CN104701886A - Presynchronization control method based on virtual synchronous generator - Google Patents
Presynchronization control method based on virtual synchronous generator Download PDFInfo
- Publication number
- CN104701886A CN104701886A CN201510153425.0A CN201510153425A CN104701886A CN 104701886 A CN104701886 A CN 104701886A CN 201510153425 A CN201510153425 A CN 201510153425A CN 104701886 A CN104701886 A CN 104701886A
- Authority
- CN
- China
- Prior art keywords
- voltage
- synchronous generator
- virtual synchronous
- phase
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 103
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000010354 integration Effects 0.000 claims abstract description 11
- 238000007665 sagging Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 9
- 230000003068 static effect Effects 0.000 description 8
- 230000006872 improvement Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 3
- 238000011217 control strategy Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Control Of Eletrric Generators (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种控制方法,具体涉及一种基于虚拟同步发电机的预同步控制方法。The invention relates to a control method, in particular to a pre-synchronization control method based on a virtual synchronous generator.
背景技术Background technique
随着化石类能源的枯竭和环境保护意识的提高,基于可再生能源的分布式发电系统得到了迅速的发展。然而随着分布式发电在电力系统中的比重逐渐增加,分布式发电对电力系统的影响不可忽略。为了提升电网对分布式能源的接纳能力,可以采用个虚拟同步发电机技术,即通过控制使得并网逆变器模拟同步发电机的惯性、一次调频、一次调压及励磁调节特性,使得分布式电源与同步发电机一样,能主动参与到电网的功率调节中去,从而提高整个电网的稳定性。With the depletion of fossil energy and the improvement of environmental protection awareness, distributed power generation systems based on renewable energy have developed rapidly. However, as the proportion of distributed generation in the power system gradually increases, the impact of distributed generation on the power system cannot be ignored. In order to improve the acceptance capacity of the grid for distributed energy, a virtual synchronous generator technology can be used, that is, through control, the grid-connected inverter can simulate the inertia, primary frequency regulation, primary voltage regulation and excitation regulation characteristics of the synchronous generator, so that the distributed The power supply, like the synchronous generator, can actively participate in the power regulation of the grid, thereby improving the stability of the entire grid.
图1为虚拟同步发电机结构图,其包括直流输入电源Vin,三相逆变桥,LC滤波器。其中vCa,vCb,vCc为逆变器三相输出电压,iLa,iLb,iLc为三相逆变器侧电感电流,iga,igb,igc为三相逆变器进网电流,vga,vgb,vgc为三相电网电压。采样三相输出电压vC和三相进网电流ig进行功率计算,得到逆变器输出的有功功率和无功功率,将计算得到的有功功率和无功功率送入虚拟同步发电机控制器中,由虚拟同步发电机控制器得到三相调制波ea,eb,ec,将三相调制波送入PWM调制器中,得到逆变器各个功率开关管的驱动信号。Fig. 1 is a structural diagram of a virtual synchronous generator, which includes a DC input power supply V in , a three-phase inverter bridge, and an LC filter. Where v Ca , v Cb , and v Cc are the three-phase output voltages of the inverter, i La , i Lb , and i Lc are the inductor currents on the three-phase inverter side, and i ga , i gb , and i gc are the three-phase inverter Incoming grid current, v ga , v gb , and v gc are three-phase grid voltages. Sampling the three-phase output voltage v C and the three-phase grid current i g for power calculation to obtain the active power and reactive power output by the inverter, and send the calculated active power and reactive power to the virtual synchronous generator controller Among them, the three-phase modulation waves e a , eb , e c are obtained by the virtual synchronous generator controller, and the three-phase modulation waves are sent to the PWM modulator to obtain the drive signals of each power switch tube of the inverter.
图2为图1中的虚拟同步发电机控制器的具体控制框图。图2的上半部分为有功功率的控制,其中Pset为有功功率给定,Pe为虚拟同步发电机的实际有功功率,ωn为额定频率。有功功率控制环路模拟同步发电机一次调频及惯性环节,包含有功(频率下垂控制(图2及下文Dp代表频率下垂系数)和虚拟转动惯性控制(J代表虚拟转动惯量)。图2的下半部分为无功功率的控制,其中Qset为无功功率给定,Qe为虚拟同步发电机的实际无功功率。Vn为额定电压幅值。无功功率控制环路模拟同步发电机的一次调压及电磁关系,包含无功(电压下垂控制(电压下垂系数为Dq)和励磁调节控制(励磁积分增益为1/K)。由有功功率控制和无功功率控制得到调制波e的频率参考ω、幅值参考E和相位参考θ。调制波e通过PWM环节控制图1中各开关管的通断来使逆变器输出三相对称电压。Fig. 2 is a specific control block diagram of the virtual synchronous generator controller in Fig. 1 . The upper part of Figure 2 is the control of active power, where P set is the given active power, P e is the actual active power of the virtual synchronous generator, and ω n is the rated frequency. The active power control loop simulates the primary frequency modulation and inertia link of the synchronous generator, including active power (frequency droop control (D p in Figure 2 and below represents the frequency droop coefficient) and virtual inertia control (J represents the virtual moment of inertia). The lower part of Figure 2 Half part is the control of reactive power, where Q set is the given reactive power, Q e is the actual reactive power of the virtual synchronous generator. V n is the rated voltage amplitude. The reactive power control loop simulates the synchronous generator The primary voltage regulation and electromagnetic relationship, including reactive power (voltage droop control (voltage droop coefficient is D q ) and excitation regulation control (excitation integral gain is 1/K). The modulation wave e obtained by active power control and reactive power control The frequency reference ω, the amplitude reference E and the phase reference θ. The modulation wave e controls the on-off of each switch tube in Figure 1 through the PWM link to make the inverter output three-phase symmetrical voltage.
然而,图2仅给出了虚拟同步发电机并入电网后稳态运行的控制框图,并没有说明虚拟同步发电机从离网到并网的切换过程。需要指出的是,采用图2所示的控制框图仅仅使虚拟同步发电机在控制上模拟同步发电机的外特性,其主电路仍然是由脆弱的电力电子器件组成,与实际的同步发电机相比,其抗过压过流能力弱。若虚拟同步发电机采用传统的同步发电机拖入同步的方法并入电网,则在并网瞬间冲击电流过大,会对逆变器开关器件以及磁性元件造成损害。因此需要提供一种预同步控制策略,使得虚拟同步发电机可以友好并网。However, Figure 2 only shows the control block diagram of the steady-state operation of the virtual synchronous generator after it is integrated into the grid, and does not illustrate the switching process of the virtual synchronous generator from off-grid to grid-connected. It should be pointed out that the control block diagram shown in Figure 2 only makes the virtual synchronous generator simulate the external characteristics of the synchronous generator in control, and its main circuit is still composed of fragile power electronic devices, which are similar to the actual synchronous generator. Compared with it, its ability to resist overvoltage and overcurrent is weak. If the virtual synchronous generator is connected to the power grid using the traditional method of dragging the synchronous generator into synchronization, the inrush current will be too large at the moment of grid connection, which will cause damage to the switching devices and magnetic components of the inverter. Therefore, it is necessary to provide a pre-synchronization control strategy so that the virtual synchronous generator can be grid-friendly.
发明内容Contents of the invention
为解决上述现有技术中的不足,本发明的目的是提供一种基于虚拟同步发电机的预同步控制方法,采用本发明提供的技术方案可以保证虚拟同步发电机并网前其输出电压的频率、幅值、相位与电网电压均相同,从而实现并网瞬间冲击电流小,保证虚拟同步发电机逆变器平滑友好并网。In order to solve the above-mentioned deficiencies in the prior art, the object of the present invention is to provide a pre-synchronization control method based on a virtual synchronous generator, and the technical solution provided by the present invention can ensure the frequency of the output voltage of the virtual synchronous generator before grid connection , amplitude, and phase are the same as the grid voltage, so that the instantaneous impact current of the grid connection is small, and the virtual synchronous generator inverter is smooth and friendly to the grid.
为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。In order to provide a basic understanding of some aspects of the disclosed embodiments, a brief summary is presented below. This summary is not an overview, nor is it intended to identify key/critical elements or delineate the scope of these embodiments. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
本发明的目的是采用下述技术方案实现的:The object of the present invention is to adopt following technical scheme to realize:
本发明提供一种基于虚拟同步发电机的预同步控制方法,其特征在于,所述方法包括如下步骤:The present invention provides a pre-synchronization control method based on a virtual synchronous generator, characterized in that the method comprises the following steps:
(1)获得三相电网电压幅值Vg,三相电网电压频率ωg和三相电网电压相角θg;(1) Obtain the three-phase grid voltage amplitude V g , the three-phase grid voltage frequency ω g and the three-phase grid voltage phase angle θ g ;
(2)获得逆变器输出电压幅值Vo,逆变器输出电压频率ωo和逆变器输出电压相角θo;(2) Obtain the inverter output voltage amplitude V o , the inverter output voltage frequency ω o and the inverter output voltage phase angle θ o ;
(3)切入频率反馈积分环节;(3) Cut into the frequency feedback integration link;
(4)切入电压反馈积分环节;(4) Cut into the voltage feedback integration link;
(5)切入比例积分调节器Ⅲ;(5) cut into the proportional integral regulator III;
(6)闭合并网开关,使虚拟同步发电机接入电网;(6) Close the grid-connected switch to connect the virtual synchronous generator to the grid;
(7)切出频率反馈积分环节、电压反馈积分环节与相位调节器;缓慢增加虚拟同步发电机有功功率参考值Pset,控制虚拟同步发电机输出功率缓慢增加;(7) Cut out the frequency feedback integral link, the voltage feedback integral link and the phase regulator; slowly increase the active power reference value P set of the virtual synchronous generator, and control the slow increase of the output power of the virtual synchronous generator;
(8)待虚拟同步发电机有功功率参考值Pset增加至额定值后,将频率参考基准从电网电压频率ωg切换为虚拟发电机的额定频率ωn,电压参考基准从Vg切换为额定电压幅值Vn。(8) After the active power reference value P set of the virtual synchronous generator increases to the rated value, the frequency reference is switched from the grid voltage frequency ω g to the rated frequency ω n of the virtual generator, and the voltage reference is switched from V g to the rated Voltage amplitude V n .
进一步地,所述步骤(1)中,通过电压传感器得到三相电网电压vga,vgb和vgc,利用锁相环算法得到三相电网电压幅值Vg,三相电网电压频率ωg和三相电网电压相角θg;Further, in the step (1), the three-phase grid voltage v ga , v gb and v gc are obtained through the voltage sensor, and the phase-locked loop algorithm is used to obtain the three-phase grid voltage amplitude V g and the three-phase grid voltage frequency ω g and three-phase grid voltage phase angle θ g ;
所述步骤(2)中,通过电压传感器得到逆变器输出电压vCa,vCb和vCc,利用锁相环算法得到逆变器输出电压幅值Vo,逆变器输出电压频率ωo和逆变器输出电压相角θo。In the step (2), the inverter output voltages v Ca , v Cb and v Cc are obtained through the voltage sensor, and the inverter output voltage amplitude V o and the inverter output voltage frequency ω o are obtained by using the phase-locked loop algorithm And inverter output voltage phase angle θ o .
进一步地,所述步骤(3)中,将虚拟同步发电机的频率参考由额定频率ωn替换为三相电网电压频率ωg,同时在有功频率下垂环节中加入频率反馈积分环节,并切入频率反馈积分环节;Further, in the step (3), the frequency reference of the virtual synchronous generator is replaced by the rated frequency ω n to the three-phase grid voltage frequency ω g , and at the same time, a frequency feedback integration link is added to the active frequency drooping link, and the frequency Feedback points link;
所述频率反馈积分环节为增益K1的积分环节,其作为调节器的积分部分,利用Dp作为调节器的比例部分,组成比例积分调节器Ⅰ,使得虚拟同步发电机的频率ω能够无静差地跟踪上三相电网电压频率ωg;所述比例积分控制调节器Ⅰ为电压调节器。The frequency feedback integral link is the integral link of gain K 1 , which is used as the integral part of the regulator, and uses Dp as the proportional part of the regulator to form a proportional-integral regulator I, so that the frequency ω of the virtual synchronous generator can have no static poorly track the voltage frequency ω g of the upper three-phase grid; the proportional-integral control regulator I is a voltage regulator.
进一步地,所述步骤(4)中,将虚拟同步发电机的电压幅值参考由额定电压幅值Vn替换为电网电压的幅值Vg,同时在无功电压下垂环节中加入电压反馈积分环节,并切入电压反馈积分环节;Further, in the step (4), the voltage amplitude reference of the virtual synchronous generator is replaced by the rated voltage amplitude V n by the grid voltage amplitude V g , and the voltage feedback integration is added to the reactive voltage droop link link, and cut into the voltage feedback integration link;
所述电压反馈积分环节为增益K2的积分环节,其作为调节器的积分部分,利用Dq作为调节器的比例部分,组成比例积分调节器Ⅱ,使得虚拟同步发电机的输出电压幅值E能够无静差地跟踪上电压电网电压幅值Vg;所述比例积分控制调节器Ⅱ为电压调节器。The integral part of the voltage feedback is the integral part of the gain K2 , which is used as the integral part of the regulator, and Dq is used as the proportional part of the regulator to form a proportional-integral regulator II, so that the output voltage amplitude of the virtual synchronous generator is E It can track the voltage amplitude V g of the upper voltage grid without static error; the proportional-integral control regulator II is a voltage regulator.
进一步地,所述步骤(5)中,将电网电压的相角θg与逆变器输出电压相角θo做差,得到相角差Δθ,将Δθ输入到比例积分调节器Ⅲ中,将比例积分调节器的输出叠加到虚拟同步发电机的输出频率中;Further, in the step (5), the phase angle θ g of the grid voltage is different from the phase angle θ o of the inverter output voltage to obtain the phase angle difference Δθ, and the Δθ is input into the proportional-integral regulator III, and the The output of the proportional-integral regulator is added to the output frequency of the virtual synchronous generator;
所述比例积分调节器Ⅲ为相位调节器,所述相位调节器的输出与频率调节器的输出频率之和通过积分得到虚拟同步发电机的相位,以保证虚拟同步发电机输出电压的相位无静差地跟踪电网电压的相位。The proportional-integral regulator III is a phase regulator, and the sum of the output of the phase regulator and the output frequency of the frequency regulator is integrated to obtain the phase of the virtual synchronous generator, so as to ensure that the phase of the output voltage of the virtual synchronous generator has no static Poorly tracks the phase of the grid voltage.
进一步地,所述步骤(6)中,保证虚拟同步发电机输出电压与电压电网电压频率相等、幅值相等、相位相同后闭合并网开关,接入电网。Further, in the step (6), after ensuring that the output voltage of the virtual synchronous generator is equal in frequency, amplitude and phase to the grid voltage, the grid-connected switch is closed and connected to the grid.
进一步地,所述虚拟同步发电机最初状态为Pset=0,Qset=0,ωr=ωn,Vr=Vn,并网开关断开;当进行所述预同步控制时,并网开关闭合,虚拟同步发电机从离网切换至并网;其中:Pset表示虚拟同步发电机有功功率参考值,Qset表示虚拟同步发电机无功功率参考值=0,ωr表示虚拟同步发电机频率参考值,Vr表示虚拟同步发电机电压幅值参考值。Further, the initial state of the virtual synchronous generator is P set =0, Q set =0, ω r =ω n , V r =V n , and the grid-connected switch is off; when performing the pre-synchronization control, and The grid switch is closed, and the virtual synchronous generator is switched from off-grid to grid-connected; where: P set represents the active power reference value of the virtual synchronous generator, Q set represents the reactive power reference value of the virtual synchronous generator = 0, ω r represents the virtual synchronous Generator frequency reference value, V r represents the virtual synchronous generator voltage amplitude reference value.
与最接近的现有技术相比,本发明提供的技术方案具有的优异效果是:Compared with the closest prior art, the excellent effect that the technical solution provided by the present invention has is:
本发明在原有虚拟同步发电机控制结构的基础上,嵌入预同步控制算法来实现预同步的功能,可以保证虚拟同步发电机并网前其输出电压的频率、幅值、相位与电网电压均相同,从而实现并网瞬间冲击电流小,能快速准确地实现预同步,从而实现虚拟同步发电机的平滑友好并网。On the basis of the original virtual synchronous generator control structure, the present invention embeds a pre-synchronization control algorithm to realize the pre-synchronization function, which can ensure that the frequency, amplitude, and phase of the output voltage of the virtual synchronous generator before grid connection are the same as the grid voltage , so as to realize the small impulse current at the moment of grid connection, and realize the pre-synchronization quickly and accurately, so as to realize the smooth and friendly grid connection of virtual synchronous generators.
为了上述以及相关的目的,一个或多个实施例包括后面将详细说明并在权利要求中特别指出的特征。下面的说明以及附图详细说明某些示例性方面,并且其指示的仅仅是各个实施例的原则可以利用的各种方式中的一些方式。其它的益处和新颖性特征将随着下面的详细说明结合附图考虑而变得明显,所公开的实施例是要包括所有这些方面以及它们的等同。To the above and related ends, one or more embodiments comprise the features hereinafter specified and particularly pointed out in the claims. The following description and drawings detail certain exemplary aspects and are indicative of but a few of the various ways in which the principles of various embodiments may be employed. Other benefits and novel features will become apparent upon consideration of the following detailed description in conjunction with the accompanying drawings, and the disclosed embodiments are intended to include all such aspects and their equivalents.
附图说明Description of drawings
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:The accompanying drawings are used to provide a further understanding of the present invention, and constitute a part of the description, and are used together with the embodiments of the present invention to explain the present invention, and do not constitute a limitation to the present invention. In the attached picture:
图1是现有技术的虚拟同步发电机结构图;Fig. 1 is a structural diagram of a virtual synchronous generator in the prior art;
图2是现有技术的虚拟同步发电控制器控制框图;Fig. 2 is the control block diagram of virtual synchronous generation controller of prior art;
图3是本发明提供的锁相环控制框图;Fig. 3 is a phase-locked loop control block diagram provided by the present invention;
图4是本发明提供的加入预同步控制策略后的虚拟同步发电控制器控制框图。Fig. 4 is a control block diagram of a virtual synchronous power generation controller after adding a pre-synchronization control strategy provided by the present invention.
具体实施方式Detailed ways
下面结合附图对本发明的具体实施方式作进一步的详细说明。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings.
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。除非明确要求,否则单独的组件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,本发明的这些实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。The following description and drawings illustrate specific embodiments of the invention sufficiently to enable those skilled in the art to practice them. Other embodiments may incorporate structural, logical, electrical, process, and other changes. Individual components and functions are optional unless explicitly required, and the order of operations may vary. Portions and features of some embodiments may be included in or substituted for those of other embodiments. The scope of embodiments of the present invention includes the full scope of the claims, and all available equivalents of the claims. These embodiments of the present invention may be referred to herein, individually or collectively, by the term "invention", which is for convenience only and is not intended to automatically limit the application if in fact more than one invention is disclosed The scope is any individual invention or inventive concept.
本发明提供基于虚拟同步发电机的预同步控制方法,采用基于虚拟同步发电机的预同步控制方法可以保证虚拟同步发电机并网前其输出电压的频率、幅值、相位与电网电压均相同,从而实现并网瞬间冲击电流小,保证逆变器平滑友好并网。本发明采用的硬件电路与现有的虚拟同步发电机硬件部分相同,如图1所示。但是对控制方法进行了改进,在现有的虚拟同步发电机控制结构基础上加入了预同步控制,如图4所示。具体改进如下:The present invention provides a pre-synchronization control method based on a virtual synchronous generator. The pre-synchronization control method based on a virtual synchronous generator can ensure that the frequency, amplitude, and phase of the output voltage of the virtual synchronous generator before grid connection are the same as the grid voltage. In this way, the instantaneous impact current of the grid connection is small, and the inverter is smooth and friendly to the grid. The hardware circuit adopted by the present invention is the same as the hardware part of the existing virtual synchronous generator, as shown in FIG. 1 . However, the control method has been improved, and pre-synchronization control is added on the basis of the existing virtual synchronous generator control structure, as shown in Figure 4. The specific improvements are as follows:
(1)对于频率的调节,由于原始的虚拟同步发电机控制结构以频率下垂系数Dp作为比例调节器,则频率调节环路的低频段增益不够高,虚拟同步发电机的频率ω不能无静差地跟踪上电网频率ωg。因此,作为改进,现加入增益为K1的积分器(本发明称之为频率反馈积分环节)作为调节器的积分部分,利用Dp作为调节器的比例部分,组成比例积分(proportionintegration,PI)调节器Ⅰ,这样可使得虚拟同步发电机的频率ω能够无静差地跟踪上电网频率ωg。(1) For frequency adjustment, since the original virtual synchronous generator control structure uses the frequency droop coefficient D p as the proportional regulator, the low-frequency band gain of the frequency regulation loop is not high enough, and the frequency ω of the virtual synchronous generator cannot be static poorly tracks the upper grid frequency ω g . Therefore, as an improvement, now add an integrator whose gain is K 1 (the present invention is referred to as a frequency feedback integration link) as the integral part of the regulator, and use Dp as the proportional part of the regulator to form a proportional integral (proportionintegration, PI) Regulator I, so that the frequency ω of the virtual synchronous generator can track the grid frequency ω g without static error.
(2)对于电压幅值的调节,由于原始的虚拟同步发电机控制结构以电压幅值下垂系数Dq作为比例调节器,则电压幅值调节环路的低频段增益不够高,虚拟同步发电机输出电压的幅值E不能无静差地跟踪上电网电压的幅值Vg。因此,作为改进,现加入增益为K2的积分器(本发明称之为电压反馈积分环节)作为调节器的积分部分,利用Dq作为调节器的比例部分,组成比例积分调节器Ⅱ(PI调节器),使得虚拟同步发电机的输出电压幅值E能够无静差地跟踪上电网电压幅值Vg。(2) For the adjustment of voltage amplitude, since the original virtual synchronous generator control structure uses the voltage amplitude droop coefficient D q as the proportional regulator, the low-frequency band gain of the voltage amplitude adjustment loop is not high enough, and the virtual synchronous generator The amplitude E of the output voltage cannot track the amplitude V g of the grid voltage without static error. Therefore, as an improvement, an integrator with a gain of K 2 (the present invention is called a voltage feedback integral link) is added as the integral part of the regulator, and D q is used as the proportional part of the regulator to form a proportional-integral regulator II (PI regulator), so that the output voltage amplitude E of the virtual synchronous generator can track the grid voltage amplitude V g without static error.
(3)对于相位的调节,本发明的改进如下:将电网电压相位θg减去虚拟同步发电机输出电压相位θo,将差值送入比例积分调节器Ⅲ(PI调节器,本发明称之为相位调节器),PI调节器的输出与频率调节器的输出频率相加,其和通过积分得到虚拟同步发电机的相位。这样就可以保证虚拟同步发电机输出电压的相位无静差地跟踪电网电压的相位。(3) For the adjustment of the phase, the improvement of the present invention is as follows: subtract the virtual synchronous generator output voltage phase θ o from the grid voltage phase θ g , and send the difference to the proportional-integral regulator III (PI regulator, the present invention is called The phase regulator), the output of the PI regulator is added to the output frequency of the frequency regulator, and the sum is integrated to obtain the phase of the virtual synchronous generator. In this way, it can be ensured that the phase of the output voltage of the virtual synchronous generator can track the phase of the grid voltage without static difference.
(4)同时,由于该改进的控制结构需要电网电压的信息(包括电网电压的幅值Vg,电网电压的频率ωg,电网电压的相角θg)和逆变器输出电压的信息(包括逆变器输出电压的幅值Vo,逆变器输出电压的频率ωo,逆变器输出电压的相角θo),所以进一步在控制中加入了锁相环,锁相环的控制框图如图3所示。其中Tdq/abc为三相电压从abc坐标系到dq坐标系下的变换矩阵,Gc(s)为锁相环调节器,一般选择PI调节器。由于锁相环是较为成熟的技术,在此处仅是应用该技术为虚拟同步发电机的预同步提供必要的信息,因此,对于锁相环控制的具体实施,此处不再赘述。(4) At the same time, since the improved control structure requires grid voltage information (including grid voltage amplitude V g , grid voltage frequency ω g , grid voltage phase angle θ g ) and inverter output voltage information ( Including the amplitude V o of the inverter output voltage, the frequency ω o of the inverter output voltage, and the phase angle θ o of the inverter output voltage), so a phase-locked loop is further added to the control, and the control of the phase-locked loop The block diagram is shown in Figure 3. Among them, T dq / abc is the transformation matrix of the three-phase voltage from the abc coordinate system to the dq coordinate system, and G c (s) is the phase-locked loop regulator. Generally, the PI regulator is selected. Since the phase-locked loop is a relatively mature technology, it is only used here to provide the necessary information for the pre-synchronization of the virtual synchronous generator. Therefore, the specific implementation of the phase-locked loop control will not be repeated here.
该方法包括如下步骤:The method comprises the steps of:
(1)通过电压传感器得到三相电网电压vga,vgb,vgc,利用锁相环算法得到三相电网电压的幅值Vg,三相电网电压的频率ωg和三相电网电压的相角θg;(1) Obtain the three-phase grid voltage v ga , v gb , v gc through the voltage sensor, and use the phase-locked loop algorithm to obtain the amplitude V g of the three-phase grid voltage, the frequency ω g of the three-phase grid voltage and the three-phase grid voltage phase angle θ g ;
(2)通过电压传感器得到逆变器输出电压vCa,vCb,vCc,利用锁相环算法得到逆变器输出电压的幅值Vo,逆变器输出电压的频率ωo和逆变器输出电压的相角θo;(2) Obtain the inverter output voltage v Ca , v Cb , v Cc through the voltage sensor, use the phase-locked loop algorithm to obtain the amplitude V o of the inverter output voltage, the frequency ω o of the inverter output voltage and the inverter The phase angle θ o of the device output voltage;
采用图4所示的预同步控制,同步发电机从离网到并网,虚拟同步发电机最初状态为Pset=0,Qset=0,ωr=ωn,Vr=Vn,并网开关断开,其中:Pset表示虚拟同步发电机有功功率参考值,Qset表示虚拟同步发电机无功功率参考值=0,ωr表示虚拟同步发电机频率参考值,Vr表示虚拟同步发电机电压幅值参考值;具体实施步骤如下:Using the pre-synchronization control shown in Figure 4, when the synchronous generator is from off-grid to grid-connected, the initial state of the virtual synchronous generator is P set =0, Q set =0, ω r =ω n , V r =V n , and The network switch is disconnected, where: P set represents the active power reference value of the virtual synchronous generator, Q set represents the reactive power reference value of the virtual synchronous generator = 0, ω r represents the frequency reference value of the virtual synchronous generator, V r represents the virtual synchronous Generator voltage amplitude reference value; the specific implementation steps are as follows:
(3)切入频率反馈积分环节(即将开关SW4掷于ωg侧,闭合SW1):将虚拟同步发电机的频率参考由额定频率ωn替换为电网电压频率ωg,同时在有功频率下垂环节中加入积分环节;(3) Cut into the frequency feedback integration link (that is, throw switch SW 4 to the ω g side and close SW 1 ): replace the frequency reference of the virtual synchronous generator from the rated frequency ω n to the grid voltage frequency ω g , and at the same time droop at the active frequency Integral links are added to the link;
(4)切入电压反馈积分环节(即将SW5掷于Vg侧,闭合SW2):将虚拟同步发电机的电压幅值参考由额定电压幅值Vn替换为电网电压幅值Vg,同时在无功电压下垂环节中加入积分环节;(4) Cut into the voltage feedback integration link (that is, throw SW 5 on the V g side and close SW 2 ): the voltage amplitude reference of the virtual synchronous generator is replaced by the rated voltage amplitude V n by the grid voltage amplitude V g , and at the same time Integral links are added to reactive voltage droop links;
上述步骤(3)和(4)的目的是控制虚拟同步发电机输出电压频率与电网电压频率相等(为下面控制相位差减小做准备),控制虚拟同步发电机输出电压幅值与电网电压幅值相等。The purpose of the above steps (3) and (4) is to control the output voltage frequency of the virtual synchronous generator to be equal to the grid voltage frequency (to prepare for the reduction of the phase difference in the following control), and to control the output voltage amplitude of the virtual synchronous generator to be equal to the grid voltage amplitude. The values are equal.
(5)切入比例积分调节器Ⅲ(即闭合SW3):将电网电压的相角θg与逆变器输出电压的相角θo做差,得到相角差Δθ,将Δθ输入到比例积分调节器中,再将比例积分调节器的输出叠加到虚拟同步发电机的输出频率中;(5) Cut into the proportional-integral regulator III (that is, close SW 3 ): make a difference between the phase angle θ g of the grid voltage and the phase angle θ o of the inverter output voltage to obtain the phase angle difference Δθ, and input Δθ to the proportional-integral In the regulator, the output of the proportional-integral regulator is added to the output frequency of the virtual synchronous generator;
该步骤的目的是控制虚拟同步发电机和三相电网电压相位相同。The purpose of this step is to control the voltage phase of the virtual synchronous generator and the three-phase grid to be the same.
(6)保证虚拟同步发电机输出电压与电网电压的频率相等、幅值相等、相位相同后闭合并网开关,接入电网。(6) Ensure that the output voltage of the virtual synchronous generator is equal to the frequency, amplitude, and phase of the grid voltage, then close the grid-connected switch and connect to the grid.
(7)切出频率反馈积分环节、电压反馈积分环节与相位调节器(即断开SW1、SW2与SW3)。缓慢增加Pset,控制虚拟同步发电机输出功率缓慢增加。(7) Cut out the frequency feedback integral link, the voltage feedback integral link and the phase regulator (that is, disconnect SW 1 , SW 2 and SW 3 ). Slowly increase P set to control the output power of the virtual synchronous generator to increase slowly.
(8)待Pset增加至额定值后,将频率参考基准从ωg切换为ωn,电压参考基准从Vg切换为Vn(即将SW4掷于ωn侧,将SW5掷于Vn侧)。该步骤的目的是实现频率下垂控制与电压下垂控制,使虚拟同步发电机完全并入电网。(8) After P set increases to the rated value, switch the frequency reference from ω g to ω n , and switch the voltage reference from V g to V n (throw SW 4 to ω n side, and SW 5 to V n side). The purpose of this step is to realize frequency droop control and voltage droop control, so that the virtual synchronous generator can be completely integrated into the grid.
应该明白,公开的过程中的步骤的特定顺序或层次是示例性方法的实例。基于设计偏好,应该理解,过程中的步骤的特定顺序或层次可以在不脱离本公开的保护范围的情况下得到重新安排。所附的方法权利要求以示例性的顺序给出了各种步骤的要素,并且不是要限于所述的特定顺序或层次。It is understood that the specific order or hierarchy of steps in the processes disclosed is an example of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged without departing from the scope of the present disclosure. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy described.
在上述的详细描述中,各种特征一起组合在单个的实施方案中,以简化本公开。不应该将这种公开方法解释为反映了这样的意图,即,所要求保护的主题的实施方案需要清楚地在每个权利要求中所陈述的特征更多的特征。相反,如所附的权利要求书所反映的那样,本发明处于比所公开的单个实施方案的全部特征少的状态。因此,所附的权利要求书特此清楚地被并入详细描述中,其中每项权利要求独自作为本发明单独的优选实施方案。In the foregoing Detailed Description, various features are grouped together in a single embodiment to simplify the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the claimed subject matter require more features than are expressly recited in each claim. Rather, as the following claims reflect, the invention lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby expressly incorporated into the Detailed Description, with each claim standing on its own as a separate preferred embodiment of this invention.
本领域技术人员还应当理解,结合本文的实施例描述的各种说明性的逻辑框、模块、电路和算法步骤均可以实现成电子硬件、计算机软件或其组合。为了清楚地说明硬件和软件之间的可交换性,上面对各种说明性的部件、框、模块、电路和步骤均围绕其功能进行了一般地描述。至于这种功能是实现成硬件还是实现成软件,取决于特定的应用和对整个系统所施加的设计约束条件。熟练的技术人员可以针对每个特定应用,以变通的方式实现所描述的功能,但是,这种实现决策不应解释为背离本公开的保护范围。Those skilled in the art should also understand that various illustrative logical blocks, modules, circuits and algorithm steps described in conjunction with the embodiments herein may be implemented as electronic hardware, computer software or a combination thereof. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
上文的描述包括一个或多个实施例的举例。当然,为了描述上述实施例而描述部件或方法的所有可能的结合是不可能的,但是本领域普通技术人员应该认识到,各个实施例可以做进一步的组合和排列。因此,本文中描述的实施例旨在涵盖落入所附权利要求书的保护范围内的所有这样的改变、修改和变型。此外,就说明书或权利要求书中使用的术语“包含”,该词的涵盖方式类似于术语“包括”,就如同“包括,”在权利要求中用作衔接词所解释的那样。此外,使用在权利要求书的说明书中的任何一个术语“或者”是要表示“非排它性的或者”。The foregoing description includes illustrations of one or more embodiments. Of course, it is impossible to describe all possible combinations of components or methods to describe the above-mentioned embodiments, but those skilled in the art should recognize that various embodiments can be further combined and permuted. Accordingly, the embodiments described herein are intended to embrace all such alterations, modifications and variations that fall within the scope of the appended claims. Furthermore, to the extent that the term "comprises" is used in the specification or claims, the word is encompassed in a manner similar to the term "comprises" as interpreted when "comprises" is used as a link in the claims. Furthermore, any use of the term "or" in the specification of the claims is intended to mean a "non-exclusive or".
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art can still implement the present invention Any modification or equivalent replacement that does not deviate from the spirit and scope of the present invention is within the protection scope of the claims of the pending application of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510153425.0A CN104701886A (en) | 2015-04-02 | 2015-04-02 | Presynchronization control method based on virtual synchronous generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510153425.0A CN104701886A (en) | 2015-04-02 | 2015-04-02 | Presynchronization control method based on virtual synchronous generator |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104701886A true CN104701886A (en) | 2015-06-10 |
Family
ID=53348756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510153425.0A Pending CN104701886A (en) | 2015-04-02 | 2015-04-02 | Presynchronization control method based on virtual synchronous generator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104701886A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104953617A (en) * | 2015-06-17 | 2015-09-30 | 清华大学 | Virtual synchronous generator on-load grid-connection control method and system |
CN105811400A (en) * | 2016-03-18 | 2016-07-27 | 国网上海市电力公司 | Self-adaptive control method for modes of low-voltage microgrid |
CN105978038A (en) * | 2016-05-11 | 2016-09-28 | 中国矿业大学 | Pre-synchronization control method based on virtual impedance |
CN106026195A (en) * | 2016-07-21 | 2016-10-12 | 中国电力科学研究院 | Microgrid group synchronous closing grid-connection control method |
CN106712115A (en) * | 2017-03-03 | 2017-05-24 | 电子科技大学 | A Virtual Synchronous Generator Controller Without Current Feedback |
EP3188338A1 (en) * | 2015-12-30 | 2017-07-05 | Sungrow Power Supply Co., Ltd. | Grid-connected control method based on virtual synchronizer and device thereof |
CN107069828A (en) * | 2017-04-10 | 2017-08-18 | 华北电力大学 | The virtual synchronous generator motor synchronizing control method adjusted in real time based on difference |
CN107104447A (en) * | 2017-05-12 | 2017-08-29 | 合肥工业大学 | Virtual synchronous generator control method based on second order broad sense virtual inertia |
CN107221955A (en) * | 2017-06-26 | 2017-09-29 | 国网青海省电力公司 | Virtual synchronous generator from grid-connected smooth-switching method |
CN107317347A (en) * | 2017-08-24 | 2017-11-03 | 泰州学院 | Shore electric power system stable control method based on virtual synchronous generator |
CN108390414A (en) * | 2018-03-08 | 2018-08-10 | 国网浙江省电力公司绍兴供电公司 | A kind of virtual synchronous generator connecting in parallel with system control method based on anticipatory control presynchronization |
CN108521130A (en) * | 2018-03-16 | 2018-09-11 | 国网浙江省电力有限公司电力科学研究院 | A Reactive Power Control Method of Inverter Based on Virtual Synchronization Mechanism |
EP3376627A1 (en) * | 2017-03-14 | 2018-09-19 | ABB Schweiz AG | Method and control system for controlling a power converter |
CN108718097A (en) * | 2018-06-29 | 2018-10-30 | 内蒙古工业大学 | A kind of seamless switch-over system suitable for virtual synchronous generator low voltage crossing |
CN109599902A (en) * | 2018-12-24 | 2019-04-09 | 北京天诚同创电气有限公司 | The same period presynchronization of micro-capacitance sensor and the control method and device of synchronizing close |
CN109617082A (en) * | 2019-01-23 | 2019-04-12 | 南京邮电大学 | A Transient Stability Control Method for Suppressing Microgrid Voltage and Frequency Out of Limit |
CN109787284A (en) * | 2019-02-03 | 2019-05-21 | 浙江大学 | A control method for virtual synchronization machine to be connected to the grid |
CN110061527A (en) * | 2019-04-22 | 2019-07-26 | 江苏科技大学 | A kind of ship and bank electricity is grid-connected and the control method of seamless switching |
CN110112787A (en) * | 2019-01-28 | 2019-08-09 | 西安交通大学 | Light based on virtual synchronous generator stores up micro-grid connection presynchronization control method |
CN110212590A (en) * | 2019-05-27 | 2019-09-06 | 江苏大学 | Based on the virtual synchronous generator presynchronization control method and system for eliminating phase angle difference disturbance |
CN110233500A (en) * | 2019-06-24 | 2019-09-13 | 上海电力学院 | Virtual synchronous generator off-network is switched to grid-connected method |
CN111541277A (en) * | 2020-04-21 | 2020-08-14 | 浙江工业大学 | Virtual synchronous generator pre-synchronization controller and method thereof |
CN111835028A (en) * | 2019-04-15 | 2020-10-27 | 南京理工大学 | Microgrid inverter control method based on virtual synchronous generator |
CN112751364A (en) * | 2020-12-29 | 2021-05-04 | 天津大学 | Virtual synchronous machine grid-connected control method based on linear/nonlinear active disturbance rejection control |
WO2022252800A1 (en) * | 2021-06-03 | 2022-12-08 | 昱能科技股份有限公司 | Micro-inverter and grid-tied output control method and device therefor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103795080A (en) * | 2014-01-23 | 2014-05-14 | 湖南大学 | Grid connection method of MMC-type light direct-current power transmission system |
CN104410097A (en) * | 2014-09-26 | 2015-03-11 | 广东易事特电源股份有限公司 | Microgrid inverter and grid-connected and off-grid control method thereof |
-
2015
- 2015-04-02 CN CN201510153425.0A patent/CN104701886A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103795080A (en) * | 2014-01-23 | 2014-05-14 | 湖南大学 | Grid connection method of MMC-type light direct-current power transmission system |
CN104410097A (en) * | 2014-09-26 | 2015-03-11 | 广东易事特电源股份有限公司 | Microgrid inverter and grid-connected and off-grid control method thereof |
Non-Patent Citations (1)
Title |
---|
杨亮,王聪,吕志鹏等: "基于同步逆变器的预同步并网方式", 《电网技术》 * |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104953617B (en) * | 2015-06-17 | 2017-08-11 | 清华大学 | Virtual synchronous generator bringing onto load grid-connected control method and system |
CN104953617A (en) * | 2015-06-17 | 2015-09-30 | 清华大学 | Virtual synchronous generator on-load grid-connection control method and system |
EP3188338A1 (en) * | 2015-12-30 | 2017-07-05 | Sungrow Power Supply Co., Ltd. | Grid-connected control method based on virtual synchronizer and device thereof |
CN105811400A (en) * | 2016-03-18 | 2016-07-27 | 国网上海市电力公司 | Self-adaptive control method for modes of low-voltage microgrid |
CN105978038A (en) * | 2016-05-11 | 2016-09-28 | 中国矿业大学 | Pre-synchronization control method based on virtual impedance |
CN105978038B (en) * | 2016-05-11 | 2018-09-25 | 中国矿业大学 | A kind of presynchronization control method based on virtual impedance |
CN106026195A (en) * | 2016-07-21 | 2016-10-12 | 中国电力科学研究院 | Microgrid group synchronous closing grid-connection control method |
CN106026195B (en) * | 2016-07-21 | 2022-06-21 | 中国电力科学研究院 | Control method for synchronous closing and grid connection of micro-grid group |
CN106712115A (en) * | 2017-03-03 | 2017-05-24 | 电子科技大学 | A Virtual Synchronous Generator Controller Without Current Feedback |
CN106712115B (en) * | 2017-03-03 | 2019-02-22 | 电子科技大学 | Virtual synchronous generator controller without current feedback |
EP3872949A1 (en) * | 2017-03-14 | 2021-09-01 | ABB Schweiz AG | Method and control system for controlling a power converter |
US11239779B2 (en) | 2017-03-14 | 2022-02-01 | Abb Schweiz Ag | Method and control system for controlling a power converter |
JP2018186695A (en) * | 2017-03-14 | 2018-11-22 | アーベーベー シュヴァイツ アクツィエンゲゼルシャフト | Method and control system for controlling a power converter |
EP3376627A1 (en) * | 2017-03-14 | 2018-09-19 | ABB Schweiz AG | Method and control system for controlling a power converter |
CN107069828A (en) * | 2017-04-10 | 2017-08-18 | 华北电力大学 | The virtual synchronous generator motor synchronizing control method adjusted in real time based on difference |
CN107069828B (en) * | 2017-04-10 | 2019-12-10 | 华北电力大学 | Virtual synchronous generator self-synchronization control method based on real-time phase difference adjustment |
CN107104447B (en) * | 2017-05-12 | 2022-01-11 | 合肥工业大学 | Virtual synchronous generator control method based on second-order generalized virtual inertia |
CN107104447A (en) * | 2017-05-12 | 2017-08-29 | 合肥工业大学 | Virtual synchronous generator control method based on second order broad sense virtual inertia |
CN107221955A (en) * | 2017-06-26 | 2017-09-29 | 国网青海省电力公司 | Virtual synchronous generator from grid-connected smooth-switching method |
CN107317347A (en) * | 2017-08-24 | 2017-11-03 | 泰州学院 | Shore electric power system stable control method based on virtual synchronous generator |
CN108390414A (en) * | 2018-03-08 | 2018-08-10 | 国网浙江省电力公司绍兴供电公司 | A kind of virtual synchronous generator connecting in parallel with system control method based on anticipatory control presynchronization |
CN108521130A (en) * | 2018-03-16 | 2018-09-11 | 国网浙江省电力有限公司电力科学研究院 | A Reactive Power Control Method of Inverter Based on Virtual Synchronization Mechanism |
CN108521130B (en) * | 2018-03-16 | 2020-09-04 | 国网浙江省电力有限公司电力科学研究院 | A Reactive Power Control Method of Inverter Based on Virtual Synchronization Mechanism |
CN108718097A (en) * | 2018-06-29 | 2018-10-30 | 内蒙古工业大学 | A kind of seamless switch-over system suitable for virtual synchronous generator low voltage crossing |
CN109599902A (en) * | 2018-12-24 | 2019-04-09 | 北京天诚同创电气有限公司 | The same period presynchronization of micro-capacitance sensor and the control method and device of synchronizing close |
CN109599902B (en) * | 2018-12-24 | 2024-02-20 | 北京天诚同创电气有限公司 | Synchronous presynchronization and synchronous closing detection control method and device for micro-grid |
CN109617082B (en) * | 2019-01-23 | 2022-07-01 | 南京邮电大学 | A Transient Stability Control Method for Suppressing Microgrid Voltage and Frequency Out of Limit |
CN109617082A (en) * | 2019-01-23 | 2019-04-12 | 南京邮电大学 | A Transient Stability Control Method for Suppressing Microgrid Voltage and Frequency Out of Limit |
CN110112787A (en) * | 2019-01-28 | 2019-08-09 | 西安交通大学 | Light based on virtual synchronous generator stores up micro-grid connection presynchronization control method |
CN109787284A (en) * | 2019-02-03 | 2019-05-21 | 浙江大学 | A control method for virtual synchronization machine to be connected to the grid |
CN109787284B (en) * | 2019-02-03 | 2020-08-18 | 浙江大学 | A control method for virtual synchronization machine to be connected to the grid |
CN111835028A (en) * | 2019-04-15 | 2020-10-27 | 南京理工大学 | Microgrid inverter control method based on virtual synchronous generator |
CN110061527A (en) * | 2019-04-22 | 2019-07-26 | 江苏科技大学 | A kind of ship and bank electricity is grid-connected and the control method of seamless switching |
CN110212590A (en) * | 2019-05-27 | 2019-09-06 | 江苏大学 | Based on the virtual synchronous generator presynchronization control method and system for eliminating phase angle difference disturbance |
CN110212590B (en) * | 2019-05-27 | 2023-03-24 | 江苏大学 | Virtual synchronous generator pre-synchronization control method and system based on phase angle difference disturbance |
CN110233500A (en) * | 2019-06-24 | 2019-09-13 | 上海电力学院 | Virtual synchronous generator off-network is switched to grid-connected method |
CN111541277A (en) * | 2020-04-21 | 2020-08-14 | 浙江工业大学 | Virtual synchronous generator pre-synchronization controller and method thereof |
CN112751364A (en) * | 2020-12-29 | 2021-05-04 | 天津大学 | Virtual synchronous machine grid-connected control method based on linear/nonlinear active disturbance rejection control |
CN112751364B (en) * | 2020-12-29 | 2022-07-05 | 天津大学 | Grid-connected control method of virtual synchronous machine based on linear/nonlinear active disturbance rejection control |
WO2022252800A1 (en) * | 2021-06-03 | 2022-12-08 | 昱能科技股份有限公司 | Micro-inverter and grid-tied output control method and device therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104701886A (en) | Presynchronization control method based on virtual synchronous generator | |
CN106410849B (en) | Microgrid inverter balance control method based on virtual synchronous generator | |
Edwin et al. | Dynamic modeling and control of interleaved flyback module-integrated converter for PV power applications | |
CN107732978A (en) | A kind of inverter system that power distribution strategies are improved based on virtual synchronous generator | |
CN103904677B (en) | The method for handover control of a kind of VSC-HVDC between networking and decoupled mode | |
GB2574645A (en) | Passive virtual synchronous machine with bounded frequency and virtual flux | |
TW201618412A (en) | Control method and control device for inverter system | |
CN109004681B (en) | Synchronization control method and system of non-communication global modulation signal based on phase-locked loop | |
CN102222937A (en) | Photovoltaic grid-connected inverter and grid-connected control method thereof | |
Yang et al. | Hardware implementation and control design of generator emulator in multi-converter system | |
CN108241791B (en) | Starter generator simulator, starter generator simulation system and method | |
CN110323775B (en) | Damping control method for improving stability of direct current port of flexible direct current power grid | |
CN105429174A (en) | A synchronous inverter controller and its pre-synchronized grid connection method | |
CN107769247B (en) | An RLC load simulation system for anti-islanding detection and its control method | |
Srinivas et al. | Self-synchronizing VSM with seamless operation during unintentional islanding events | |
CN108718097A (en) | A kind of seamless switch-over system suitable for virtual synchronous generator low voltage crossing | |
Pradhan et al. | Performance investigation of multifunctional on-grid hybrid wind–PV system with OASC and MAF-based control | |
CN108448922B (en) | A kind of modulator approach of transformerless single-phase inverter | |
CN117424297A (en) | Low-voltage ride through control method and system for grid-structured distributed photovoltaic inverter | |
Li et al. | Improved virtual synchronous generator with transient damping link and its seamless transfer control for cascaded H‐bridge multilevel converter‐based energy storage system | |
CN107508313B (en) | A method and device for microgrid on-grid and off-grid control | |
Gao et al. | Transformer inrush mitigation for dynamic voltage restorer using direct flux linkage control | |
CN114362209B (en) | Method and system for suppressing broadband oscillation of current transformer integrated weak current network | |
CN118336822A (en) | VSG presynchronization control system and method based on voltage difference and voltage angle relation | |
CN106936141B (en) | Active power control method and control system of flexible ring network controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150610 |