514D0 (sv) 2000-02-17 2000-02-17 Biostapro Ab A 52 kDa protein from coagulase negative staphylococci and fragments
WO2002074324A1 (en) 2001-03-15 2002-09-26 The Texas A & M University System Collagen-binding adhesin from staphylococcus epidermidis and method of use
CA2464690A1 (en) 2001-09-27 2003-04-10 Pieris Proteolab Ag Muteins of apolipoprotein d
WO2003029462A1 (en) 2001-09-27 2003-04-10 Pieris Proteolab Ag Muteins of human neutrophil gelatinase-associated lipocalin and related proteins
EP1804833A2 (en) 2004-09-22 2007-07-11 GlaxoSmithKline Biologicals SA Staphylococcal immunogenic compositions
WO2006056464A2 (en) 2004-11-26 2006-06-01 Pieris Ag Compound with affinity for the cytotoxic t lymphocyte-associated antigen (ctla-4)
WO2006060728A2 (en) 2004-12-02 2006-06-08 University Of Chicago Methods and compositions involving lcrv proteins
US8475798B2 (en) * 2005-06-16 2013-07-02 Inhibitex, Inc. Monoclonal antibodies recognizing a coagulase-negative staphylococcal protein
AR060188A1 (es) 2006-03-30 2008-05-28 Glaxosmithkline Biolog Sa Procedimiento de conjugacion
EP2476433A1 (en) 2006-03-30 2012-07-18 GlaxoSmithKline Biologicals S.A. Immunogenic composition
EP2666784B1 (en) 2007-08-31 2017-04-05 University Of Chicago Methods and compositions related to immunizing against staphylococcal lung diseases and conditions
EP2291196A4 (en) 2008-05-12 2012-05-30 Strox Biopharmaceuticals Llc FOR STAPHYLOCOCCUS AUREUS SPECIFIC ANTIBODY PREPARATIONS
US8758765B2 (en) 2008-07-29 2014-06-24 The University Of Chicago Compositions and methods related to Staphylococcal bacterium proteins
CN102333540B (zh) 2008-10-06 2015-04-22 芝加哥大学 与细菌eap、emp和/或adsa蛋白相关的组合物和方法
US8370520B2 (en) 2008-11-24 2013-02-05 Juniper Networks, Inc. Adaptive network content delivery system
AU2010271116B2 (en) 2009-04-03 2015-08-13 University Of Chicago Compositions and methods related to Protein A (SpA) variants
US8808699B2 (en) 2010-04-05 2014-08-19 The University Of Chicago Compositions and methods related to protein A (SpA) antibodies as an enhancer of immune response
ES2655701T3 (es) 2010-07-02 2018-02-21 The University Of Chicago Composiciones y métodos relacionados con variantes de la proteína A (SpA)
US8945588B2 (en) 2011-05-06 2015-02-03 The University Of Chicago Methods and compositions involving protective staphylococcal antigens, such as EBH polypeptides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Contribution of Coagulases towards Staphylococcus aureus Disease and Protective Immunity;Alice G. Cheng, et al.;《PLoS Pathogens》;20100805;第6卷(第8期);e1001036 *

Also Published As

Publication number Publication date
CN104703622A (zh) 2015-06-10
JP2015515492A (ja) 2015-05-28
US9701738B2 (en) 2017-07-11
HK1207321A1 (zh) 2016-01-29
CA2910320A1 (en) 2013-10-31
US20170306004A1 (en) 2017-10-26
AU2013252888B2 (en) 2018-06-14
AU2013252888A1 (en) 2014-12-11
BR112014026808A2 (pt) 2018-05-15
EP2841101A4 (en) 2016-02-24
JP6251730B2 (ja) 2017-12-20
NZ702282A (en) 2016-07-29
EP2841101A1 (en) 2015-03-04
US20150368322A1 (en) 2015-12-24
JP2018058871A (ja) 2018-04-12
WO2013162751A1 (en) 2013-10-31
EP2841101B1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
CN103906535B (zh) 与葡萄球菌蛋白a的抗体相关的组合物和方法
US11447543B2 (en) Antibodies to S. aureus surface determinants
US20170306004A1 (en) Compositions and methods related to antibodies that neutralize coagulase activity during staphylococcus aureus disease
WO2013142349A1 (en) Compositions and methods related to staphylococcal sbi
US10273312B2 (en) Antibody specific to Staphylococcus aureus, therapeutic method and detection method using same
KR20210072057A (ko) 항-황색포도상구균 항체의 조합
CN104768572B (zh) 葡萄球菌凝固酶抗原及其使用方法
US20140037650A1 (en) Compositions and methods related to antibodies to staphylococcal proteins isda or isdb
WO2012122533A2 (en) Compositions and methods related to antibodies to staphylococcal proteins isda or isdb

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant