CN1046604C - 多谐振逆变器 - Google Patents

多谐振逆变器 Download PDF

Info

Publication number
CN1046604C
CN1046604C CN95194406A CN95194406A CN1046604C CN 1046604 C CN1046604 C CN 1046604C CN 95194406 A CN95194406 A CN 95194406A CN 95194406 A CN95194406 A CN 95194406A CN 1046604 C CN1046604 C CN 1046604C
Authority
CN
China
Prior art keywords
circuit
inverter
resonance frequency
frequency
fundamental resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN95194406A
Other languages
English (en)
Other versions
CN1154767A (zh
Inventor
丹尼斯·L·斯蒂芬斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Lighting Inc
Original Assignee
Motorola Lighting Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Lighting Inc filed Critical Motorola Lighting Inc
Publication of CN1154767A publication Critical patent/CN1154767A/zh
Application granted granted Critical
Publication of CN1046604C publication Critical patent/CN1046604C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5383Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement
    • H02M7/53832Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement in a push-pull arrangement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

一种多谐振电路具有一个串联谐振电路(118),它耦连到一个逆变器(120)的输入端上。该逆变器的输出端耦连到一个并联谐振电路(108,152)。该并联谐振电路的输出对一个负载(142、140)供能,负载可以是气体放电灯。该逆变器的工作频率是在此串联谐振电路(118)的谐振频率与此并联谐振电路(108、152)的谐振频率之间。

Description

多谐振逆变器
逆变器是用于将DC(直流)电能转换为AC(交流)电能的电路,一种逆变器电路类型使用并联谐振电路作为输出级。
并联谐振电路具有一个电感器,它与一个电容器并联,该电感器的电感量和该电容器的电容量决定此并联谐振电路的谐振频率。
逆变器在逆变器频率上工作。该逆变器频率通常比该并联谐振电路的谐振频率略高些。
并联谐振逆变器电路在输出端上产生一个恒定电压,它与负载无关。据此,利用荧光灯,可容易地并联这些灯。这是有利的,因为去掉一个灯将不会导致所有其他灯都熄灭。
并联谐振电路可能相当昂贵。并联谐振逆变器电路必须是“电流馈电”(Current fed),即,必须给此并联谐振逆变器电路提供恒定的DC电流源。提供恒定的DC电流源要求有一个很大的电感器。大电感器要求具有大量圈数的电感器,因而使得该电感器成本高。
当负载耦合到此并联谐振电路时,由该并联谐振电路产生的功率还不致降低。例如,如果一个并联谐振逆变器为许多灯赋能,在一个灯被摘除时,则所增加的功率就提供给其余的灯,而使这些其余的灯显著地增亮。在这种情况下,由于提供给这些灯的功率有变化,故灯的寿命可能会减少。
图1示出一种多谐振逆变器电路。
图2示出串联谐振电路的谐振频率、并联谐振频率和逆变器的工作频率的示意图。
图3示出各谐振电路的增益图。
为了提高使用并联谐振输出的逆变器的效率,在该逆变器的输入端提供一个串联谐振电路。该串联谐振的谐振频率约是并联谐振电路的谐振频率。该逆变器以该串联谐振电路的谐振频率与该并联谐振电路的谐振频率之间的频率工作。
这样的电路提供比常规的并联谐振逆变器电路高些的效率。通过利用一个谐振电路,可以减少该电流馈送电感器的电感量,因而减少该电路的造价。最后,当逆变器电路中的开关自激振荡时,该电路通过改变该电路的增益来补偿而引起的负载的减少,从而简化此电路的设计。
图1示出一种多谐振AC逆变器(为了正确操作,需要一个启动电路)。
端子100,102连接到一个DC电源上。隔直流电容器104、106串联连接并且并联到DC电源上。隔直流电容器104、106阻止DC电流流过变压器108。
分离电感器110是由第一绕组112和第二绕组114组成的。第一绕组112连接在端子102与串联谐振电容器116之间。第二绕组114连接在端子100与串联谐振电容器116之间。
分离电感器110和串联谐振电容器形成串联谐振电路118。串联谐振电路118具有一个基本谐振频率。串联谐振电路的基本谐振频率是1/(LC)^1/2。
半桥式逆变器120与电容器116相并联,其中半桥式逆变器120的一个输入端子与第一绕组112相连接,而另一输入端子与第二绕组114相连接。该半桥式逆变器120在一个逆变频率上工作。
逆变器120具有两个开关122、124。开关122、124除了其它外,可能是双极结型晶体管、场效应晶体管或可控硅整流器。开关122、124上各并联一个二极管(某些开关诸如场效应晶体管固有地并联了二极管)。
开关122、124从变压器108由驱动绕组130、132经过阻抗网络126、128来驱动。开关122、124被驱动作为自激振荡器。绕组130、132被相控,以便交替地通过阻抗网络126、128接通开关122、124。阻抗网络126、128为开关122、124的操作提供适当相移。开关122、124被驱动得可使开关122、124的接通时间不相重叠。为此,在开关124接通时开关122不接通。
逆变器120的输出耦合到并联谐振电路140。如图所示,该并联谐振电路140包括并联谐振电容器142,它与并联谐振耦合电感器144相并联。并联谐振耦合电感器144用以作为一个并联谐振电路140的谐振电感器,和用以作为灯146、148的阻抗匹配装置。
并联谐振电路140含有灯146、148和谐振限流电容器150、152。电容器150、152提供适当阻抗,以限制流向灯146、148的电流。(众所周知,荧光灯是负阻抗装置)
并联谐振电路140的基本谐振频率是1/(LC)^1/2,其中L是并联谐振电感器144的电感量。而C是电容器142、150、152的电容量。
从图2可以看出该电路的操作情况。图2示出图1的谐振电路的增益。串联谐振增益曲线200是串联谐振电路118的增益。满负载的并联谐振增益曲线202是满负载时的并联谐振电路140的增益。部分负载的并联谐振增益曲线204是负载小于满负载小时的并联谐振电路140的增益。无负载时并联谐振增益曲线206是无负载时的并联谐振电路140的增益。
如果灯146、148之一从该电路中摘除掉,则相应的谐振限流电容器150、152作为并联谐振电路140的谐振元件除掉了。为此,并联谐振电路140的谐振频率提高。因为开关122、124是自激振荡(即,由绕组130、132驱动),故开关频率变化,从而改变逆变器120工作的频率。工作频率处于串联谐振增益曲线200和部分负载时并联谐振增益曲线204的交点。另外,每条曲线的增益增到最大。
电路元件应被选择得在稳态操作期间逆变器频率近似等于在串联谐振增益曲线200和满负载时并联谐振增益曲线202的交点处的频率。这为该电路提供最优化操作,并使电路损耗最小化,因而使该串联谐振电路118的增益和并联谐振电路140的增益最大化。
因为这两个电路的工作频率进一步分开,故实际上增益下降。这是所需要的结果,因为输出给一只灯的功率不像输出给两只灯的功率那样高。据此,如果从该电路中摘掉一只灯,则该灯不会显著地增亮。从而,由于该灯不历经变化的功率,故该灯可以持续更长时段。
最后,如果两只灯146、148都被摘掉,则两个谐振限流电容器就作为谐振电路140的谐振元件被除掉了。据此,进而提高了并联谐振电路130的谐振频率,还使逆变器操作频率保持近似等于曲线200与曲线206的交点处的频率,而使该增益进一步减少。这也是所需要的,因无任何负载,故从并联谐振电路提供的功率应是最小化的。
图2串联谐振增益曲线200被示为在负载变化时是恒定的。但是,当负载变化时,串联谐振增益曲线可稍微变化。为了在负载变化时保持串联谐振增益曲线恒定,选择电感器110的电感量和电容器116的电容量来控制串联谐振电路118的谐振特性,以使串联谐振电路118的谐振频率对负载变化不敏感。
对于图1所示的电路,使串联谐振电路118的谐振频率高于并联谐振电路140的谐振频率是有利的。对于这样的结构,图3示出该串联谐振电路的增益和该并联谐振电路的增益。
在这种电路中,电感器110的电感量和电容器116的电容量应选择得可使该电路的负载变化既可改变谐振电路118的谐振频率也改变其增益,并且工作良好。当负载减少时,串联谐振电路118的增益和谐振频率都增加。
曲线220表示无负载时串联谐振电路118的增益,曲线221表示无负载时并联谐振电路140的增益。曲线222表示在电路中只有一只灯时串联谐振电路118的增益,曲线223表示在电路中有一只灯的并联谐振电路140的增益。最后,曲线224表示串联谐振电路118满负载时的增益,曲线225表示满负载时并联谐振电路140的增益。
串联谐振电路118和并联谐振电路140的谐振频率被选择在曲线的交点处。这为串联谐振电路118和并联谐振电路140提供最大效率。
据此,该多谐振电路在满负载条件期间具有优良的增益,而该电路的负载降低时增益变化。

Claims (10)

1.一种多谐振电路,用于为负载供能,其特征在于,包括:
一个DC电压源;
一个逆变器,在一个逆变频率上工作,该逆变器具有一个逆变器输出端;
一个并联谐振电路,耦合在该逆变器输出端与该负载之间,该并联谐振电路具有一个第一基本谐振频率;
一个输入电感器,耦连在该DC电压源与该逆变器之间;
一个电容器,耦连到该输入电感器上,以形成一个串联谐振电路,该串联谐振电路具有一个第二基本谐振频率;和
该第一基本谐振频率和该第二基本谐振频率应选择得可使该多谐振电路的损耗最小化。
2.根据权利要求1的电路,其特征在于,该逆变器是一个双晶体管逆变器。
3.根据权利要求2的电路,其特征在于,该逆变器是半桥式逆变器。
4.根据权利要求2的电路,其特征在于,该逆变器是推挽式逆变器。
5.根据权利要求1的电路,其特征在于,该逆变器具有一个工作频率,该工作频率在该第一基本谐振频率与该第二基本谐振频率之间。
6.根据权利要求1的电路,其特征在于,该第一基本谐振频率与该第二基本谐振频率大致相等。
7.根据权利要求1的电路,其特征在于,该第一基本谐振频率是在该第二基本谐振频率的10%之内。
8.根据权利要求1的电路,其特征在于,该输入电感器是一个分离式电感器,该分离式电感器具有一个第一绕组和一个第二绕组。
9.根据权利要求8的电路,其特征在于,该逆变器具有一个第一逆变器输入端和一个第二逆变器输入端,该第一绕组耦连到该第一逆变器输入端,而该第二绕组耦连到该第二逆变器输入端。
10.根据权利要求9的电路,其特征在于,一对串联的隔直流电容器与该DC电压源相并联。
CN95194406A 1994-07-29 1995-05-23 多谐振逆变器 Expired - Fee Related CN1046604C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/282,336 1994-07-29
US08/282,336 US5495404A (en) 1994-07-29 1994-07-29 Multi-resonant inverter

Publications (2)

Publication Number Publication Date
CN1154767A CN1154767A (zh) 1997-07-16
CN1046604C true CN1046604C (zh) 1999-11-17

Family

ID=23081046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95194406A Expired - Fee Related CN1046604C (zh) 1994-07-29 1995-05-23 多谐振逆变器

Country Status (4)

Country Link
US (1) US5495404A (zh)
EP (1) EP0772903A4 (zh)
CN (1) CN1046604C (zh)
WO (1) WO1996004707A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08502624A (ja) * 1993-08-05 1996-03-19 モトローラ・ライティング・インコーポレイテッド ブースタを有する並列共振安定器
DE19608656A1 (de) * 1996-03-06 1997-09-11 Bosch Gmbh Robert Schaltungsanordnung zum Betrieb einer Hochdruckgasentladungslampe
US5861719A (en) * 1997-06-18 1999-01-19 Imp, Inc. Regulated power supplies for electroluminescent lamps
US6091288A (en) * 1998-05-06 2000-07-18 Electro-Mag International, Inc. Inverter circuit with avalanche current prevention
DK174165B1 (da) * 2000-10-13 2002-08-05 American Power Conversion Denm Resonanskonverter
GB2393336B (en) * 2002-09-20 2005-07-20 Coutant Lambda Ltd Multi-resonant power conversion apparatus and methods
SE525135C2 (sv) * 2003-05-07 2004-12-07 Magnus Lindmark Kraftaggregat med självsvängande serieresonansomvandlare
EP1791399B2 (en) * 2005-11-22 2017-05-31 OSRAM GmbH A LED driving arrangement
US20110139771A1 (en) * 2009-12-11 2011-06-16 Honeywell Asca Inc. Series-Parallel Resonant Inverters
CN101772246B (zh) * 2010-02-24 2013-01-16 英飞特电子(杭州)股份有限公司 适用于多路led精确恒流驱动的多谐振电路
JP6172088B2 (ja) * 2014-08-19 2017-08-02 株式会社デンソー 共振電流制限装置
US9893702B2 (en) * 2015-07-27 2018-02-13 Qualcomm Incorporated Notch filter with differential split inductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692667A (en) * 1984-10-16 1987-09-08 Nilssen Ole K Parallel-resonant bridge-inverter fluorescent lamp ballast
US5060130A (en) * 1990-08-23 1991-10-22 General Electric Company High-efficiency, high-density, power supply including an input boost power supply

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214355A (en) * 1978-03-20 1993-05-25 Nilssen Ole K Instant-start electronic ballast
US4954754A (en) * 1988-05-02 1990-09-04 Nilssen Ole K Controlled electronic ballast
US5065301A (en) * 1989-09-22 1991-11-12 Yokogawa Electric Corporation Switching power supply
US5130610A (en) * 1990-01-31 1992-07-14 Toshiba Lighting & Technology Corporation Discharge lamp lighting apparatus
US5208738A (en) * 1990-12-13 1993-05-04 Northern Telecom Limited Constant frequency resonant DC/DC converter
US5157593A (en) * 1990-12-13 1992-10-20 Northern Telecom Limited Constant frequency resonant dc/dc converter
US5191263A (en) * 1992-03-04 1993-03-02 Motorola Lighting, Inc. Ballast circuit utilizing a boost to heat lamp filaments and to strike the lamps
US5438497A (en) * 1993-05-13 1995-08-01 Northern Telecom Limited Tertiary side resonant DC/DC converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692667A (en) * 1984-10-16 1987-09-08 Nilssen Ole K Parallel-resonant bridge-inverter fluorescent lamp ballast
US5060130A (en) * 1990-08-23 1991-10-22 General Electric Company High-efficiency, high-density, power supply including an input boost power supply

Also Published As

Publication number Publication date
EP0772903A4 (en) 1998-12-02
CN1154767A (zh) 1997-07-16
EP0772903A1 (en) 1997-05-14
US5495404A (en) 1996-02-27
WO1996004707A1 (en) 1996-02-15

Similar Documents

Publication Publication Date Title
US6316883B1 (en) Power-factor correction circuit of electronic ballast for fluorescent lamps
CN1161008C (zh) 三端双向可控硅开关调光镇流器
CN1046604C (zh) 多谐振逆变器
CN1348676A (zh) 带有集成磁元件的高功率电子镇流器
CN1753595B (zh) 用于驱动至少一个光源的电路装置
CN1130957C (zh) 具有内含的功率因数校正的单开关镇流器
CN1061208C (zh) 气体放电灯的单晶体管镇流器
WO1995010930A1 (en) Integrated electronic energy converter
US5150013A (en) Power converter employing a multivibrator-inverter
CN1113101A (zh) 带有升压电路的并联谐振镇流器
CN1117783A (zh) 用于激励气体放电灯的高功率因数电路
CN1173106A (zh) 用于气体放电灯的无二极管起动电路
CN1387307A (zh) 自激振荡同步升压变换器
WO1999067976A2 (en) Ballast circuit
CN1943100A (zh) 电源装置
EP0617567B1 (en) Ballast for discharge lamp with improved crest factor
CN1925710A (zh) Sepic变换器的电隔离
Takahashi et al. Efficiency improvement of electronic ballast
CN1656664A (zh) 用于修正电功率因数的电路
EP0606664B1 (en) Ballast circuit
EP1683256A1 (en) Dimmable ballast with resistive input and low electromagnetic interference
Có et al. High-power-factor electronic ballast based on a single power processing stage
CN1263430A (zh) 控制至少一个低压放电灯的电路装置
KR100287565B1 (ko) 형광등용 전자식 안정기의 역률 개선 회로
CN1159953C (zh) 多灯管驱动系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee