CN104659144A - 基于纳米条带结构的石墨烯可调红外高效率吸收装置及方法 - Google Patents
基于纳米条带结构的石墨烯可调红外高效率吸收装置及方法 Download PDFInfo
- Publication number
- CN104659144A CN104659144A CN201510072210.6A CN201510072210A CN104659144A CN 104659144 A CN104659144 A CN 104659144A CN 201510072210 A CN201510072210 A CN 201510072210A CN 104659144 A CN104659144 A CN 104659144A
- Authority
- CN
- China
- Prior art keywords
- graphene
- infrared
- ribbon structure
- substrate
- infrared waves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 73
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 70
- 239000002074 nanoribbon Substances 0.000 title claims abstract description 62
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 9
- 230000003287 optical effect Effects 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims description 21
- 241000196324 Embryophyta Species 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 16
- 238000013461 design Methods 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 241000209094 Oryza Species 0.000 claims description 5
- 235000007164 Oryza sativa Nutrition 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 5
- 230000000644 propagated effect Effects 0.000 claims description 5
- 235000009566 rice Nutrition 0.000 claims description 5
- 150000001336 alkenes Chemical class 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 7
- 230000000737 periodic effect Effects 0.000 abstract description 4
- 230000005764 inhibitory process Effects 0.000 abstract 1
- 230000001427 coherent effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000001629 suppression Effects 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种基于纳米条带结构的石墨烯可调红外高效率吸收装置及方法,利用石墨烯纳米条带结构的等离激元谐振,辅以对两相向传播红外波束进行相位调制实现对红外波的高效率(100%)吸收:为了达到上诉目的,本发表采用具有周期性的纳米条带阵列。两幅度相同相向传播的红外波束从两侧入射到周期性纳米条带结构上,两波束引入相对相位调制,即可在透射系数和反射系数相同的频率,即工作频率处,利用光学相干性,实现对红外波散射场的抑制,而使得红外波只能在石墨烯纳米条带的吸收通道中全部得以吸收。
Description
技术领域
本发明属于一种可调红外高效率吸收装置,具体涉及一种基于纳米条带结构的石墨烯可调红外高效率吸收装置及方法。
背景技术
红外吸收装置为一种能够选择性吸收红外辐射的器件,为调控红外辐射的基础器件之一。在红外信号探测与调制等领域均具有广阔的应用前景。而以石墨烯为代表的新型两维层状材料由于其光学性质可以通过静态电场、磁场或化学参杂的手段进行调节,在可调红外探测吸收方面了广泛关注。但是研究者注意到石墨烯不仅在可见光波段单层石墨烯具有很低的2.3%吸收[文献1,R.R.Nair,P.Blake,A.N.Grigorenko,K.S.Novoselov,T.J.Booth,T.Stauber,N.M.R.Peres,and A.K.Geim,"Fine Structure ConstantDefines Visual Transparency of Graphene,"Science 320,1308(2008)],其在红外波段的吸收和消光等响应也均很弱,比如基于石墨烯的探测器较于传统半导体探测器效率很低[文献2,L.Vicarelli,M.S.Vitiello,D.Coquillat,A.Lombardo,A.C.Ferrari,W.Knap,M.Polini,V.Pellegrini,and A.Tredicucci,"Graphene field-effect transistors asroom-temperature terahertz detectors,"Nature Materials 11,865-871(2012)]。强的光学响应是人们通过材料实现对光波调控的基础,对于红外光器件应用非常重要,这样如何增强石墨烯材料的红外光学吸收即为一个面向石墨烯器件应用的亟待解决的问题。目前国内外相关的研究主要集中于几个方面:(1)尝试将两维石墨烯微盘结构置于高折射率衬底和有金属背极介质衬底上,发现利用衬底的内全反射和金属的反射分别可以在斜角度和正入射下放大石墨烯的吸收[文献3-4,S.Thongrattanasiri,F.H.L.Koppens,and F.J.Garcia de Abajo,"Complete Optical Absorption in Periodically PatternedGraphene,"Physical Review Letters 108,047401(2012);R.Alaee,M.Farhat,C.Rockstuhl,and F.Lederer,"A perfect absorber made of a graphene micro-ribbon metamaterial,"OpticsExpress 20,28017-28024(2012)];(2)将石墨烯置于介质超晶格中增强石墨烯在远红外对光信号的调控作用[文献5,Y.Fan,Z.Wei,H.Li,H.Chen,and C.M.Soukoulis,"Photonic band gap of a graphene-embedded quarter-wave stack,"Physical Review B,88,241403(2013)]。以上现有的设计物理上均基于人工布拉格谐振或者局域谐振,增强石墨烯光学响应取决于人工结构谐振子的表现,而在实验中由于加工过程的误差,吸收效果往往与理论预期差距较大,所设计结果在应用中稳定性限制其实际使用。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种基于纳米条带结构的石墨烯可调红外高效率吸收装置及方法,解决石墨烯应用于红外探测器件吸收效率低和实际应用可靠性的问题。
技术方案
一种基于纳米条带结构的石墨烯可调红外高效率吸收装置,其特征在于包括石墨烯纳米条带结构1、第一衬底、第二衬底和金属电极3;石墨烯纳米条带结构1与金属电极3同时置于第一衬底上,第二衬底夹在石墨烯纳米条带结构1与金属电极3之间,石墨烯纳米条带结构1的费米能够通过其边缘的金属电极3,金属电极3对石墨烯实现馈电;所述石墨烯纳米条带结构1的米条带结构周期为P,纳米条带宽为w,通过调节P和w使得吸收装置对入射光波在设计工作频率满足光学相干条件。
所述衬底采用h-BN衬底。
一种利用所述红外高效率吸收装置实现对红外波束吸收的方法,其特征在于步骤如下:
步骤1:调接石墨烯纳米条带结构1中米条带结构周期P和纳米条带宽w,使其对入射光波在设计工作频率满足光学相干条件;
步骤2:将同一红外波进行分束形成两束幅度相同红外波,两束幅度相同相向传播的红外波束垂直输入墨烯纳米条带结构1和第一衬底上;
步骤3:调整其中一束红外波与导体贴片的距离,使得两束红外波出现初始相位差Δφ在导体贴片上产生相对相位调制;测试墨烯纳米条带结构1的红外波的散射强度O,当散射强度为0时的两束红外波的初始相位差Δφ为实现对红外波散射完全抑制的相位调制参数,此时石墨烯纳米条带结构的红外波散射被完全抑制,红外波只能被石墨烯纳米条带结构完全吸收。
有益效果
本发明提出的一种基于纳米条带结构的石墨烯可调红外高效率吸收装置及方法,利用石墨烯纳米条带结构的等离激元谐振,辅以对两相向传播红外波束进行相位调制实现对红外波的高效率(100%)吸收:为了达到上诉目的,本发表采用具有周期性的纳米条带阵列。两幅度相同相向传播的红外波束从两侧入射到周期性纳米条带结构上,两波束引入相对相位调制,即可在透射系数和反射系数相同的频率,即工作频率处,利用光学相干性,实现对红外波散射场的抑制,而使得红外波只能在石墨烯纳米条带的吸收通道中全部得以吸收。
本发明具有如下的效果和优点:
1.与已有的红外波吸收体采用结构谐振实现,需要制备高品质的微结构不同,该发明利用对入射相干红外波束进行相位调制实现对散射的抑制进而实现石墨烯纳米条带中高效率(100%)红外波吸收。
2.本发明采用的相干调制最终获得高效率吸收,只需使得样品的红外透射和反射满足光学相干条件,即可利用后期的相位调制实现高效率(100%)红外波吸收,对石墨烯人工微结构的制备要求低,性能稳定。
3.发明采用边缘金属电极对石墨烯馈电,具有高效率和加工简单的优点。
附图说明
图1是本发明基于纳米条带结构的石墨烯可调红外高效率吸收装置的结构示意图;
1-石墨烯纳米条带结构,2-第二衬底,3-金属电极,4-第一衬底,P-米条带结构周期,w-纳米条带宽,I-和I+-两相向传播的红外波束,O-和O+-左右两侧电磁波的散射强度;
图2是本发明基于纳米条带结构的石墨烯可调红外高效率吸收装置示例1的透射和反射系数;
图3a本发明基于纳米条带结构的石墨烯可调红外高效率吸收装置示例1进行相位调制以调节其中的相干吸收;
图3b发明基于纳米条带结构的石墨烯可调红外高效率吸收装置示例1在相位调制下的相干吸收谱,分别在THz和THz实现了100%红外吸收;
在工作频率9.19GHz的调制曲线(相干吸收随相位调制的变化);
图4是本发明基于纳米条带结构的石墨烯可调红外高效率吸收装置示例1工作频率随纳米条带宽带的变化曲线;
图5是本发明基于纳米条带结构的石墨烯可调红外高效率吸收装置示例1工作频率随石墨烯费米能改变的曲线。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
该装置由石墨烯纳米条带结构配合以对入射相干红外波束的相位调制实现。石墨烯纳米条带结构和相干调制为本发明的关键技术特征。红外波极化垂直激励石墨烯纳米条带结构可以激发其中的等离激元谐振模式,而对红外波的散射(透射和吸收)进行有效的调控引入两束相干调制相向传播的红外波束,在工作频率处,两相干波束的透射系数和反射系数相等,而满足光学相干条件,进而通过相位的调制实现对电磁散射(透射和反射)的抑制进而实现导体贴片中红外波的完全吸收。这种红外吸收装置设计利用光波的相干性,在设计工作频率能够实现100%的红外吸收;具有很好的频率可调性,可以通过改变纳米条带结构及石墨烯的费米能或者动态电导在很宽频段内实现调谐。并且本发明涉及的红外吸收装置通过合适的相位调制实现双频工作。
本发明的具体结构实现如附图1:包括一层具有周期性的石墨烯纳米条带结构1,石墨烯纳米条带结构置于介质环境(衬底2)中,纳米条带结构的费米能可以通过其边缘的金属电极3进行馈电调控[参见文献6,L.Wang,I.Meric,P.Y.Huang,Q.Gao,Y.Gao,H.Tran,T.Taniguchi,K.Watanabe,L.M.Campos,D.A.Muller,J.Guo,P.Kim,J.Hone,K.L.Shepard,and C.R.Dean,"One-Dimensional Electrical Contact to aTwo-Dimensional Material,"Science,342,614-617(2013)],米条带结构周期为P,纳米条带宽为w;两相向传播的红外波束I-和I+垂直入射到石墨烯纳米条带两侧,红外波的极化垂直纳米条带方向。相干调制通过改变所示两波束(I-和I+)的初始相位差Δφ实现,通过测试左右两侧电磁波的散射强度(O-和O+),散射强度为0即实现对红外波散射的完全抑制,这时的红外波频率和相位调制取值即装置实现100%红外波吸收的合适参数。通过改变石墨烯纳米条带结构几何尺寸和馈电改变石墨烯费米能可以调节装置的工作频率。
请参阅附图1,附图2,附图3,附图4及附图5.
本发明涉及的相干调制石墨烯纳米条带红外吸收装置,由两束相干红外波从两侧入射石墨烯纳米条带结构构成,我们给出一个设计实例及其计算相干调控红外吸收结果,石墨烯纳米条带结构可以通过电子束曝光技术制备得到。首先取石墨烯费米能为0.5电子伏特(eV),周期性纳米条带结构周期为700纳米,纳米条带宽度为330纳米。为简单起见我们考虑介质环境为真空的情况(石墨烯结构上下包覆h-BN衬底的结构见附图2插图),该结构透射系数和反射系数如附图2所示,可以看到在22.70THz和23.37Thz透射系数和反射系数相等,这样幅度相同的入射红外波在石墨烯结构左右两侧的散射波满足光学相干条件之幅度相等,我们给定入射波相位差的相位调制具有Δφ(f)=φ0+kf的形式,其中f为红外波频率,φ0为初始相位调制,k为抵偿频率色散的啁啾系数,这里为了在22.70THz和23.37Thz均实现100%吸收我们设定k=1.91×10-12π弧度。调节初始相位调制φ0我们可以很有效地调节相干吸收,如附图3a所示。在合适的相位调制下,本示例中为Δφ=1.03π弧度(见附图3a),散射波被完全抑制,可以在两个工作频率22.70THz和23.37Thz实现高效率(100%)红外吸收(如附图3b所示)。本发明涉及的纳米条带结构简单,在加工中可以改变其条带宽度对其红外响应进行调控,进而实现高效率(100%)吸收工作频率的条件,附图4给出了其工作频率随纳米条带宽度的变化(固定纳米条带周期为700纳米,费米能为0.5eV)。此外本发明采用边缘金属电极对石墨烯馈电,能够高效率地调节石墨烯的费米能,进而对红外吸收工作频率进行调节,附图5给出了工作频率随石墨烯费米能改变的曲线(固定纳米条带周期为700纳米,纳米条带宽度为138纳米)。可以看到通过改变纳米条带几何尺寸和石墨烯费米能本发明的红外吸收装置可以实现单频或双频工作,并且工作频率可以在很宽频带内调谐。
Claims (3)
1.一种基于纳米条带结构的石墨烯可调红外高效率吸收装置,其特征在于包括石墨烯纳米条带结构(1)、第一衬底、第二衬底和金属电极(3);石墨烯纳米条带结构(1)与金属电极(3)同时置于第一衬底上,第二衬底夹在石墨烯纳米条带结构(1)与金属电极(3)之间,石墨烯纳米条带结构(1)的费米能够通过其边缘的金属电极(3),金属电极3对石墨烯实现馈电;所述石墨烯纳米条带结构(1)的米条带结构周期为P,纳米条带宽为w,通过调节P和w使得吸收装置对入射光波在设计工作频率满足光学相干条件。
2.根据权利要求1所述基于纳米条带结构的石墨烯可调红外高效率吸收装置,其特征在于:所述衬底采用h-BN衬底。
3.一种利用权利要求1或2所述红外高效率吸收装置实现对红外波束吸收的方法,其特征在于步骤如下:
步骤1:调接石墨烯纳米条带结构1中米条带结构周期P和纳米条带宽w,使其对入射光波在设计工作频率满足光学相干条件;
步骤2:将同一红外波进行分束形成两束幅度相同红外波,两束幅度相同相向传播的红外波束垂直输入墨烯纳米条带结构1和第一衬底上;
步骤3:调整其中一束红外波与导体贴片的距离,使得两束红外波出现初始相位差Δφ在导体贴片上产生相对相位调制;测试墨烯纳米条带结构(1)的红外波的散射强度O,当散射强度为0时的两束红外波的初始相位差Δφ为实现对红外波散射完全抑制的相位调制参数,此时石墨烯纳米条带结构的红外波散射被完全抑制,红外波只能被石墨烯纳米条带结构完全吸收。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510072210.6A CN104659144B (zh) | 2015-02-11 | 2015-02-11 | 基于纳米条带结构的石墨烯可调红外高效率吸收装置及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510072210.6A CN104659144B (zh) | 2015-02-11 | 2015-02-11 | 基于纳米条带结构的石墨烯可调红外高效率吸收装置及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104659144A true CN104659144A (zh) | 2015-05-27 |
CN104659144B CN104659144B (zh) | 2016-11-09 |
Family
ID=53250052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510072210.6A Active CN104659144B (zh) | 2015-02-11 | 2015-02-11 | 基于纳米条带结构的石墨烯可调红外高效率吸收装置及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104659144B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105352906A (zh) * | 2015-11-17 | 2016-02-24 | 国家纳米科学中心 | 石墨烯等离激元增强红外光谱探测的谱线峰值分离方法 |
CN105403528A (zh) * | 2015-11-17 | 2016-03-16 | 国家纳米科学中心 | 石墨烯等离激元增强红外光谱探测的电学原位扣背景方法 |
CN105957955A (zh) * | 2016-07-19 | 2016-09-21 | 中国科学院重庆绿色智能技术研究院 | 一种基于石墨烯平面结的光电探测器 |
CN106019433A (zh) * | 2016-07-26 | 2016-10-12 | 厦门大学 | 基于石墨烯的太赫兹宽带可调吸波器 |
CN107015383A (zh) * | 2016-11-08 | 2017-08-04 | 北京交通大学 | 基于石墨烯硅基波导的超高速光信号发生器 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130058882A (ko) * | 2011-11-28 | 2013-06-05 | (주)와이즈산전 | 그래핀을 이용한 적외선 검출 소자 |
CN103776790A (zh) * | 2014-02-25 | 2014-05-07 | 重庆大学 | 一种基于石墨烯纳米天线的红外光谱增强及探测方法及装置 |
-
2015
- 2015-02-11 CN CN201510072210.6A patent/CN104659144B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130058882A (ko) * | 2011-11-28 | 2013-06-05 | (주)와이즈산전 | 그래핀을 이용한 적외선 검출 소자 |
CN103776790A (zh) * | 2014-02-25 | 2014-05-07 | 重庆大学 | 一种基于石墨烯纳米天线的红外光谱增强及探测方法及装置 |
Non-Patent Citations (1)
Title |
---|
FAN, YC 等: "Tunable terahertz coherent perfect absorption in a monolayer graphene", 《OPTICS LETTERS》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105352906A (zh) * | 2015-11-17 | 2016-02-24 | 国家纳米科学中心 | 石墨烯等离激元增强红外光谱探测的谱线峰值分离方法 |
CN105403528A (zh) * | 2015-11-17 | 2016-03-16 | 国家纳米科学中心 | 石墨烯等离激元增强红外光谱探测的电学原位扣背景方法 |
CN105352906B (zh) * | 2015-11-17 | 2018-10-30 | 国家纳米科学中心 | 石墨烯等离激元增强红外光谱探测的谱线峰值分离方法 |
CN105403528B (zh) * | 2015-11-17 | 2018-12-07 | 国家纳米科学中心 | 石墨烯等离激元增强红外光谱探测的电学原位扣背景方法 |
CN105957955A (zh) * | 2016-07-19 | 2016-09-21 | 中国科学院重庆绿色智能技术研究院 | 一种基于石墨烯平面结的光电探测器 |
CN105957955B (zh) * | 2016-07-19 | 2018-10-23 | 中国科学院重庆绿色智能技术研究院 | 一种基于石墨烯平面结的光电探测器 |
CN106019433A (zh) * | 2016-07-26 | 2016-10-12 | 厦门大学 | 基于石墨烯的太赫兹宽带可调吸波器 |
CN106019433B (zh) * | 2016-07-26 | 2018-12-14 | 厦门大学 | 基于石墨烯的太赫兹宽带可调吸波器 |
CN107015383A (zh) * | 2016-11-08 | 2017-08-04 | 北京交通大学 | 基于石墨烯硅基波导的超高速光信号发生器 |
Also Published As
Publication number | Publication date |
---|---|
CN104659144B (zh) | 2016-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Peng et al. | Midinfrared electro-optic modulation in few-layer black phosphorus | |
Ahmadivand et al. | Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator | |
CN104659144A (zh) | 基于纳米条带结构的石墨烯可调红外高效率吸收装置及方法 | |
Nong et al. | Enhanced graphene plasmonic mode energy for highly sensitive molecular fingerprint retrieval | |
Shi et al. | Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures | |
Emani et al. | Graphene: a dynamic platform for electrical control of plasmonic resonance | |
Chen et al. | Atomically thin surface cloak using graphene monolayers | |
Zhou et al. | Terahertz wave reflection impedance matching properties of graphene layers at oblique incidence | |
Wang et al. | Toward ultimate control of terahertz wave absorption in graphene | |
CN107978871B (zh) | 基于石墨烯多谐振结构的极化不依赖宽带太赫兹吸波器 | |
Miyazaki et al. | Nanograting formation through surface plasmon fields induced by femtosecond laser pulses | |
Yang et al. | Dependence of the optical conductivity on the uniaxial and biaxial strains in black phosphorene | |
Liu et al. | A review of graphene plasmons and its combination with metasurface | |
Fan et al. | Terahertz surface emission from MoSe2 at the monolayer limit | |
Chen et al. | Broadband, wide-incident-angle, and polarization-insensitive high-efficiency absorption of monolayer graphene with nearly 100% modulation depth at communication wavelength | |
Chen et al. | Absorption enhancement in double-layer cross-shaped graphene arrays | |
Wang et al. | Ultra-broadband perfect terahertz absorber with periodic-conductivity graphene metasurface | |
Kim et al. | Unconventional terahertz carrier relaxation in graphene oxide: observation of enhanced Auger recombination due to defect saturation | |
Zhukova et al. | Transmission properties of FeCl 3-intercalated graphene and WS 2 thin films for terahertz time-domain spectroscopy applications | |
Li et al. | Mechanism and optimization of a graphene/silicon hybrid diode terahertz modulator | |
Liu et al. | Perfect absorber with high sensitivity based on hexagonal star graphene surface | |
Su et al. | Dynamically tunable dual-frequency terahertz absorber based on graphene rings | |
Sbeah et al. | Graphene assisted tunable narrowband metamaterial absorber for infrared wavelength | |
Lv et al. | Deep neural network-aided design of terahertz bifunctional metasurface | |
He et al. | Ultrafast and broadband terahertz modulator with polarization selectivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |